
EE360: Multiuser Wireless Systems and Networks 

Lecture 3 Outline 

Announcements 
 Makeup lecture Feb 2, 5-6:15. 

 Presentation schedule will be sent out later today, presentations 
will start 1/30. 

 Next lecture: Random/Multiple Access, SS, MUD  

Capacity of Broadcast ISI Channels 

Capacity of MAC Channels 
 In AWGN 

 In Fading and ISI 

Duality between the MAC and the BC  

Capacity of MIMO Multiuser Channels 



Review of Last Lecture 

 Channel capacity region of broadcast channels 

 Capacity in AWGN 

 Use superposition coding and optimal power allocation 

 Capacity in fading 

 Ergodic capacity: optimally allocate resources over time 

 Outage capacity: maintain fixed rates in all states 

 Minimum rate capacity: fixed min. rate in all states, use 
excess rsources to optimize average rate above min. 

 

Broadcast: 
   One Transmitter 

   to Many Receivers. 
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R3 
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Broadcast Channels with ISI 

 ISI introduces memory into the channel 
 

 The optimal coding strategy decomposes the 

channel into parallel broadcast channels 

 Superposition coding is applied to each subchannel. 

 

 Power must be optimized across subchannels 
and between users in each subchannel. 

 



Broadcast Channel Model 

 Both H1 and H2  are finite IR filters of length m. 

 The w1k and w2k are correlated noise samples. 

 For 1<k<n, we call this channel the n-block 
discrete Gaussian broadcast channel (n-DGBC). 

 The channel capacity region is C=(R1,R2). 

w1k 

H1(f) 

H2(f) 

w2k 
xk 

y h x wk i

i

m

kk i1 1

1

1 






y h x wk i

i

m

kk i2 2

1

2 








Equivalent Parallel  
Channel Model 
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Channel Decomposition 

 Via a DFT, the BC with ISI approximately decomposes into 

n parallel AWGN degraded broadcast channels. 

 As n goes to infinity, this parallel model becomes exact 

 The capacity region of parallel degraded broadcast 

    channels was obtained by El-Gamal (1980) 
 Optimal power allocation obtained by Hughes-Hartogs(’75). 

 

 The power constraint                     on the original channel is 

converted by Parseval’s theorem to                           on the 

equivalent channel. 
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Capacity Region of Parallel Set 

 Achievable Rates (no common information) 

 

 

 

 

 Capacity Region 

 For 0<b find {aj}, {Pj} to maximize R1+bR2+l SPj. 

 Let (R1
*,R2

*)n,b denote the corresponding rate pair. 

 Cn={(R1
*,R2

*)n,b : 0<b  }, C=liminfn   Cn . 
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Limiting Capacity Region 
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Optimal Power Allocation: 
Two Level Water Filling 



Capacity vs. Frequency 



Capacity Region 



Multiple Access Channel 

 Multiple transmitters  

 Transmitter i sends signal Xi with power Pi 
 

 Common receiver with AWGN of power N0B 

 Received signal: 

NXY
M

i

i  
1

X1 

X2 X3 



MAC Capacity Region 

 Closed convex hull of all (R1,…,RM) s.t. 

 

 

 For all subsets of users, rate sum equals that of 1 
superuser with sum of powers from all users 

 

 Power Allocation and Decoding Order 

 Each user has its own power (no power alloc.) 

 Decoding order depends on desired rate point 
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Two-User Region 

Superposition coding 

w/ interference canc. 

SC w/ IC and time 
sharing or rate splitting 

Frequency division 

Time division 

C1 

C2 

Ĉ1 

Ĉ2 

2,1,1log
0









 i

BN

P
BC i

i

,1logˆ,1logˆ

10

2
2

20

1
1 























PBN

P
BC

PBN

P
BC

SC w/out IC 



Fading and ISI 

 MAC capacity under fading and ISI determined 

using similar techniques as for the BC 
 

 In fading, can define ergodic, outage, and 

minimum rate capacity similar as in BC case 
 Ergodic capacity obtained based on AWGN MAC 

given fixed fading, averaged over fading statistics 

 Outage can be declared as common, or per user 
 

 MAC capacity with ISI obtained by converting to 

equivalent parallel MAC channels over frequency 



Characteristics 

 Corner points achieved by 1 user operating at his 
maximum rate 
 Other users operate at rate which can be decoded 

perfectly and subtracted out (IC) 

 Time sharing connects corner points 
 Can also achieve this line via rate splitting, where one 

user “splits” into virtual users 

 FD has rate RiBilog[1+Pi/(N0B)] 

 TD is straight line connecting end points 
 With variable power, it is the same as FD 

 

 CD without IC is box 



Fading MAC Channels 

 Noise is AWGN with variance 2. 

 Joint fading state (known at TX and RX):  
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Capacity Region* 

 Rate allocation R(h) RM  

 Power allocation P(h) RM  

 Subject to power constraints: Eh[P(h)]P 

 Boundary points: R*  

  l,mRM s.t. [R(h),P(h)] solves 
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Unique Decoding Order* 

 For every boundary point R*: 

 There is a unique decoding order that is the same for 
every fading state 

 Decoding order is reverse order of the priorities 

 
 

 Implications: 

 Given decoding order, only need to optimally allocate 
power across fading states 

 Without unique decoding order, utility functions used to 
get optimal rate and power allocation 

*S. Vishwanath 

1,...1,:...1  MMM order Decodingmm



Characteristics of Optimum 

Power Allocation 

 A user’s power in a given state depends only on: 

 His channel (hik) 

 Channels of users decoded just before (hik-1) and just after 
(hik+1)  

 Power increases with hik and decreases with hik-1 and hik+1 

 Power allocation is a modified waterfilling, modified to 
interference from active users just before and just after 

 

 User decoded first waterfills to SIR for all active users 



Transmission Regions 

 The region where no users transmit is a hypercube 
 Each user has a unique cutoff below which he does not transmit 

 

 For highest priority user, always transmits above some h1
* 

 

 The lowest priority user, even with a great channel, doesn’t 
transmit if some other user has a relatively good channel 

h1 

h2 

P1>0,P2=0 

P1>0,P2>0 
P1=0,P2>0 

P1=0 
P2=0 

m1>m2 



Two User Example 

 Power allocation for m1>m2 
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Ergodic Capacity Summary 

 Rate region boundary achieved via optimal 
allocation of power and decoding order 
 

 For any boundary point, decoding order is the 
same for all states 

 Only depends on user priorities 
 

 Optimal power allocation obtained via Lagrangian 
optimization 

 Only depends on users decoded just before and after 

 Power allocation is a modified waterfilling 

 Transmission regions have cutoff and critical values 



MAC Channel with ISI* 

 Use DFT Decomposition 

 Obtain parallel MAC channels 

 Must determine each user’s power allocation across 

subchannels and decoding order 

 Capacity region no longer a pentagon 

X1 

X2 

H1(f) 

H2(f) 

*Cheng and Verdu, IT’93 



Optimal Power Allocation 

 Capacity region boundary: maximize m1R1+m2R2 

 Decoding order based on priorities and channels 

 Power allocation is a two-level water filling 
 Total power of both users is scaled water level 

 In non-overlapping region, best user gets all power (FD) 

 With overlap, power allocation and decoding order based  
on ls and user channels. 

b1/|H1(f)|
2+m1 

b2/|H2(f)|
2+m2 

1 



 Differences: 

 Shared vs. individual power constraints 

 Near-far effect in MAC 
 

 Similarities: 

 Optimal BC “superposition” coding is also optimal for 
MAC (sum of  Gaussian codewords) 
 

 Both decoders exploit successive decoding and 
interference cancellation 

 

Comparison of  MAC and BC 

P 

P1 

P2 



MAC-BC Capacity Regions 

 MAC capacity region known for many cases 

 Convex optimization problem 
 

 BC capacity region typically only known for 
(parallel) degraded channels 

 Formulas often not convex 
 

 Can we find a connection between the BC and 
MAC capacity regions? 

 

Duality 



Dual Broadcast and MAC Channels 
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The BC from the MAC 

Blue = BC 

Red  = MAC 
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Sum-Power MAC 

 MAC with sum power constraint 

 Power pooled between MAC transmitters 

 No transmitter coordination 
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Same capacity region! 
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BC to MAC: Channel Scaling 

 Scale channel gain by a, power by 1/a 

 MAC capacity region unaffected by scaling 

 Scaled MAC capacity region is a subset of  the scaled BC 
capacity region for any a 

 MAC region inside scaled BC region for any scaling 
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The BC from the MAC 
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 BC in terms of  MAC 

 

 

 

 MAC in terms of  BC 
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Duality: Constant AWGN Channels 

What is the relationship between 
the optimal transmission strategies? 



 Equate rates, solve for powers 

 

 
 

 
 

 Opposite decoding order  

 Stronger user (User 1) decoded last in BC 

 Weaker user (User 2) decoded last in MAC 

Transmission Strategy 
Transformations 
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Duality Applies to Different 
Fading Channel Capacities 

 

 Ergodic (Shannon) capacity: maximum rate averaged 

over all fading states. 
  

 Zero-outage capacity: maximum rate that can be 
maintained in all fading states. 
 

 

 Outage capacity: maximum rate that can be maintained 
in all nonoutage fading states. 
  

 Minimum rate capacity: Minimum rate maintained in all 
states, maximize average rate in excess of minimum 

Explicit transformations between transmission strategies 



Duality: Minimum Rate Capacity 

 BC region known 

 MAC region can only be obtained by duality 

Blue = Scaled BC 

Red  = MAC 

MAC in terms of  BC 

What other capacity regions can be obtained by duality? 

Broadcast MIMO Channels 



Broadcast MIMO Channel 
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Non-degraded broadcast channel 

Perfect CSI at TX and RX 



Dirty Paper Coding (Costa’83) 

Dirty  

Paper  

Coding 

Clean Channel Dirty Channel 

Dirty 

 Paper 

          Coding 

 Basic premise 

 If the interference is known, channel capacity same as if 
there is no interference 

 Accomplished by cleverly distributing the writing 
(codewords) and coloring their ink 

 Decoder must know how to read these codewords 



Modulo Encoding/Decoding 

 Received signal Y=X+S, -1X1 
 S known to transmitter, not receiver 

 
 Modulo operation removes the interference effects 

 Set X so that Y[-1,1]=desired message (e.g. 0.5) 

 Receiver demodulates modulo [-1,1] 

-1 +3 +5 +1 -3 

… 
-5 0 

S 

-1 +1 0 

-1 +1 0 

X 

+7 -7 

… 



Capacity Results 

 Non-degraded broadcast channel 

 Receivers not necessarily “better” or “worse” due to 
multiple transmit/receive antennas  

 Capacity region for general case unknown  
 

 Pioneering work by Caire/Shamai (Allerton’00):  

 Two TX antennas/two RXs (1 antenna each) 

 Dirty paper coding/lattice precoding (achievable rate) 
 Computationally very complex 

 MIMO version of the Sato upper bound 

 Upper bound is achievable: capacity known! 



Dirty-Paper Coding (DPC) 
for MIMO BC 

 Coding scheme: 
 Choose a codeword for user 1 
 Treat this codeword as interference to user 2 
 Pick signal for User 2 using “pre-coding” 

 Receiver 2 experiences no interference: 

 

 Signal for Receiver 2 interferes with Receiver 1: 
 

 
 

 Encoding order can be switched 

 DPC optimization highly complex 
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Does DPC achieve capacity? 

 DPC yields MIMO BC achievable region. 

 We call this the dirty-paper region 
 

 Is this region the capacity region? 
 

 We use duality, dirty paper coding, and Sato’s upper 

bound to address this question 
 

 First we need MIMO MAC Capacity 



MIMO MAC Capacity 

 MIMO MAC follows from MAC capacity formula 

 

 

 

 Basic idea same as single user case 

 Pick some subset of users 

 The sum of those user rates equals the capacity as if 
the users pooled their power 

 

 Power Allocation and Decoding Order 
 Each user has its own power (no power alloc.) 

 Decoding order depends on desired rate point 
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MIMO MAC with sum power 

 MAC with sum power:  
 Transmitters code independently 

 Share power 

 

 

 Theorem: Dirty-paper BC region equals the dual 
sum-power MAC region 
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Transformations: MAC to BC 

 Show any rate achievable in sum-power MAC also achievable 
with DPC for BC:  

 

 

 A sum-power MAC strategy for point (R1,…RN) has a given input 

covariance matrix and encoding order 

 We find the corresponding PSD covariance matrix and encoding order 

to achieve (R1,…,RN) with DPC on BC  

 The rank-preserving transform “flips the effective channel” and 

reverses the order 

 Side result: beamforming is optimal for BC with 1 Rx antenna at 
each mobile 
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Transformations: BC to MAC 

 Show any rate achievable with DPC in BC also 
achievable in sum-power MAC:  

 

 
 

 We find transformation between optimal DPC strategy and 

optimal sum-power MAC strategy 

  “Flip the effective channel” and reverse order 
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Computing the Capacity Region 

 Hard to compute DPC region (Caire/Shamai’00) 
 

 “Easy” to compute the MIMO MAC capacity 
region 

 Obtain DPC region by solving for sum-power MAC and 
applying the theorem 

 Fast iterative algorithms have been developed 

 Greatly simplifies calculation of the DPC region and the 
associated transmit strategy 
 

 

 

)()( PCPC Sum

MAC

DPC

BC 



 Based on receiver cooperation 

 

 

 

 

 

 BC sum rate capacity  Cooperative capacity 

Sato Upper Bound on the  
BC Capacity Region 
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The Sato Bound for MIMO BC 

 Introduce noise correlation between receivers 

 BC capacity region unaffected 
 Only depends on noise marginals 

 

 Tight Bound (Caire/Shamai’00) 
 Cooperative capacity with worst-case noise correlation 

 
 
 

 Explicit formula for worst-case noise covariance 

 By Lagrangian duality, cooperative BC region equals the 
sum-rate capacity region of MIMO MAC 
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MIMO BC Capacity Bounds 

Sato Upper Bound 

Single User Capacity Bounds 
Dirty Paper Achievable Region 

BC Sum Rate Point 

Does the DPC region equal the capacity region? 



Full Capacity Region 

 DPC gives us an achievable region 
 

 Sato bound only touches at sum-rate point 
 

 Bergman’s entropy power inequality is not a tight 
upper bound for nondegraded broadcast channel 

 

 A tighter bound was needed to prove DPC optimal 
 It had been shown that if Gaussian codes optimal, DPC 

was optimal, but proving Gaussian optimality was open. 
 

 Breakthrough by Weingarten, Steinberg and Shamai 
 Introduce notion of enhanced channel, applied Bergman’s 

converse to it to prove DPC optimal for MIMO BC. 



Enhanced Channel Idea 

 The aligned and degraded BC (AMBC) 

 Unity matrix channel, noise innovations process 

 Limit of AMBC capacity equals that of MIMO BC 

 Eigenvalues of some noise covariances go to infinity 

 Total power mapped to covariance matrix constraint 
 

 Capacity region of AMBC achieved by Gaussian 
superposition coding and successive decoding 

 Uses entropy power inequality on enhanced channel 

 Enhanced channel has less noise variance than original 

 Can show that a power allocation exists whereby the 
enhanced channel rate is inside original capacity region 

 

 By appropriate power alignment, capacities equal 



Illustration 

Enhanced 

Original 



Main Points 

 Shannon capacity gives fundamental data rate limits for 
multiuser wireless channels 

 

 Fading multiuser channels optimize at each channel instance 
for maximum average rate 

 

 Outage capacity has higher (fixed) rates than with no outage. 
 

 OFDM is near optimal for broadcast channels with ISI 
 

 Duality connects BC and MAC channels 
 Used to obtain capacity of one from the other 

 

 Capacity of broadcast MIMO channel obtained using duality 
and the notion of an enhanced channel 


