EE360: Multiuser Wireless Systems and Networks

Lecture 1 Outline

- Course Details
- Course Syllabus
- Course Overview
 - Future Wireless Networks
 - Multiuser Channels (Broadcast/MAC Channels)
 - Spectral Reuse and Interference
 - Cellular Systems
 - Ad-Hoc Networks
 - Cognitive Radio Paradigms
 - Sensor Networks and Green Networks
 - Key Applications

Course Information Nuts and Bolts

- Prerequisites: EE359
- Course Time and Location: MW 9:30-10:45. Hewlett 102.
- Class Homepage: www.stanford.edu/class/ee360
- Contains all required reading, handouts, announcements, HWs, etc.
- · Class Mailing List: ee360win0910-students (automatic for oncampus registered students).
 - Guest list: send TA email to sign up
- Tentative Grading Policy:
 - 10% Class participation • 10% Class presentation
 - 15% Homeworks
 - 15% Paper summaries
 - 50% Project (10% prop, 15% progress report, 25% final report+poster)

Project

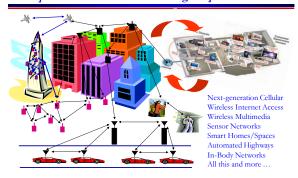
- · Term project on anything related to wireless
- Analysis, simulation and/or experiment
 - Must contain some original research
 - 2 can collaborate if project merits collaboration (scope, synergy)
- Must set up website for project
 - Will post proposal, progress report, and final report to website
- Project proposal due Feb 1 at midnight
 - 1-2 page proposal with detailed description of project plan
 Revised project proposal due Feb 13.
- Progress report: due Feb. 27 at midnight
 - 2-3 page report with introduction of problem being investigated, system description, progress to date, statement of remaining work
- Poster presentations last week of classes (Thurs March 15?)
- Final report due March 19 at midnight

Course Information* **People**

- Instructor: Andrea Goldsmith, andrea@ee, Packard 371, 5-6932, OHs: MW after class and by appt.
- TA: Nima Soltani, Email: nsoltani@stanford.edu, OHs: around HWs.
- Class Administrator: Pat Oshiro, poshiro@stanford, Packard 365, 3-2681.

*See web or handout for more details

Grade Components


- Class participation
 - Read the required reading before lecture/discuss in class
- Class presentation
 - Present a paper related to one of the course topics
 - HW 0: Choose 3 possible high-impact papers, each on a different syllabus topic, by Jan. 18. Include a paragraph for each describing main idea(s), why interesting/high impact
 - Presentations begin Jan. 25.
- HW assignments
 - Two assignments from book or other problems
- Paper summaries
 - Two 2-4 page summaries of several articles
 - Each should be on a different topic from the syllabus

Tentative Syllabus

- Weeks 1-2: Multiuser systems (Chapters 13.4 and 14, additional papers)
- Weeks 3-4: Cellular systems (Chapter 15, additional
- Weeks 5-6: Ad hoc wireless networks (Chapter 16, additional papers)
- Week 7: Cognitive radio networks (papers)
- Week 8: Sensor networks (papers)
- Week 9: Applications & cross-layer design (papers)
- Weeks 10: Additional Topics. Course Summary

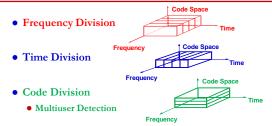
Future Wireless Networks

Ubiquitous Communication Among People and Devices

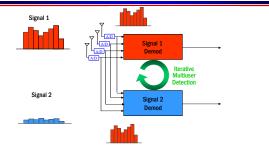
Design Challenges

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy and delay constraints change design principles across all layers of the protocol stack

Wireless Network Design Issues


- Multiuser Communications
- Multiple and Random Access
- Cellular System Design
- Ad-Hoc Network Design
- Network Layer Issues
- Cross-Layer Design
- Meeting Application Requirements

Multiuser Channels: Uplink and Downlink


Uplink and Downlink typically duplexed in time or frequency

Bandwidth Sharing

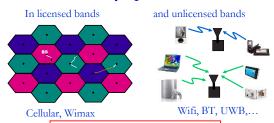
- Space (MIMO Systems)
- Hybrid Schemes

Ideal Multiuser Detection

Why Not Ubiquitous Today? Power and A/D Precision

Random Access

- Dedicated channels wasteful for data
 - use statistical multiplexing
- Techniques
 - Aloha
 - Carrier sensing
 - Collision detection or avoidance
 - Reservation protocols
 - PRMA
- Retransmissions used for corrupted data
- Poor throughput and delay characteristics under heavy loading
 - Hybrid methods


Scarce Wireless Spectrum

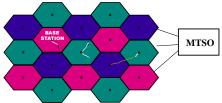
and Expensive

Spectral Reuse

Due to its scarcity, spectrum is reused

Reuse introduces interference

Interference: Friend or Foe?


• If treated as noise: Foe

$$SNR = \frac{P}{N + (I)}$$
 Increases BER Reduces capacity

- If decodable (MUD): Neither friend nor foe
- If exploited via cooperation and cognition:
 Friend (especially in a network setting)

<u>Cellular Systems</u> Reuse channels to maximize capacity

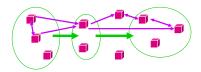
- 1G: Analog systems, large frequency reuse, large cells, uniform standard
- 2G: Digital systems, less reuse (1 for CDMA), smaller cells, multiple standards, evolved to support voice and data (IS-54, IS-95, GSM)
- 3G: Digital systems, WCDMA competing with GSM evolution.
- 4G: OFDM/MIMO

MIMO in Cellular: *Performance Benefits*

- Antenna gain ⇒ extended battery life, extended range, and higher throughput
- Diversity gain ⇒ improved reliability, more robust operation of services
- Multiplexing gain ⇒ higher data rates
- Interference suppression (TXBF) ⇒ improved quality, reliability, robustness
- Reduced interference to other systems

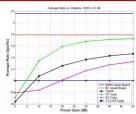
Rethinking "Cells" in Cellular

How should cellular systems be designed?

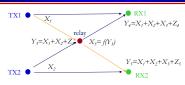

Will gains in practice be big or incremental; in capacity or coverage?

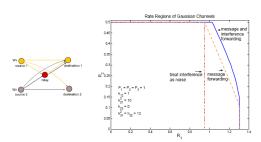
- Traditional cellular design "interference-limited"
 - MIMO/multiuser detection can remove interference
 - Cooperating BSs form a MIMO array: what is a cell?
 - Relays change cell shape and boundaries
 - Distributed antennas move BS towards cell boundary
 - Small cells create a cell within a cell (HetNet)
 - Mobile cooperation via relaying, virtual MIMO, analog network coding.

Ad-Hoc/Mesh Networks

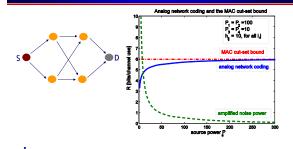

Cooperation in Ad-Hoc Networks

- Similar to mobile cooperation in cellular:
 - Virtual MIMO, generalized relaying, interference forwarding, and one-shot/iterative conferencing
- Many theoretical and practice issues:
 - Overhead, half-duplex, grouping, dynamics, synch, ...


Capacity Gain with Virtual MIMO (2x2)


- TX cooperation needs high-capacity wired or wireless cooperative link to approach broadcast channel bound
- Gains on order of 2x in theory, what about in practice?
- How many nodes should cooperate, and with whom?

Generalized Relaying



- Can forward message and/or interference
 - Relay can forward all or part of the messages
 - Much room for innovation
 - Relay can forward interference
 - To help subtract it out

Beneficial to forward both interference and message

In fact, it can achieve capacity

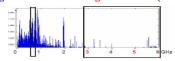
Intelligence beyond Cooperation: Cognition

- Cognitive radios can support new wireless users in existing crowded spectrum
 - Without degrading performance of existing users
- Utilize advanced communication and signal processing techniques
 - Coupled with novel spectrum allocation policies
- Technology could
 - Revolutionize the way spectrum is allocated worldwide
 - Provide sufficient bandwidth to support higher quality and higher data rate products and services

Cognitive Radio Paradigms

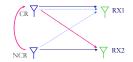
- Underlay
 - Cognitive radios constrained to cause minimal interference to noncognitive radios
- Interweave
 - Cognitive radios find and exploit spectral holes to avoid interfering with noncognitive radios
- Overlay
 - Cognitive radios overhear and enhance noncognitive radio transmissions

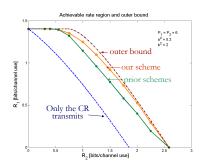
Underlay Systems


- Cognitive radios determine the interference their transmission causes to noncognitive nodes
 - Transmit if interference below a given threshold

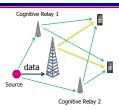
- The interference constraint may be met
 - Via wideband signalling to maintain interference below the noise floor (spread spectrum or UWB)
 - Via multiple antennas and beamforming

Interweave Systems


- Measurements indicate that even crowded spectrum is not used across all time, space, and frequencies
 - Original motivation for "cognitive" radios (Mitola'00)

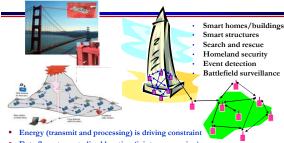

- These holes can be used for communication
 - Interweave CRs periodically monitor spectrum for holes
 - Hole location must be agreed upon between TX and RX
 - Hole is then used for opportunistic communication with minimal interference to noncognitive users

Overlay Systems


- Cognitive user has knowledge of other user's message and/or encoding strategy
 - Used to help noncognitive transmission
 - Used to presubtract noncognitive interference

Performance Gains from Cognitive Encoding

Cellular Systems with Cognitive Relays

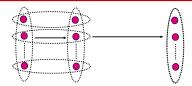


- Enhance robustness and capacity via cognitive relays

 - Cognitive relays overhear the source messages
 Cognitive relays then cooperate with the transmitter in the transmission of the
 - source messages
 Can relay the message even if transmitter fails due to congestion, etc.

Can extend these ideas to MIMO systems

Wireless Sensor and "Green" Networks



- · Data flows to centralized location (joint compression)
- Low per-node rates but tens to thousands of nodes
- Intelligence is in the network rather than in the devices
- Similar ideas can be used to re-architect systems and networks to be green

Energy-Constrained Nodes

- Each node can only send a <u>finite</u> number of bits.
 - Transmit energy minimized by maximizing bit time
 - Circuit energy consumption increases with bit time
 - Introduces a delay versus energy tradeoff for each bit
- · Short-range networks must consider transmit, circuit, and processing energy.
 - Sophisticated techniques not necessarily energy-efficient.
 - Sleep modes save energy but complicate networking.
- Changes everything about the network design:
 - Bit allocation must be optimized across all protocols.
 - Delay vs. throughput vs. node/network lifetime tradeoffs.
 - Optimization of node cooperation.

Cooperative Compression in Sensor Networks

- Source data correlated in space and time
- Nodes should cooperate in compression as well as communication and routing
 - Joint source/channel/network coding
 - What is optimal for cooperative communication:
 - Virtual MIMO or relaying?

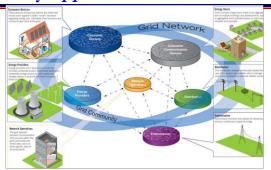
Green" Cellular Networks

How should cellular systems be redesigned for minimum energy?

Research indicates that signicant savings is possible

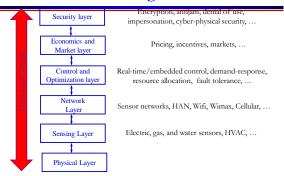
- Minimize energy at both the mobile <u>and</u> base station via
 - New Infrastuctures: cell size, BS placement, DAS, Picos, relays
 - New Protocols: Cell Zooming, Coop MIMO, RRM, Scheduling, Sleeping, Relaying
 - Low-Power (Green) Radios: Radio Architectures, Modulation, coding, MIMO

Crosslayer Design in Wireless Networks


- Application
- Network
- Access
- Link
- Hardware

Tradeoffs at all layers of the protocol stack are optimized with respect to end-to-end performance

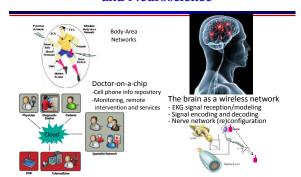
This performance is dictated by the application


Key Application: Smart Grids

The Smart Grid Design Challenge

- Design a unified communications and control system overlay
- On top of the existing/emerging power infrastructure
 - To provide the right information
 - To the right entity (e.g. end-use devices, transmission and distribution systems, energy providers, culstomers, the how energy is
 - At the right time delivered, and consumed
 - To take the right action Sensing

Possible Dichotomy for Smart Grid Design


Automated Highways

Interdisciplinary design approach

- · Control requires fast, accurate, and reliable feedback.
- Wireless networks introduce delay and loss
- · Need reliable networks and robust controllers
- Mostly open problems : Many design challenges

Wireless and Health, Biomedicine and Neuroscience

