#### EE360: Multiuser Wireless Systems and Networks

#### Lecture 2 Outline

- Announcements
  - HW 0 due today
  - Makeup lecture for first class (sorry for confusion):
    - Thurs eve or Friday lunch (w/food)? Feb 2/3 or Feb 9/10?
- Bandwidth Sharing in Multiuser Channels
  - FD, TD, CD, SD, Hybrid
- Overview of Multiuser Channel Capacity
- Capacity of Broadcast Channels
  - AWGN, Fading, and ISI
- Capacity of MAC Channels
- MIMO Channels

## Review of Last Lecture: Uplink and Downlink

Uplink (Multiple Access Channel or MAC):

Many Transmitters to One Receiver.

Downlink (Broadcast

Channel or BC):

**One Transmitter** 

to Many Receivers.



Uplink and Downlink typically duplexed in time or frequency

## Bandwidth Sharing

**Code Space**  Frequency Division Time **Code Space Frequency**  Time Division **Time Frequency Code Space**  Code Division Multiuser Detection Time Space (MIMO Systems) **Frequency** Hybrid Schemes

What is optimal? Look to Shannon.

# Multiuser Shannon Capacity Fundamental Limit on Data Rates

 $\mathbf{R}_{3}$ 

 $\mathbf{R}_2$ 

 $\mathbf{R}_{\mathbf{1}}$ 

Capacity: The set of simultaneously achievable rates  $\{R_1,...,R_n\}$  with arbitrarily small probability of error



- Main drivers of channel capacity
  - Bandwidth and received SINR
  - Channel model (fading, ISI)
  - Channel knowledge and how it is used
  - Number of antennas at TX and RX
- Duality connects capacity regions of uplink and downlink

# Broadcast Channel Capacity Region in AWGN

- Model
  - One transmitter, two receivers with spectral noise density  $n_p$ ,  $n_2$ :  $n_1 < n_2$ .
  - Transmitter has average power Pand total bandwidth B.
- Single User Capacity:
  - Maximum achievable rate with asymptotically small P<sub>e</sub>

$$C_i = B \log \left| 1 + \frac{P}{n_i B} \right|$$

• Set of achievable rates includes  $(C_p, 0)$  and  $(0, C_2)$ , obtained by allocating all resources to one user.

# Rate Region: Time Division

- Time Division (Constant Power)
  - Fraction of time τ allocated to each user is varied

$$\{U(\mathbf{R}_1 = \tau \mathbf{C}_1, \mathbf{R}_2 = (1 - \tau)\mathbf{C}_2); 0 \le \tau \le 1\}$$

- Time Division (Variable Power)
  - Fraction of time  $\tau$  and power  $\sigma_i$  allocated to each user is varied

$$\left\{ \mathbf{U} \left( R_1 = \tau B \log \left[ 1 + \frac{\sigma_1}{n_1 B} \right], R_2 = (1 - \tau) B \log \left[ 1 + \frac{\sigma_2}{n_2 B} \right] \right); \right\}$$

$$\tau \sigma_1 + (1 - \tau) \sigma_2 = P, \qquad 0 \le \tau \le 1.$$

## Rate Region: Frequency Division

- Frequency Division
  - Bandwidth  $B_i$  and power  $S_i$  allocated to each user is varied.

$$\left\{ \mathbf{U} \left( R_{1} = B_{1} \log \left[ 1 + \frac{P_{1}}{n_{1}B_{1}} \right], R_{2} = B_{2} \log \left[ 1 + \frac{P_{2}}{n_{2}B_{2}} \right] \right); \right\}$$

$$P_{1} + P_{2} = P, B_{1} + B_{2} = B$$

Equivalent to TD for  $B_i = \tau_i B$  and  $P_i = \tau_i \sigma_i$ .

## **Superposition Coding**



Best user decodes fine points
Worse user decodes coarse points

#### **Code Division**

- Superposition Coding
  - Coding strategy allows better user to cancel out interference from worse user.

$$\left\{ \mathbf{U} \left( R_1 = B \log \left[ 1 + \frac{P_1}{n_1 B} \right], R_2 = B \log \left[ 1 + \frac{P_2}{n_2 B + S_1} \right] \right); P_1 + P_2 = P \right\}$$

• DS spread spectrum with spreading gain G and cross correlation  $\rho_{12} = \rho_{21} = G$ :

$$\left\{ \mathbf{U} \left( R_{1} = \frac{B}{G} \log \left[ 1 + \frac{P_{1}}{n_{1}B/G} \right], R_{2} = \frac{B}{G} \log \left[ 1 + \frac{P_{2}}{n_{2}B/G + S_{1}/G} \right] \right); P_{1} + P_{2} = P \right\}$$

- By concavity of the log function, G=1 maximizes the rate region.
- DS without interference cancellation

$$\left\{ \mathbf{U} \left( R_{1} = \frac{B}{G} \log \left[ 1 + \frac{P_{1}}{n_{1}B/G + P_{2}/G} \right], R_{2} = \frac{B}{G} \log \left[ 1 + \frac{P_{2}}{n_{2}B/G + P_{1}/G} \right] \right); P_{1} + P_{2} = P \right\}$$



# Broadcast and MAC Fading Channels



Goal: Maximize the rate region  $\{R_1,...,R_n\}$ , subject to some minimum rate constraints, by dynamic allocation of power, rate, and coding/decoding.

Assume transmit power constraint and perfect TX and RX CSI

#### Fading Capacity Definitions

- Ergodic (Shannon) capacity: maximum long-term rates averaged over the fading process.
  - Shannon capacity applied directly to fading channels.
  - Delay depends on channel variations.
  - Transmission rate varies with channel quality.
- Zero-outage (delay-limited\*) capacity: maximum rate that can be maintained in all fading states.
  - Delay independent of channel variations.
  - Constant transmission rate much power needed for deep fading.
- Outage capacity: maximum rate that can be maintained in all nonoutage fading states.
  - Constant transmission rate during nonoutage
  - Outage avoids power penalty in deep fades

#### Two-User Fading Broadcast Channel



## **Ergodic Capacity Region\***

• Capacity region:  $C_{ergodic}(\overline{P}) = \bigcup_{P \in F} C(P)$ , where

$$C(\mathcal{P}) = \left\{ R_j \le E_n \middle[ B \log \left( 1 + \frac{P_j(n)}{n_j B + \sum_{i=1}^M P_i(n) 1[n_j > n_i]} \right) \middle], \quad 1 \le j \le M \right\}$$

- The power constraint implies  $E_n \sum_{j=1}^{M} P_j(n) = \overline{P}$
- Superposition coding and successive decoding achieve capacity
  - Best user in each state decoded last
  - Power and rate adapted using multiuser water-filling: power allocated based on noise levels and user priorities

## Zero-Outage Capacity Region\*

• The set of rate vectors that can be maintained for all channel states under power constraint **P** 

$$C_{zero}(\overline{P}) = \bigcup_{P \in \mathcal{F}} \bigcap_{n \in N} C(P)$$

$$C(\mathbf{P}) = \left\{ \mathbf{R}_{j} \leq \mathbf{B} \log \left( 1 + \frac{\mathbf{P}_{j}(\mathbf{n})}{\mathbf{n}_{j} \mathbf{B} + \sum_{i=1}^{M} \mathbf{P}_{i}(\mathbf{n}) 1[\mathbf{n}_{j} > \mathbf{n}_{i}]} \right), \quad 1 \leq j \leq \mathbf{M} \right\}$$

- Capacity region defined implicitly relative to power:
  - For a given rate vector  $\mathbf{R}$  and fading state  $\mathbf{n}$  we find the minimum power  $\mathbf{P}^{\min}(\mathbf{R},\mathbf{n})$  that supports  $\mathbf{R}$ .
  - $R \in C_{zero}(\overline{P})$  if  $E_n[P^{min}(R,n)] \leq \overline{P}$

### Outage Capacity Region

- Two different assumptions about outage:
  - All users turned off simultaneously (common outage Pr)
  - Users turned off independently (outage probability vector <u>Pr</u>)
- Outage capacity region implicitly defined from the minimum outage probability associated with a given rate
- Common outage: given (R,n), use threshold policy
  - If  $P^{min}(R,n)>s^*$  declare an outage, otherwise assign this power to state n.
  - Power constraint dictates  $s^* : \overline{P} = E_{n:P^{\min}(R,n) \le s^*} [P^{\min}(R,n)]$

• Outage probability: 
$$Pr = \int_{n:P^{\min}(R,n)>s^*} p(n)$$

### Independent Outage

- With independent outage cannot use the threshold approach:
  - Any subset of users can be active in each fading state.
- Power allocation must determine how much power to allocate to each state and which users are on in that state.
- Optimal power allocation maximizes the reward for transmitting to a given subset of users for each fading state
  - Reward based on user priorities and outage probabilities.
  - An iterative technique is used to maximize this reward.
  - Solution is a generalized threshold-decision rule.

### Minimum-Rate Capacity Region

- Combines ergodic and zero-outage capacity:
  - Minimum rate vector maintained in all fading states.
  - Average rate in excess of the minimum is maximized.
- Delay-constrained data transmitted at the minimum rate at all times.
- Channel variation exploited by transmitting other data at the maximum excess average rate.

#### Minimum Rate Constraints

- Define minimum rates  $R^* = (R^*_1, ..., R^*_M)$ :
  - These rates must be maintained in all fading states.
- For a given channel state n:

$$R_{j}(n) \leq B \log \left(1 + \frac{P_{j}(n)}{n_{j}B + \sum_{i=1}^{M} P_{i}(n) \mathbb{I}[n_{j} > n_{i}]}\right), \quad R_{j}(n) \geq R_{j}^{*} \forall n$$

- R\* must be in zero-outage capacity region
  - Allocate excess power to maximize excess ergodic rate
  - The smaller R\*, the bigger the min-rate capacity region

### Comparison of Capacity Regions



- For  $R^*$  far from  $C_{zero}$  boundary,  $C_{min-rate} \approx C_{ergodic}$
- For  $R^*$  close to  $C_{zero}$  boundary,  $C_{min-rate} \approx C_{zero} \cap R^*$

# Optimal Coding and Power Allocation

- Superposition coding with SIC in usual order (best user decoded last) is optimal.
- Power allocation broken down into two steps:
  - First allocate the minimum power needed to achieve the minimum rates in all fading states.
  - Then optimally allocate the excess power to maximize the excess ergodic rate.
  - Power allocation between users: insights
    - Excess power given to better user impacts interference of worse user but not vice versa
    - Excess power given to better user results in a higher rate increase
    - Power allocation depends on channel state and user priorities

# Minimum Rates for Single-User Channels

• Maximize excess ergodic rate:

$$\max E[\log(1+\frac{P(n)}{n})] \quad s.t. \ E[P(n)] \le P, \ R(n) \ge R^* \ \forall n$$

• Power required to achieve R\* in state n:

$$\boldsymbol{P}^*(\boldsymbol{n}) = \boldsymbol{n}(\boldsymbol{e}^{\boldsymbol{R}^*} - 1)$$

• Optimal excess power allocation:  $P(n)=P^*(n)+\hat{P}(n)$ 

$$\hat{\boldsymbol{P}}(\boldsymbol{n}) = \begin{cases} \frac{1}{\lambda} - (\boldsymbol{n} + \boldsymbol{P}^*(\boldsymbol{n})) & \boldsymbol{n} + \boldsymbol{P}^*(\boldsymbol{n}) \le \frac{1}{\lambda} \\ 0 & else \end{cases}$$

Waterfilling to modified noise

# Water-filling to Modified Noise for SU Channel



- Without no minimum rate all 3 states are allocated power.
- With a minimum rate the noise level in state i increases by P\*(i)
  - Only the two best states are allocated excess power.

# Two-User Broadcast Channel with Minimum Rates

Min-rate capacity region boundary defined by:

$$\max_{P(n)} E_n[\mu_1 R_1(n) + \mu_2 R_2(n)] \quad s.t.$$

$$E_n[P_1(n) + P_2(n)] \leq P, \quad R_i(n) \geq R_i^* \quad \forall n$$

• Minimum power required in state  $n (n_2 > n_1)$ :

$$P_1^* = n_1(e^{R_1^*} - 1), P_2^* = (P_1^* + n_2)(e^{R_2^*} - 1)$$

Total excess power to allocate over all states

$$\hat{P} = P - E_n[P_1^*(n) + P_2^*(n)]$$

#### **Modified Problem**

• Optimize relative to excess power  $(n_2>n_1)$ :

$$\max_{P(n)} E_{n} \left[ \mu_{1} \log \left( 1 + \frac{\hat{P}_{1}(n) + P_{1}^{*}(n)}{n_{1}} \right) + \mu_{2} \log \left( 1 + \frac{\hat{P}(n) - \hat{P}_{1}(n) + P_{2}^{*}(n)}{n_{2} + \hat{P}_{1}(n) + P_{1}^{*}(n)} \right) \right] \quad s.t.$$

$$E_{n} [\hat{P}(n)] \leq \hat{P}, \quad 0 \leq \hat{P}_{1}(n) \leq \hat{P}(n) e^{-R_{2}^{*}} \quad \forall n$$

- Excess power allocation:
  - Optimize excess power  $\hat{P}(n)$  allocated to state n
  - Divide  $\hat{P}(n) = \hat{P}_1(n) + \hat{P}_2(n)$  between the two users
  - Solved via two dimensional Lagrangian or greedy algorithm

#### **Total Excess Power Allocation**

• Optimal allocation of *excess* power to state n is a multilevel water-filling:

$$\hat{P}(\mathbf{n}) = \max \left( \frac{\mu_1}{\lambda} - n_1', \ \frac{\mu_2}{\lambda} - n_2', \ 0 \right)$$

where  $n_1'$  and  $n_2'$  are effective noises:

$$\begin{cases} n'_1 = (P_1^*(\mathbf{n}) + n_1)e^{R_2^*}, \ n'_2 = (P_1^*(\mathbf{n}) + n_2)e^{R_2^*} & n_1 < n_2 \\ n'_1 = (P_2^*(\mathbf{n}) + n_1)e^{R_1^*}, \ n'_2 = (P_2^*(\mathbf{n}) + n_2)e^{R_1^*} & n_1 \ge n_2 \end{cases}$$

and the water-level  $\lambda$  satisfies the power constraint

## Multi-User Water-filling



- Identical to the optimal power allocation scheme for ergodic capacity with modified noise and power constraint.
- Once  $\hat{P}(n)$  known, division between users straightforward.
  - Depends on user priorities and effective noises

### Min-Rate Capacity Region: Large Deviation in User Channels



Symmetric channel with 40 dB difference in noises in each fading state (user 1 is 40 dB stronger in 1 state, and vice versa).

### Min-Rate Capacity Region: Smaller Deviation



Symmetric channel with 20 dB difference in noises in each fading state (user 1 is 20 dB stronger in 1 state, and vice versa).

# Min-Rate Capacity Region: Severe Rician Fading



Independent Rician fading with K=1 for both users (severe fading, but not as bad as Rayleigh).

# Min-Rate Capacity Region: Mild Rician Fading



Independent Rician fading with K=5 for both users.

#### **Broadcast Channels with ISI**

- ISI introduces memory into the channel
- The optimal coding strategy decomposes the channel into parallel broadcast channels
  - Superposition coding is applied to each subchannel.
- Power must be optimized across subchannels and between users in each subchannel.

#### **Broadcast Channel Model**



- Both  $H_1$  and  $H_2$  are finite IR filters of length m.
- The  $w_{1k}$  and  $w_{2k}$  are correlated noise samples.
- For 1<k<n, we call this channel the n-block discrete Gaussian broadcast channel (n-DGBC).
- The channel capacity region is  $C=(R_1,R_2)$ .

#### Circular Channel Model

Define the zero padded filters as:

$$\{\tilde{h}_i\}_{i=1}^n = (h_1, \dots, h_m, 0, \dots, 0)$$

 The n-Block Circular Gaussian Broadcast Channel (n-CGBC) is defined based on circular convolution:

$$\widetilde{y}_{1k} = \sum_{i=0}^{n-1} \widetilde{h}_{1i} x_{((k-i))} + w_{1k} = x_i \otimes h_{1i} + w_{1k}$$

$$\widetilde{y}_{2k} = \sum_{i=0}^{n-1} \widetilde{h}_{2i} x_{((k-i))} + w_{2k} = x_i \otimes h_{2i} + w_{2k}$$

$$0 \leq k < n$$

where  $((\cdot))$  denotes addition modulo n.

## **Equivalent Channel Model**

Taking DFTs of both sides yields

$$\widetilde{Y}_{1j} = \widetilde{H}_{1j} X_j + W_{1j}$$

$$\widetilde{Y}_{2j} = \widetilde{H}_{2j} X_j + W_{2j}$$
 $0 \le j \le n$ 

• Dividing by  $\widetilde{H}$  and using additional properties of the DFT yields

$$Y'_{1j} = X'_j + V'_{1j}$$

$$Y'_{2j} = X'_j + V'_{2j}$$

$$\theta \le j < n$$

where  $\{V'_{lj}\}$  and  $\{V'_{2j}\}$  are independent zero-mean Gaussian random variables with  $\sigma_{lj}^2 = n(N_l(2\pi j/n)/|\tilde{H}_{lj}|^2, l=1,2.$ 

### Parallel Channel Model





#### Channel Decomposition

- The n-CGBC thus decomposes to a set of n parallel discrete memoryless degraded broadcast channels with AWGN.
  - Can show that as n goes to infinity, the circular and original channel have the same capacity region
- The capacity region of parallel degraded broadcast channels was obtained by El-Gamal (1980)
  - Optimal power allocation obtained by Hughes-Hartogs('75).
- The power constraint  $\sum_{i=0}^{n-1} E[x_i^2] \le nP$  on the original channel is converted by Parseval's theorem to  $\sum_{i=0}^{n-1} E[(X_i')^2] \le n^2P$  on the equivalent channel.

#### Capacity Region of Parallel Set

• Achievable Rates (no common information)

$$\begin{split} & \left\{ \boldsymbol{R}_{1} \leq .5 \sum_{j:\sigma_{1j} < \sigma_{2j}} \log \left( 1 + \frac{\alpha_{j} \boldsymbol{P}_{j}}{\sigma_{1j}} \right) + .5 \sum_{j:\sigma_{1j} \geq \sigma_{2j}} \log \left( 1 + \frac{\alpha_{j} \boldsymbol{P}_{j}}{(1 - \alpha_{j}) \boldsymbol{P}_{j} + \sigma_{1j}} \right), \\ & \boldsymbol{R}_{2} \leq .5 \sum_{j:\sigma_{1j} < \sigma_{2j}} \log \left( 1 + \frac{(1 - \alpha_{j}) \boldsymbol{P}_{j}}{\alpha_{j} \boldsymbol{P}_{j} + \sigma_{2j}} \right) + .5 \sum_{j:\sigma_{1j} \geq \sigma_{2j}} \log \left( 1 + \frac{(1 - \alpha_{j}) \boldsymbol{P}_{j}}{\sigma_{2j}} \right), \\ & 0 \leq \alpha_{j} \leq 1, \sum \boldsymbol{P}_{j} \leq \boldsymbol{n}^{2} \boldsymbol{P} \right\} \end{split}$$

- Capacity Region
  - For  $0 < \beta \le \infty$  find  $\{\alpha_i\}$ ,  $\{P_i\}$  to maximize  $R_1 + \beta R_2 + \lambda \sum P_i$
  - Let  $(R_1^*, R_2^*)_{n,\beta}$  denote the corresponding rate pair.
  - $C_n = \{(R_1^*, R_2^*)_{n,\beta} : 0 < \beta \le \infty \}, C = \liminf_{n \to \infty} \frac{1}{n} C_n$ .



# Limiting Capacity Region

$$\begin{split} & \Big\{ \boldsymbol{R}_{1} \leq .5 \int\limits_{f:\boldsymbol{H}_{1}(f) > \boldsymbol{H}_{2}(f)} \log \Bigg( 1 + \frac{\alpha(f)\boldsymbol{P}(f) \, |\, \boldsymbol{H}_{1}(f) \, |^{2}}{.5\boldsymbol{N}_{0}} \Bigg) + .5 \int\limits_{f:\boldsymbol{H}_{1}(f) \leq \boldsymbol{H}_{2}(f)} \log \Bigg( 1 + \frac{\alpha_{j}\boldsymbol{P}_{j}}{(1 - \alpha_{j})\boldsymbol{P}_{j} + \sigma_{1j}} \Bigg), \\ & \boldsymbol{R}_{2} \leq .5 \int\limits_{f:\boldsymbol{H}_{1}(f) > \boldsymbol{H}_{2}(f)} \log \Bigg( 1 + \frac{(1 - \alpha(f))\boldsymbol{P}(f)}{\alpha(f)\boldsymbol{P}(f) + .5\boldsymbol{N}_{0} / |\, \boldsymbol{H}_{2}(f) \, |^{2}} \Bigg) + .5 \int\limits_{f:\boldsymbol{H}_{1}(f) \leq \boldsymbol{H}_{2}(f)} \log \Bigg( 1 + \frac{(1 - \alpha(f))\boldsymbol{P}(f) \, |\, \boldsymbol{H}_{2}(f) \, |^{2}}{.5\boldsymbol{N}_{0}} \Bigg), \end{split}$$

 $0 \le \alpha(f) \le 1, \qquad \mathbf{P}(f) df \le \mathbf{P}$ 

## Optimal Power Allocation: Two Level Water Filling



# Capacity vs. Frequency



# Capacity Region



#### Multiple Access Channel

- Multiple transmitters
  - Transmitter i sends signal  $X_i$  with power  $P_i$
- Common receiver with AWGN of power  $N_0B$
- Received signal:

$$Y = \sum_{i=1}^{M} X_i + N$$



# **MAC** Capacity Region

• Closed convex hull of all  $(R_p,...,R_M)$  s.t.

$$\sum_{i \in S} R_i \le B \log \left[ 1 + \sum_{i \in S} P_i / N_0 B \right], \quad \forall S \subseteq \{1, ..., M\}$$

- For all subsets of users, rate sum equals that of 1 superuser with sum of powers from all users
- Power Allocation and Decoding Order
  - Each user has its own power (no power alloc.)
  - Decoding order depends on desired rate point

# Two-User Region



$$C_i = B \log \left[ 1 + \frac{P_i}{N_0 B} \right], i = 1, 2$$

$$\hat{C}_1 = B \log \left[ 1 + \frac{P_1}{N_0 B + P_2} \right], \qquad \hat{C}_2 = B \log \left[ 1 + \frac{P_2}{N_0 B + P_1} \right],$$

$$\hat{C}_2 = B \log \left[ 1 + \frac{P_2}{N_0 B + P_1} \right],$$

# Fading and ISI

- MAC capacity under fading and ISI determined using similar techniques as for the BC
- In fading, can define ergodic, outage, and minimum rate capacity similar as in BC case
  - Ergodic capacity obtained based on AWGN MAC given fixed fading, averaged over fading statistics
  - Outage can be declared as common, or per user
- MAC capacity with ISI obtained by converting to equivalent parallel MAC channels over frequency

# Comparison of MAC and BC

#### • Differences:

- Shared vs. individual power constraints
- Near-far effect in MAC

# $\mathbf{P}_{1}$

#### Similarities:

- Optimal BC "superposition" coding is also optimal for MAC (sum of Gaussian codewords)
- Both decoders exploit successive decoding and interference cancellation

## MAC-BC Capacity Regions

- MAC capacity region known for many cases
  - Convex optimization problem
- BC capacity region typically only known for (parallel) degraded channels
  - Formulas often not convex
- Can we find a connection between the BC and MAC capacity regions?



#### Dual Broadcast and MAC Channels

Gaussian BC and MAC with *same* channel gains and *same* noise power at each receiver





**Broadcast Channel (BC)** 

Multiple-Access Channel (MAC)

#### The BC from the MAC





$$P_1 = 0.5, P_2 = 1.5$$

$$P_1 = 1, P_2 = 1$$

$$P_1=1.5, P_2=0.5$$

$$C_{BC}(P;h_1,h_2) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1,P-P_1;h_1,h_2)$$

#### **Sum-Power MAC**

$$C_{BC}(P; h_1, h_2) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1, P - P_1; h_1, h_2) \equiv C_{MAC}^{Sum}(P; h_1, h_2)$$

- MAC with <u>sum</u> power constraint
  - Power pooled between MAC transmitters
  - No transmitter coordination



## BC to MAC: Channel Scaling

- Scale channel gain by  $\sqrt{\alpha}$ , power by  $1/\alpha$
- MAC capacity region unaffected by scaling
- Scaled MAC capacity region is a subset of the scaled BC capacity region for any α
- MAC region inside scaled BC region for any scaling





#### The BC from the MAC



$$C_{MAC}(P_1, P_2; h_1, h_2) = \bigcap_{\alpha > 0} C_{BC}(\frac{P_1}{\alpha} + P_2; \sqrt{\alpha}h_1, h_2)$$

#### Duality: Constant AWGN Channels

BC in terms of MAC

$$C_{BC}(P;h_1,h_2) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1,P-P_1;h_1,h_2)$$



MAC in terms of BC

$$C_{MAC}(P_1, P_2; h_1, h_2) = \bigcap_{\alpha > 0} C_{BC}(\frac{P_1}{\alpha} + P_2; \alpha h_1, h_2)$$

What is the relationship between the optimal transmission strategies?



#### Transmission Strategy Transformations

• Equate rates, solve for powers

$$R_1^M = \log(1 + \frac{h_1^2 P_1^M}{h_2 P_2^M + \sigma^2}) = \log(1 + \frac{h_1^2 P_1^B}{\sigma^2}) = R_1^B$$

$$R_2^M = \log(1 + \frac{h_2^2 P_2^M}{\sigma^2}) = \log(1 + \frac{h_2^2 P_2^B}{h_2^2 P_1^B + \sigma^2}) = R_2^B$$

- Opposite decoding order
  - Stronger user (User 1) decoded last in BC
  - Weaker user (User 2) decoded last in MAC

#### Duality Applies to Different Fading Channel Capacities

- Ergodic (Shannon) capacity: maximum rate averaged over all fading states.
- Zero-outage capacity: maximum rate that can be maintained in all fading states.
- Outage capacity: maximum rate that can be maintained in all nonoutage fading states.
- Minimum rate capacity: Minimum rate maintained in all states, maximize average rate in excess of minimum

Explicit transformations between transmission strategies

#### Duality: Minimum Rate Capacity



- BC region known
- MAC region can only be obtained by duality

What other capacity regions can be obtained by duality?

**Broadcast MIMO Channels** 

#### **Broadcast MIMO Channel**



Non-degraded broadcast channel

# Dirty Paper Coding (Costa'83)

- Basic premise
  - If the interference is known, channel capacity same as if there is no interference
  - Accomplished by cleverly distributing the writing (codewords) and coloring their ink
  - Decoder must know how to read these codewords

Dirty
Paper
Coding



Clean Channel

**Dirty Channel** 

# Modulo Encoding/Decoding

- Received signal Y=X+S, -1≤X≤1
  - S known to transmitter, not receiver
- Modulo operation removes the interference effects
  - Set X so that  $[Y]_{[-1,1]}$  = desired message (e.g. 0.5)
  - Receiver demodulates modulo [-1,1]



### Capacity Results

- Non-degraded broadcast channel
  - Receivers not necessarily "better" or "worse" due to multiple transmit/receive antennas
  - Capacity region for general case unknown
- Pioneering work by Caire/Shamai (Allerton'00):
  - Two TX antennas/two RXs (1 antenna each)
  - Dirty paper coding/lattice precoding (achievable rate)
    - Computationally very complex
  - MIMO version of the Sato upper bound
  - Upper bound is achievable: capacity known!

# Dirty-Paper Coding (DPC) for MIMO BC

- Coding scheme:
  - Choose a codeword for user 1
  - Treat this codeword as interference to user 2
  - Pick signal for User 2 using "pre-coding"
- Receiver 2 experiences no interference:

$$\mathbf{R}_2 = \log(\det(\mathbf{I} + H_2 \Sigma_2 H_2^T))$$

• Signal for Receiver 2 interferes with Receiver 1:

$$R_1 = \log \left( \frac{\det(I + H_1(\Sigma_1 + \Sigma_2)H_1^T)}{\det(I + H_1\Sigma_2H_1^T)} \right)$$

- Encoding order can be switched
- DPC optimization highly complex

### Does DPC achieve capacity?

- DPC yields MIMO BC achievable region.
  - We call this the dirty-paper region
- Is this region the capacity region?
- We use duality, dirty paper coding, and Sato's upper bound to address this question
- First we need MIMO MAC Capacity

# MIMO MAC Capacity

MIMO MAC follows from MAC capacity formula

$$C_{MAC}(P_1,...,P_k) = \bigcup \left\{ (R_1,...,R_k) : \sum_{k \in S} R_k \le \log_2 \det \left[ I + \sum_{k \in S} H_k Q_k H_k^H \right], \right.$$

$$\forall S \subseteq \{1,...,K\} \right\}$$

- Basic idea same as single user case
  - Pick some subset of users
  - The sum of those user rates equals the capacity as if the users pooled their power
- Power Allocation and Decoding Order
  - Each user has its own power (no power alloc.)
  - Decoding order depends on desired rate point

#### MIMO MAC with sum power

- MAC with sum power:
  - Transmitters code independently
  - Share power

$$C_{MAC}^{Sum}(P) = \bigcup_{0 \le P_1 \le P} C_{MAC}(P_1, P - P_1)$$



• Theorem: Dirty-paper BC region equals the dual sum-power MAC region

$$C_{BC}^{DPC}(P) = C_{MAC}^{Sum}(P)$$

#### Transformations: MAC to BC

• Show any rate achievable in sum-power MAC also achievable with DPC for BC:

$$C_{BC}^{DPC}(P) \supseteq C_{MAC}^{Sum}(P)$$



- A sum-power MAC strategy for point (R<sub>1</sub>,...R<sub>N</sub>) has a given input covariance matrix and encoding order
- We find the corresponding PSD covariance matrix and encoding order to achieve  $(R_1,...,R_N)$  with DPC on BC
  - The rank-preserving transform "flips the effective channel" and reverses the order
  - Side result: beamforming is optimal for BC with 1 Rx antenna at each mobile

#### Transformations: BC to MAC

• Show any rate achievable with DPC in BC also achievable in sum-power MAC:

$$C_{BC}^{DPC}(P) \subseteq C_{MAC}^{Sum}(P)$$



- We find transformation between optimal DPC strategy and optimal sum-power MAC strategy
  - "Flip the effective channel" and reverse order

#### Computing the Capacity Region

$$C_{BC}^{DPC}(P) = C_{MAC}^{Sum}(P)$$

- Hard to compute DPC region (Caire/Shamai'00)
- "Easy" to compute the MIMO MAC capacity region
  - Obtain DPC region by solving for sum-power MAC and applying the theorem
  - Fast iterative algorithms have been developed
  - Greatly simplifies calculation of the DPC region and the associated transmit strategy

# Sato Upper Bound on the BC Capacity Region

• Based on receiver cooperation



• BC sum rate capacity ≤ Cooperative capacity

$$C_{\text{BC}}^{\text{sumrate}}(P, H) \le \frac{\max}{\Sigma_x} \frac{1}{2} \log |I + H\Sigma_x H^T|$$

#### The Sato Bound for MIMO BC

- Introduce noise correlation between receivers
- BC capacity region unaffected
  - Only depends on noise marginals
- Tight Bound (Caire/Shamai'00)
  - Cooperative capacity with worst-case noise correlation

$$C_{\text{BC}}^{\text{sumrate}}(P, H) \le \inf_{\sum_{z} \sum_{x}} \frac{1}{2} \log |I + \sum_{z}^{-1/2} H \sum_{x} H^{T} \sum_{z}^{-1/2} |$$

- Explicit formula for worst-case noise covariance
- By Lagrangian duality, cooperative BC region equals the sum-rate capacity region of MIMO MAC

# MIMO BC Capacity Bounds



Does the DPC region equal the capacity region?

# Full Capacity Region

- DPC gives us an achievable region
- Sato bound only touches at sum-rate point
- Bergman's entropy power inequality is not a tight upper bound for nondegraded broadcast channel
- A tighter bound was needed to prove DPC optimal
  - It had been shown that if Gaussian codes optimal, DPC was optimal, but proving Gaussian optimality was open.
- Breakthrough by Weingarten, Steinberg and Shamai
  - Introduce notion of <u>enhanced channel</u>, applied Bergman's converse to it to prove DPC optimal for MIMO BC.

#### **Enhanced Channel Idea**

- The aligned and degraded BC (AMBC)
  - Unity matrix channel, noise innovations process
  - Limit of AMBC capacity equals that of MIMO BC
  - Eigenvalues of some noise covariances go to infinity
  - Total power mapped to covariance matrix constraint
- Capacity region of AMBC achieved by Gaussian superposition coding and successive decoding
  - Uses entropy power inequality on enhanced channel
  - Enhanced channel has less noise variance than original
  - Can show that a power allocation exists whereby the enhanced channel rate is inside original capacity region
- By appropriate power alignment, capacities equal

#### Illustration



#### **Main Points**

- Shannon capacity gives fundamental data rate limits for multiuser wireless channels
- Fading multiuser channels optimize at each channel instance for maximum average rate
- Outage capacity has higher (fixed) rates than with no outage.
- OFDM is near optimal for broadcast channels with ISI
- Duality connects BC and MAC channels
  - Used to obtain capacity of one from the other
- Capacity of broadcast MIMO channel obtained using duality and the notion of an enhanced channel