EE360: Multiuser Wireless Systems and Networks Lecture 2 Outline

- Announcements
 - HW 0 due today
 - Makeup lecture for first class (sorry for confusion):
 Thurs eve or Friday lunch (w/ food)? Feb 2/3 or Feb 9/10?
- Bandwidth Sharing in Multiuser Channels • FD, TD, CD, SD, Hybrid
- Overview of Multiuser Channel Capacity
- Capacity of Broadcast Channels • AWGN, Fading, and ISI
- Capacity of MAC Channels
- MIMO Channels

Review of Last Lecture: Uplink and Downlink

Uplink and Downlink typically duplexed in time or frequency

Multiuser Shannon Capacity Fundamental Limit on Data Rates

Broadcast Channel Capacity Region in AWGN

- Model
 - One transmitter, two receivers with spectral noise density $n_{l^{*}} n_{2^{*}} n_{l} < n_{2^{*}}$
 - Transmitter has average power Pand total bandwidth *B*.
- Single User Capacity:
 - Maximum achievable rate with asymptotically small \mathbf{P}_{e}

$$C_i = B \log \left[1 + \frac{P}{n_i B} \right]$$

• Set of achievable rates includes (C_p, θ) and (θ, C_2) , obtained by allocating all resources to one user.

Rate Region: Time Division

- Time Division (Constant Power)
 - \bullet Fraction of time τ allocated to each user is varied

$$\{ \boldsymbol{U}(\boldsymbol{R}_1 = \tau \boldsymbol{C}_1, \boldsymbol{R}_2 = (1 - \tau)\boldsymbol{C}_2 \}, 0 \le \tau \le 1 \}$$

- Time Division (Variable Power)
 - Fraction of time τ and power σ, allocated to each user is varied

$$\begin{cases} \mathbf{U}\left(R_{1}=\tau B \log \left[1+\frac{\sigma_{1}}{n_{1}B}\right], R_{2}=(1-\tau) B \log \left[1+\frac{\sigma_{2}}{n_{2}B}\right]\right);\\ \tau \sigma_{1}+(1-\tau) \sigma_{2}=P, \qquad 0 \le \tau \le 1. \end{cases}$$

Rate Region: Frequency Division

• Frequency Division

• Bandwidth B_i and power S_i allocated to each user is varied.

$$\begin{cases} \mathbf{U} \left(R_1 = B_1 \log \left[1 + \frac{P_1}{n_1 B_1} \right], R_2 = B_2 \log \left[1 + \frac{P_2}{n_2 B_2} \right] \right); \\ \\ P_1 + P_2 = P, B_1 + B_2 = B \end{cases}$$

Equivalent to TD for $B_i = \tau_i B$ and $P_i = \tau_i \sigma_i$.

Superposition Coding

Best user decodes fine points Worse user decodes coarse points

Code Division

- Superposition Coding
 - Coding strategy allows better user to cancel out interference from worse user.

$$\left\{\mathbf{U}\left(R_{1}=B\log\left[1+\frac{P_{1}}{n_{1}B}\right],R_{2}=B\log\left[1+\frac{P_{2}}{n_{2}B+S_{1}}\right]\right);P_{1}+P_{2}=P\right\}$$

- DS spread spectrum with spreading gain G and cross correlation $\rho_{12} = \rho_{21} = G$:
- $\left\{\mathbf{U}\left(R_{1}=\frac{B}{G}\log\left[1+\frac{P_{1}}{n_{1}B/G}\right], R_{2}=\frac{B}{G}\log\left[1+\frac{P_{2}}{n_{2}B/G+S_{1}/G}\right]\right\}; P_{1}+P_{2}=P\right\}$
 - By concavity of the log function, G=1 maximizes the rate region.
- DS without interference cancellation

$$\mathbf{U}\left(R_{1} = \frac{B}{G}\log\left[1 + \frac{P_{1}}{n_{1}B/G + P_{2}/G}\right], R_{2} = \frac{B}{G}\log\left[1 + \frac{P_{2}}{n_{2}B/G + P_{1}/G}\right]\right); P_{1} + P_{2} = P$$

Broadcast and MAC Fading Channels

Goal: Maximize the rate region {R₁,...,R_n}, subject to some minimum rate constraints, by dynamic allocation of power, rate, and coding/decoding. Assume transmit power constraint and perfect TX and RX CSI

Fading Capacity Definitions

- Ergodic (Shannon) capacity: maximum long-term rates averaged over the fading process.
 - Shannon capacity applied directly to fading channels.
 Delay depends on channel variations.
 Transmission rate varies with channel quality.
- Zero-outage (delay-limited*) capacity: maximum rate that can be maintained in all fading states.

 - Delay independent of channel variations.
 Constant transmission rate much power needed for deep fading.
- Outage capacity: maximum rate that can be maintained in all nonoutage fading states.
 - Constant transmission rate during nonoutage
 Outage avoids power penalty in deep fades
 - *Hanly/Tse, IT, 11/98

Two-User Fading Broadcast Channel

At each time i: n={n₁[i],n₂[i]}

Ergodic Capacity Region*

Zero-Outage Capacity Region*

• The set of rate vectors that can be maintained for all channel states under power constraint **P**

$$C_{zero}(\vec{P}) = \bigcup_{\mathcal{P} \in \mathcal{F}} \bigcap_{n \in N} C(\mathcal{P})$$
$$C(\mathcal{P}) = \left\{ R_j \le B \log \left(1 + \frac{P_j(n)}{n_j B + \sum_{i=1}^M P_i(n) [[n_j > n_i]]} \right), \quad 1 \le j \le M \right\}$$

- Capacity region defined implicitly relative to power:
 - For a given rate vector R and fading state n we find the minimum power P^{min}(R,n) that supports R.
 - $R \in C_{zero}(\overline{P})$ if $E_n[P^{min}(R,n)] \le \overline{P}$ *Li and Goldsmith. IT. 3/01

Outage Capacity Region

- Two different assumptions about outage:
 - All users turned off simultaneously (common outage Pr)
 - Users turned off independently (outage probability vector Pr)
- Outage capacity region implicitly defined from the minimum outage probability associated with a given rate
- Common outage: given (R,n), use threshold policy
 If P^{min}(R,n)>s* declare an outage, otherwise assign this power to state n.
 - Power constraint dictates $s^* : \overline{P} = E_{n:P^{\min}(R,n) \le s^*} [P^{\min}(R,n)]$

• Outage probability:
$$Pr = \int_{nP^{\min}(R,n) > s^*} p(n)$$

Independent Outage

- With independent outage cannot use the threshold approach:
 Any subset of users can be active in each fading state.
- Power allocation must determine how much power to allocate to each state and which users are on in that state.
- Optimal power allocation maximizes the reward for transmitting to a given subset of users for each fading state
 - Reward based on user priorities and outage probabilities.
 - An iterative technique is used to maximize this reward.
 - Solution is a generalized threshold-decision rule.

Minimum-Rate Capacity Region

- Combines ergodic and zero-outage capacity:
 Minimum rate vector maintained in all fading states.
 Average rate in excess of the minimum is maximized.
- Delay-constrained data transmitted at the minimum rate at all times.
- Channel variation exploited by transmitting other data at the maximum excess average rate.

Minimum Rate Constraints

- Define minimum rates $\mathbf{R}^* = (\mathbf{R}_{1}^*, \dots, \mathbf{R}_{M}^*)$:
 - These rates must be maintained in all fading states.
- For a given channel state n:

$$\boldsymbol{R}_{j}(\boldsymbol{n}) \leq \boldsymbol{B} \log \left(1 + \frac{\boldsymbol{P}_{j}(\boldsymbol{n})}{\boldsymbol{n}_{j}\boldsymbol{B} + \sum_{i=1}^{M} \boldsymbol{P}_{i}(\boldsymbol{n}) \mathbb{I}[\boldsymbol{n}_{j} > \boldsymbol{n}_{i}]}\right), \quad \boldsymbol{R}_{j}(\boldsymbol{n}) \geq \boldsymbol{R}_{j}^{*} \ \forall \boldsymbol{n}$$

- R* must be in zero-outage capacity region
 - Allocate excess power to maximize excess ergodic rate
 - The smaller R*, the bigger the min-rate capacity region

Comparison of Capacity Regions

For R* far from C_{zero} boundary, C_{min-rate} ≈C_{ergodic}
For R* close to C_{zero} boundary, C_{min-rate} ≈C_{zero}∩R*

Optimal Coding and Power Allocation

- Superposition coding with SIC in usual order (best user decoded last) is optimal.
- Power allocation broken down into two steps:
 - First allocate the minimum power needed to achieve the minimum rates in all fading states.
 - Then optimally allocate the excess power to maximize the excess ergodic rate.
 - Power allocation between users: insights
 - Excess power given to better user impacts interference of worse user but not vice versa
 - Excess power given to better user results in a higher rate increase
 - Power allocation depends on channel state and user priorities
 - Fower anocation depends on channel state and user priorities

Minimum Rates for Single-User Channels

- Maximize excess ergodic rate: max $E[\log(1+\frac{P(n)}{n})]$ s.t. $E[P(n)] \le P$, $R(n) \ge R^* \forall n$
- Power required to achieve \mathbb{R}^* in state n: $P^*(n) = n(e^{R^*} - 1)$
- Optimal excess power allocation: $P(n)=P^*(n)+\hat{P}(n)$

 $\hat{P}(n) = \begin{cases} \frac{1}{\lambda} - (n + P^*(n)) & n + P^*(n) \le \frac{1}{\lambda} \\ 0 & clsc \end{cases}$ Waterfilling to modified noise

Water-filling to Modified Noise for SU Channel

- Without no minimum rate all 3 states are allocated power.
- With a minimum rate the noise level in state i increases by $P^*(i)$
 - Only the two best states are allocated excess power.

Two-User Broadcast Channel with Minimum Rates

• Min-rate capacity region boundary defined by:

 $\begin{aligned} \max_{P(n)} E_n[\mu_1 R_1(n) + \mu_2 R_2(n)] & \text{s.t.} \\ E_n[P_1(n) + P_2(n)] \leq P, \quad R_i(n) \geq R_i^* \quad \forall n \end{aligned}$

• Minimum power required in state n $(n_2 > n_1)$:

 $P_1^* = n_1(e^{R_1^*} - 1), P_2^* = (P_1^* + n_2)(e^{R_2^*} - 1)$

• Total excess power to allocate over all states $\hat{P} = P - E_n[P_1^*(n) + P_2^*(n)]$

Modified Problem

• Optimize relative to excess power (n₂>n₁):

$$\max_{P(n)} E_n \left[\mu_1 \log \left(1 + \frac{\hat{P}_1(n) + P_1^*(n)}{n_1} \right) + \mu_2 \log \left(1 + \frac{\hat{P}(n) - \hat{P}_1(n) + P_2^*(n)}{n_2 + \hat{P}_1(n) + P_1^*(n)} \right) \right] \quad sI$$

$$E_n[\hat{P}(n)] \le \hat{P}, \quad 0 \le \hat{P}_1(n) \le \hat{P}(n) e^{-R_2^*} \quad \forall n$$

• Excess power allocation:

- Optimize excess power $\hat{P}(n)$ allocated to state n
- Divide $\hat{P}(n) = \hat{P}_1(n) + \hat{P}_2(n)$ between the two users
- Solved via two dimensional Lagrangian or greedy algorithm

Total Excess Power Allocation

• Optimal allocation of *excess* power to state n is a multilevel water-filling:

$$\hat{P}(\mathbf{n}) = \max\left(\frac{\mu_1}{\lambda} - n_1', \ \frac{\mu_2}{\lambda} - n_2', \ 0\right)$$

where n_1' and n_2' are effective noises:

$$\begin{cases} n_1' = (P_1^*(\mathbf{n}) + n_1)e^{R_2^*}, \ n_2' = (P_1^*(\mathbf{n}) + n_2)e^{R_2^*} & n_1 < n_2 \\ n_1' = (P_2^*(\mathbf{n}) + n_1)e^{R_1^*}, \ n_2' = (P_2^*(\mathbf{n}) + n_2)e^{R_1^*} & n_1 \ge n_2 \end{cases}$$

and the water-level λ satisfies the power constraint

Multi-User Water-filling

- Identical to the optimal power allocation scheme for ergodic capacity with modified noise and power constraint.
- Once P(n) known, division between users straightforward.
 Depends on user priorities and effective noises

Min-Rate Capacity Region: Large Deviation in User Channels

Symmetric channel with 40 dB difference in noises in each fading state (user 1 is 40 dB stronger in 1 state, and vice versa).

Min-Rate Capacity Region: Smaller Deviation

Symmetric channel with 20 dB difference in noises in each fading state (user 1 is 20 dB stronger in 1 state, and vice versa).

Min-Rate Capacity Region: Severe Rician Fading

Independent Rician fading with K=1 for both users (severe fading, but not as bad as Rayleigh).

Min-Rate Capacity Region: Mild Rician Fading

Broadcast Channels with ISI

- ISI introduces memory into the channel
- The optimal coding strategy decomposes the channel into parallel broadcast channels
 Superposition coding is applied to each subchannel.
- Power must be optimized across subchannels and between users in each subchannel.

Broadcast Channel Model

- Both H_1 and H_2 are finite IR filters of length m.
- The w_{1k} and w_{2k} are correlated noise samples.
- For 1<k<n, we call this channel the n-block discrete Gaussian broadcast channel (n-DGBC).
- The channel capacity region is $C=(R_1,R_2)$.

Circular Channel Model

• Define the zero padded filters as:

 $\{\widetilde{h}_i\}_{i=1}^n = (h_1, \dots, h_m, 0, \dots, 0)$

• The n-Block Circular Gaussian Broadcast Channel (n-CGBC) is defined based on circular convolution:

0≤k<n

N_i(f)/H_i(f)

$$\begin{split} \widetilde{y}_{1k} &= \sum_{i=0}^{n-1} \widetilde{h}_{1i} x_{(k-i)} + w_{1k} = x_i \otimes h_{1i} + w_{1k} \\ \widetilde{y}_{2k} &= \sum_{i=0}^{n-1} \widetilde{h}_{2i} x_{(k-i)} + w_{2k} = x_i \otimes h_{2i} + w_{2k} \end{split}$$

where $((\cdot))$ denotes addition modulo *n*.

Equivalent Channel Model

• Taking DFTs of both sides yields

$$\begin{split} \tilde{Y}_{1j} &= \tilde{H}_{1j} X_j + W_{1j} \\ \tilde{Y}_{2j} &= \tilde{H}_{2j} X_j + W_{2j} \end{split} \qquad \qquad \boldsymbol{0 \leq j \leq n} \end{split}$$

• Dividing by \widetilde{H} and using additional properties of the DFT yields

$$Y'_{1j} = X'_j + V'_{1j}$$

 $Y'_{2j} = X'_j + V'_{2j}$
 $0 \le j \le n$

where $\{V'_{jj}\}$ and $\{V'_{2j}\}$ are independent zero-mean Gaussian random variables with $\sigma_{ij}^2 = n(N_i(2\pi j / n)/|\tilde{H}_{ij}|^2, l = 1, 2.$

Parallel Channel Model

Channel Decomposition

- The n-CGBC thus decomposes to a set of n parallel discrete memoryless degraded broadcast channels with AWGN.
 - Can show that as n goes to infinity, the circular and original channel have the same capacity region
- The capacity region of parallel degraded broadcast channels was obtained by El-Gamal (1980)
 Optimal power allocation obtained by Hughes-Hartogs(75).
- The power constraint ∑ⁿ⁼¹_{i=0} E[x_i²] ≤ nP on the original channel is converted by Parsevalⁿs theorem to ∑ⁿ⁼¹_{i=0} E[(X_i²)²] ≤ n²P on the equivalent channel.

Capacity Region of Parallel Set

• Achievable Rates (no common information)

$$\begin{split} &\{\boldsymbol{R}_{1} \leq .5 \sum_{j\sigma_{ij} < \sigma_{ij}} \log \left(1 + \frac{\alpha_{j} \boldsymbol{P}_{j}}{\sigma_{1j}}\right) + .5 \sum_{j\sigma_{ij} \geq \sigma_{2j}} \log \left(1 + \frac{\alpha_{j} \boldsymbol{P}_{j}}{(1 - \alpha_{j}) \boldsymbol{P}_{j} + \sigma_{1j}}\right) \\ & \boldsymbol{R}_{2} \leq .5 \sum_{j\sigma_{ij} < \sigma_{2j}} \log \left(1 + \frac{(1 - \alpha_{j}) \boldsymbol{P}_{j}}{\alpha_{j} \boldsymbol{P}_{j} + \sigma_{2j}}\right) + .5 \sum_{j\sigma_{ij} \geq \sigma_{2j}} \log \left(1 + \frac{(1 - \alpha_{j}) \boldsymbol{P}_{j}}{\sigma_{2j}}\right) \\ & 0 \leq \alpha_{j} \leq 1, \sum \boldsymbol{P}_{j} \leq n^{2} \boldsymbol{P}_{j} \end{split}$$

R.

R₁

- Capacity Region
 - For $0 < \beta \le \infty$ find $\{\alpha_{\beta}, \{P_{\beta}\}$ to maximize $R_{1} + \beta R_{2} + \lambda \sum P_{\beta}$
 - Let $(R_1^*, R_2^*)_{n,\beta}$ denote the corresponding rate pair.
 - $C_n = \{ (R_1^*, R_2^*)_{n,\beta} : 0 \le \beta \le \infty \}, C = \liminf_{n^+} C_n.$

Limiting Capacity Region

$$\begin{split} &\{ \mathbf{R}_{i} \leq .5 \int\limits_{f: \mathbf{H}_{i}(f) > \mathbf{H}_{i}(f)} \log \left(1 + \frac{\alpha(f)\mathbf{P}(f) ||\mathbf{H}_{i}(f)|^{2}}{.5N_{0}} \right) + .5 \int\limits_{f: \mathbf{H}_{i}(f) < \mathbf{H}_{i}(f)} \log \left(1 + \frac{\alpha_{j}\mathbf{P}_{j}}{(1 - \alpha_{j})\mathbf{P}_{j} + \sigma_{ij}} \right), \\ &\mathbf{R}_{2} \leq .5 \int\limits_{f: \mathbf{H}_{i}(f) < \mathbf{H}_{i}(f) > \mathbf{H}_{i}(f)} \log \left(1 + \frac{(1 - \alpha(f))\mathbf{P}(f)}{\alpha(f)\mathbf{P}(f) + .5N_{0} / ||\mathbf{H}_{2}(f)|^{2}} \right) + .5 \int\limits_{f: \mathbf{H}_{i}(f) \leq \mathbf{H}_{i}(f)} \log \left(1 + \frac{(1 - \alpha(f))\mathbf{P}(f) ||\mathbf{H}_{2}(f)|^{2}}{.5N_{0}} \right), \\ &\mathbf{0} \leq \alpha(f) \leq 1, \qquad \left\{ \mathbf{P}(f) df \leq \mathbf{P} \right\} \end{split}$$

Optimal Power Allocation: Two Level Water Filling

Capacity vs. Frequency

Capacity Region

Multiple Access Channel

- Multiple transmitters
 Transmitter *i* sends signal X_i with power P_i
- Common receiver with AWGN of power $N_0 B$
- Received signal:

$Y = \sum_{i=1}^{M} X_i + N$

MAC Capacity Region

• Closed convex hull of all $(R_p, ..., R_M)$ s.t.

$$\sum_{i \in S} R_i \leq B \log \left[1 + \sum_{i \in S} P_i / N_0 B \right], \quad \forall S \subseteq \{1, ..., M\}$$

- For all subsets of users, rate sum equals that of 1 superuser with sum of powers from all users
- Power Allocation and Decoding Order
 Each user has its own power (no power alloc.)
 - Decoding order depends on desired rate point

Two-User Region

Fading and ISI

- MAC capacity under fading and ISI determined using similar techniques as for the BC
- In fading, can define ergodic, outage, and minimum rate capacity similar as in BC case
 - Ergodic capacity obtained based on AWGN MAC given fixed fading, averaged over fading statistics
 - Outage can be declared as common, or per user
- MAC capacity with ISI obtained by converting to equivalent parallel MAC channels over frequency

Comparison of MAC and BC

• Differences:

- Shared vs. individual power constraints
- Near-far effect in MAC
- Similarities:
 - Optimal BC "superposition" coding is also optimal for MAC (sum of Gaussian codewords)

P, =

🖆 P,

• Both decoders exploit successive decoding and interference cancellation

MAC-BC Capacity Regions

- MAC capacity region known for many cases
 Convex optimization problem
- BC capacity region typically only known for (parallel) degraded channels
 Formulas often not convex
- Can we find a connection between the BC and MAC capacity regions?

Duality

Dual Broadcast and MAC Channels

Gaussian BC and MAC with same channel gains and same noise power at each receiver

Broadcast Channel (BC)

P (

The BC from the MAC

Sum-Power MAC $C_{BC}(P;h_1,h_2) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1,P-P_1;h_1,h_2) \equiv C_{MAC}^{Sum}(P;h_1,h_2)$ • MAC with sum power constraint • Power pooled between MAC transmitters

È

BC to MAC: Channel Scaling

- Scale channel gain by $\sqrt{\alpha}$, power by $1/\alpha$
- MAC capacity region unaffected by scaling
- Scaled MAC capacity region is a subset of the scaled BC • capacity region for any a
- MAC region inside scaled BC region for any scaling

The BC from the MAC

Duality: Constant AWGN Channels

Transmission Strategy Transformations

• Equate rates, solve for powers

$$R_1^M = \log(1 + \frac{h_1^2 P_1^M}{h_2 P_2^M + \sigma^2}) = \log(1 + \frac{h_1^2 P_1^B}{\sigma^2}) = R_1^M$$

$$R_2^M = \log(1 + \frac{h_2^2 P_2^M}{\sigma^2}) = \log(1 + \frac{h_2^2 P_2^B}{h_2^2 P_1^B + \sigma^2}) = R_2^M$$

- <u>Opposite</u> decoding order
 - Stronger user (User 1) decoded last in BC
 - Weaker user (User 2) decoded last in MAC

Duality Applies to Different Fading Channel Capacities

- Ergodic (Shannon) capacity: maximum rate averaged over all fading states.
- Zero-outage capacity: maximum rate that can be maintained in all fading states.
- Outage capacity: maximum rate that can be maintained in all nonoutage fading states.
- Minimum rate capacity: Minimum rate maintained in all states, maximize average rate in excess of minimum

Explicit transformations between transmission strategies

Duality: Minimum Rate Capacity

• MAC region can only be obtained by duality What other capacity regions can be obtained by duality? Broadcast MIMO Channels

Broadcast MIMO Channel

Non-degraded broadcast channel

Dirty Paper Coding (Costa'83)

• Basic premise

- If the interference is known, channel capacity same as if there is no interference
- Accomplished by cleverly distributing the writing (codewords) and coloring their ink
- Decoder must know how to read these codewords

Clean Channel

Dirty Channel

Modulo Encoding/Decoding

- Received signal Y=X+S, -1≤X≤1
 S known to transmitter, not receiver
- Modulo operation removes the interference effects
- Set X so that $[Y]_{[-1,1]}$ =desired message (e.g. 0.5)

Capacity Results

- Non-degraded broadcast channel
 - Receivers not necessarily "better" or "worse" due to multiple transmit/receive antennas
 - Capacity region for general case unknown
- Pioneering work by Caire/Shamai (Allerton'00):
 - Two TX antennas/two RXs (1 antenna each)
 - Dirty paper coding/lattice precoding (achievable rate)
 Computationally very complex
 - MIMO version of the Sato upper bound
 - Upper bound is achievable: capacity known!

Dirty-Paper Coding (DPC) for MIMO BC

- Coding scheme:
 - Choose a codeword for user 1
 - Treat this codeword as interference to user 2
 - Pick signal for User 2 using "pre-coding"
- Receiver 2 experiences no interference:

 $\mathbf{R}_2 = \log(\det(\mathbf{I} + H_2 \Sigma_2 H_2^T))$

• Signal for Receiver 2 interferes with Receiver 1:

$$\mathbf{R}_{1} = \log \left(\frac{\det(\mathbf{I} + H_{1}(\Sigma_{1} + \Sigma_{2})H_{1}^{T})}{\det(\mathbf{I} + H_{1}\Sigma_{2}H_{1}^{T})} \right)$$

- Encoding order can be switched
- DPC optimization highly complex

Does DPC achieve capacity?

- DPC yields MIMO BC achievable region.
 We call this the dirty-paper region
- Is this region the capacity region?
- We use duality, dirty paper coding, and Sato's upper bound to address this question
- First we need MIMO MAC Capacity

MIMO MAC Capacity

• MIMO MAC follows from MAC capacity formula

$$C_{MAC}(P_1,...,P_k) = \bigcup \left\{ (R_1,...,R_k) : \sum_{k \in S} R_k \le \log_2 \det \left[I + \sum_{k \in S} H_k \mathcal{Q}_k H_k^H \right] \right\}$$
$$\forall S \subseteq \{1,...,K\}$$

- Basic idea same as single user case
 - Pick some subset of users
 - The sum of those user rates equals the capacity as if the users pooled their power
- Power Allocation and Decoding Order
 - Each user has its own power (no power alloc.)
 - Decoding order depends on desired rate point

MIMO MAC with sum power

- MAC with sum power:
 - Transmitters code independentlyShare power

$$C_{MAC}^{Sum}(P) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1, P - P_1)$$

• <u>Theorem:</u> Dirty-paper BC <u>region</u> equals the dual sum-power MAC region

$$C_{BC}^{DPC}(P) = C_{MAC}^{Sum}(P)$$

Transformations: MAC to BC

• Show any rate achievable in sum-power MAC also achievable with DPC for BC:

$$C_{BC}^{DPC}(P) \supseteq C_{MAC}^{Sum}(P)$$

• A sum-power MAC strategy for point (

int $(\mathbf{R}_1, \dots, \mathbf{R}_N)$ has a given input

m MAC

- evaluation of the contract of the con
 - The rank-preserving transform "flips the effective channel" and reverses the order
 - Side result: beamforming is optimal for BC with 1 Rx antenna at each mobile

Transformations: BC to MAC

• Show any rate achievable with DPC in BC also achievable in sum-power MAC:

$$C_{BC}^{DPC}(P) \subseteq C_{MAC}^{Sum}(P)$$

• We find transformation between optimal DPC strategy and optimal sum-power MAC strategy

MAC

• "Flip the effective channel" and reverse order

Computing the Capacity Region

$C_{BC}^{DPC}(P) = C_{MAC}^{Sum}(P)$

- Hard to compute DPC region (Caire/Shamai'00)
- "Easy" to compute the MIMO MAC capacity region
 - Obtain DPC region by solving for sum-power MAC and applying the theorem
- Fast iterative algorithms have been developed
- Greatly simplifies calculation of the DPC region and the associated transmit strategy

Sato Upper Bound on the BC Capacity Region

• Based on receiver cooperation H_1 H_2 $H_$

• BC sum rate capacity ≤ Cooperative capacity

$$C_{\text{BC}}^{\text{sumrate}}(\mathbf{P},\mathbf{H}) \le \frac{\max 1}{\Sigma_x} \log |\mathbf{I} + \mathbf{H}\Sigma_x \mathbf{H}^T|$$

The Sato Bound for MIMO BC

- Introduce noise correlation between receivers
- BC capacity region unaffected
 Only depends on noise marginals

 $C_{\mathrm{t}}^{\mathrm{s}}$

 Tight Bound (Caire/Shamai'00)
 Cooperative capacity with <u>worst-case</u> noise correlation inf more 1

$$\stackrel{\text{aumrate}}{\text{SC}}(\mathbf{P},\mathbf{H}) \leq \frac{\prod_{x} \prod_{x} 1}{\Sigma_z \Sigma_x} \log |\mathbf{I} + \Sigma_z^{-1/2} \mathbf{H} \Sigma_x \mathbf{H}^T \Sigma_z^{-1/2} |$$

- Explicit formula for worst-case noise covariance
- By Lagrangian duality, cooperative BC region equals the sum-rate capacity region of MIMO MAC

MIMO BC Capacity Bounds

Does the DPC region equal the capacity region?

Full Capacity Region

- DPC gives us an achievable region
- Sato bound only touches at sum-rate point
- Bergman's entropy power inequality is not a tight upper bound for nondegraded broadcast channel
- A tighter bound was needed to prove DPC optimal
 It had been shown that if Gaussian codes optimal, DPC was optimal, but proving Gaussian optimality was open.
- Breakthrough by Weingarten, Steinberg and Shamai
 Introduce notion of <u>enhanced channel</u>, applied Bergman's converse to it to prove DPC optimal for MIMO BC.

Enhanced Channel Idea

- The aligned and degraded BC (AMBC)
 - Unity matrix channel, noise innovations process
 - Limit of AMBC capacity equals that of MIMO BC
 - Eigenvalues of some noise covariances go to infinity
 - Total power mapped to covariance matrix constraint
- Capacity region of AMBC achieved by Gaussian superposition coding and successive decoding
 - Uses entropy power inequality on enhanced channel
 - Enhanced channel has less noise variance than original
 - Can show that a power allocation exists whereby the
 - enhanced channel rate is inside original capacity region
- By appropriate power alignment, capacities equal

Illustration

Main Points

- Shannon capacity gives fundamental data rate limits for multiuser wireless channels
- Fading multiuser channels optimize at each channel instance for maximum average rate
- Outage capacity has higher (fixed) rates than with no outage.
- OFDM is near optimal for broadcast channels with ISI
- Duality connects BC and MAC channels
 Used to obtain capacity of one from the other
- Capacity of broadcast MIMO channel obtained using duality and the notion of an enhanced channel