EE360: Lecture 15 Outline Sensor Network Protocols

• Announcements

- 2nd paper summary due March 7
- Reschedule Wed lecture: 11-12:15? 12-1:15? 5-6:15?
- Project poster session March 15 5:30pm?
- Next HW posted by Wed, due March 16
- Overview of sensor network protocols
- Protocol tradeoffs
 - Access
 - Routing
 - Data dessemination
- Energy-Efficient Protocols

Crosslayer Protocol Design in Sensor Networks

Energy consumption at each layer of the protocol stack must be considered in the design

Wireless Sensor Network Protocols

- Primary theme: building longlived, massively-distributed, physically-coupled systems:
 - Coordinating to minimize duty cycle and communication
 - Adaptive MAC
 - Adaptive Topology
 - Routing
 - In-network processing
 - Data centric routing
 - Programming models

User Queries, External Database

In-network: Application processing, Aggregation, Query processing

Data dissemination, storage, caching

Adaptive topology, Geo-Routing

Protocol Tradeoffs under Energy Constraints

• Hardware

- Models for circuit energy consumption highly variable
- All nodes have transmit, sleep, and transient modes
- Dense networks must consider TX+processing energy

• Link

- High-level modulation costs transmit energy but saves circuit energy (shorter transmission time)
- Coding costs circuit energy but saves transmit energy
- Tradeoffs for other techniques (MIMO, relaying, etc.)

• Access

- Time-division vs. code-division under energy constraints
- How to avoid collisions

• Routing:

• Circuit energy costs can preclude multihop routing

Medium Access Control in Sensor Nets

- Important attributes of MAC protocols
 - 1. Collision avoidance
 - 2. Energy efficiency
 - 3. Scalability in node density
 - 4. Latency
 - 5. Fairness
 - 6. Throughput
 - 7. Bandwidth utilization

MAC Impact on Sensor Networks

(Intanago et al, 2000)

- Major sources of energy waste
 - Idle listening when no sensing events, Collisions, Control overhead, Overhearing

Identifying the Energy Consumers

$$E_{TX} \approx E_{RX} \approx E_{IDLE} >> E_{SLEEP}$$

• Need to shutdown the radio

Energy Efficiency in MAC

- Major sources of energy waste
 - Idle listening
 - Long idle time when no sensing event happens
 - Collisions
 - Control overhead
 - Overhearing

Common to all wireless networks

- Try to reduce energy consumption from all above sources
- TDMA requires slot allocation and time synchronization
- Combine benefits of TDMA + contention protocols

Periodic Listen and Sleep

• Schedule maintenance

- Remember neighbors' schedules
 to know when to send to them
- Each node broadcasts its schedule every few periods
- Refresh on neighbor's schedule when receiving an update
- Schedule packets also serve as beacons for new nodes to join a neighborhood

Collision Avoidance

- Problem: Multiple senders want to talk
- Options: Contention vs. TDMA
- Possible Solution: Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence

Overhearing Avoidance

- Problem: Receive packets destined to others
- Solution: Sleep when neighbors talk
 - Basic idea from PAMAS (Singh 1998)
 - But we only use in-channel signaling
- Who should sleep?
 - All immediate neighbors of sender and receiver
- How long to sleep?
 - The *duration* field in each packet informs other nodes the sleep interval

Message Passing

- Problem: In-network processing requires *entire* message
- Solution: Don't interleave different messages
 - Long message is fragmented & sent in burst
 - RTS/CTS reserve medium for entire message
 - Fragment-level error recovery

- extend Tx time and re-transmit immediately

• Other nodes sleep for whole message time

Routing

- Given a topology, how to route data?
 - MANET: Reactive[DSR], proactive[AODV], TORA, GPSR[KarpKung00]
 - Location-aided routing: Geocast[Navas97], Cartesian-LAR, [KOVaidya98]
 - Energy-budget routing
 - Geographical Routing (GRAB, curve routing)
 - Data-directed routing

GRAB: Field Based Minimum Cost Forwarding (Lu et al 2002)

- Each node broadcasts only once
- Cost Function is a measure of how expensive it is to get a message back to the sink.
 - Could be based on Energy needed in radio communication, hop count, or other considerations
- Node Cost
 - Each node keeps best estimate on its minimum cost.
 - Estimate updated upon receipt of every ADV message.
 - ADV message forwarding deferred for time proportional to nodes cost estimate.

Energy-Budget Routing

- A node with interesting data broadcasts two things (besides data)
 - Total budget to get back to sink.
 - Amount of budget used in initial broadcast.
- A node receiving a data message will only forward a data message if
 - Total Budget ≥ Budget Spent So Far + My Cost
 - If the inequality holds then Budget Spent So Far is updated.
 - Otherwise the message is dropped.

Routing on a Curve (Nath et al 2002)

- Route trajectories based on network structure
- By definition, network structure mimics physical structure that is instrumented
 - Stress along a column
 - Flooding along a river
 - Pollution along a road
- Trajectories come from application domain

Minimum-Energy Routing Optimization Model

Min
$$f_0(x_1, x_2,...)$$

s.t. $f_i(x_1, x_2,...) \le 0, \quad i = 1, \dots, M$
 $g_j(x_1, x_2,...) = 0, \quad j = 1, \dots, K$

- The cost function $f_0(.)$ is energy consumption.
- The design variables $(x_p x_2...)$ are parameters that affect energy consumption, e.g. transmission time.
- $f_i(x_1, x_2, ...) \leq 0$ and $g_j(x_1, x_2, ...) = 0$ are system constraints, such as a delay or rate constraints.
- If not convex, relaxation methods can be used.
- Focus on TD systems

Minimum Energy Routing

• Transmission and Circuit Energy

Red: hub node Blue: relay only Green: source

 $R_1 = 60 pps$ $R_2 = R_3 = 0$ v = 100 bits

Multihop routing may not be optimal when circuit energy consumption is considered

Relay Nodes with Data to Send

• Transmission energy only

Red: hub node Green: relay/source

- $R_1 = 60 \, pps$ $R_2 = 80 \, pps$
- $R_3 = 20 \, pps$
- Optimal routing uses single and multiple hops
- Link adaptation yields additional 70% energy savings

Cooperative MIMO for Sensors

- Nodes close together can cooperatively transmit
 - Form a multiple-antenna transmitter
- Nodes close together can cooperatively receive
 - Form a multiple-antenna receiver
- Node cooperation can increase capacity, save energy, and reduce delay.

- Protocol designs must take into account energy constraints
- Efficient protocols tailored to the application
- For large sensor networks, in-network processing and cooperation is essential
- Cross-layer design critical

Presentation

 "Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks"

• S. Cui, A.J. Goldsmith, and A. Bahai

• Presented by Yizheng Liao