EE360: Lecture 13 Outline **Capacity of Cognitive Radios**

- Announcements
 - Progress reports due Feb. 29 at midnight
- Overview
- Achievable rates in Cognitive Radios
- Better achievable scheme and upper bounds
- MIMO cognitive radio capacity
- BC with cognitive relays
- Summary

Overlay Systems

- Cognitive user has knowledge of other user's message and/or encoding strategy
 - Used to help noncognitive transmission
 - Used to presubtract noncognitive interference

Transmission Strategy "Pieces" To allow each receiver to decode part of the other Wu et.al. weak node's message Joviċić et.al. interferen → reduces interference Cooperation Cooperation at Cle TX at Cle TX Removes the NCR interference at the CR RX recoding azains Coopera č interfe a b 1 To help in sending NCR's atcel message to its RX X Rate splitting Differences Must optimally combine these approaches

"Achievable Rates in Cognitive Radios" by Devroye, Mitran, Tarokh

Results around 2007

New encoding scheme uses same techniques as previous work: rate splitting, G-P precoding against interference and cooperation

•More general scheme than the one that suffices in weak interference •Different binning than the one proposed by [Devroye et.al] and [Jiang et.al.]

Improved Scheme Transmission for Achievable Rates

Outer Bound

The set of ra	ate triples (R_0	$, R_1, R_2)$	satisfying

R_0	$\leq I(V;Y_2)$
R_1	$\leq I(V, U_1; Y_1)$
$R_{0} + R_{2}$	$\leq I(V, U_2; Y_2)$
$R_{1} + R_{2}$	$\leq I(V, U_1; Y_1) + I(U_2; Y_2 U_1, V)$
$R_0 + R_1 + R_2$	$\leq I(U_1; Y_1 U_2, V) + I(V, U_2; Y_2)$

for input distributions that factor as $p(u_1)p(u_2)p(v|u_1,u_2)p(x_2|v,u_2)p(x_1|v,u_1,u_2,x_2)$

For $R_2=0$, $U_2=\emptyset$, and by redefining R_0 as R_2 : outer bound for the IC with full cooperation

Outer Bound: Full Cooperation

The set of rate triples (R_0, R_1, R_2) satisfying

```
\begin{array}{ll} R_{1} & \leq I(V,U_{1};Y_{1}) \\ R_{2} & \leq I(V,U_{2};Y_{2}) \\ R_{1}+R_{2} & \leq \min\left\{I(V,U_{1};Y_{1})+I(U_{2};Y_{2}\mid U_{1},V) \\ & I(U_{1};Y_{1}\mid U_{2},V)+I(V,U_{2};Y_{2})\right\} \end{array}
```

for input distributions that factor as $p(u_1)p(u_2)p(v | u_1, u_2)p(x_2 | u_2)p(x_1 | u_1, u_2)$

- The exact same form as the Nair-El Gamal outer bound on the broadcast channel capacity
- The difference is in the factorization of the input distribution reflecting the fact that only one-way cooperation is possible

Summary of new technique

Outer bound

- · Follows from standard approach: invoke Fano's inequality
- Reduces to outer bound for full cooperation for $R_2=0$
- Has to be evaluated for specific channels

Achievable rates: combine

rate splitting precoding against interference at encoder 1

- cooperation at encoder 1
- How far are the achievable rates from the outer bound?
- Capacity for other regimes?

Performance Gains from Cognitive Encoding

Cognitive MIMO Networks

- Noncognitive user unaware of secondary users
 Cognitive user doesn't impact rate of noncognitive user
- Encoding rule for the cognitive encoder:
 - ${\boldsymbol{\cdot}}$ Generates codeword for primary user message
 - Generates codeword for its message using dirty paper coding
 - •Two codewords superimposed to form final codeword

• For MISO secondary users, beamforming is optimal

MIMO cognitive users (2 Users)

Multi-user Cognitive MIMO Networks

· Extend analysis to multiple primary users

- · Assume each transmitter broadcasts to multiple users · Primary receivers have one antenna
- Secondary users are MISO.
- Main Result:

· With appropriate power allocation among primary receivers, the secondary users achieve their maximum possible rate

Broadcast Channel with Cognitive Relays (BCCR)

- Enhance capacity via cognitive relays
 - Cognitive relays overhear the source messages
 - Cognitive relays then cooperate with the transmitter in the transmission of the source messages

Channel Model

- Sender (Base Station) wishes to send two independent messages to two receivers
- Messages uniformly generated
- Each cognitive relay knows only one of the messages to send

Coding Scheme for the BCCR

- · Each message split into two parts: common and private
- · Cognitive relays cooperate with the base station to transmit the respective common messages
- · Each private message encoded with two layers
 - Inner layer exposed to the respective relay
 Outer layer pre-codes for interference (GGP coding)

Achievable Rate Region

Joint probability distribution

$p(u_1)p(u_2)p(v_1 \mid u_1)p(v_2 \mid u_2)p(w_1, w_2 \mid v_1, v_2, u_1, u_2)p(x_1 \mid v_1, u_1)p(x_2 \mid v_2, u_2)p(x_0 \mid w_1, w_2, v_1, v_2, u_1, u_2)$	1	$p(u_1)p(u_2)p(v_1 u_1)p(u_2)$	$v_2 u_2 \rangle p(w_1, w_2 v_1, v_2, u_1, u_2)$	$(u_2)p(x_1 v_1, u_1)p(x_2 $	$(v_2, u_2) p(x_0 w_1, w_2, v_1, v_2, u_1, u_2)$
---	---	--------------------------------	--	---------------------------------	--

- Achievable rate region: all rates (R₁₂+R₁₁, R₂₁+R₂₂) s.t.
- $R_{11} L_{11} \leq -I(W_1; V_2/V_1, U_1, U_2),$ $R_{22} - L_{22} \leq -I(W_2; V_1/V_2, U_1, U_2),$
- $R_{11} L_{11} + R_{22} L_{22} \leq -(I(W_1; V_2/V_1, U_1, U_2) + I(W_2; V_2/V_2, U_1, U_2) + I(W_2; W_2/V_1, V_2, U_1, U_2)),$
- $L_{11} \leq I(V_1, W_1; Y_1/U_1, U_2),$
- $R_{12} + L_{11} \leq I(U_1, V_1, W_1; Y_1/U_2),$
- $L_{11} + R_{21} \leq I(V_1, W_1, U_2; Y_1/U_1),$
- $R_{12} + L_{11} + R_{21} \leq I(U_1, V_1, W_1, U_2; Y_1),$
- $L_{22} \leq I(V_2, W_2; Y_2|U_2, U_1),$
- $R_{21} + L_{22} \leq I(U_2, V_2, W_2; Y_2/U_1),$
- $L_{22} + R_{12} \leq I(V_2, W_2, U_1; Y_2/U_2),$ $R_{21} + L_{22} + R_{12} \le I(U_2, V_2, W_2, U_1, Y_2).$

Generality of the Result

Without the cognitive relays

- BCCR reduces to a generic BC
- Correspondingly, rate region reduces to Marton's region for the BC (best region to date for the BCs)
- Without the base station
 - BCCR reduces to an IC
 - Correspondingly, rate region reduces to the Han-Kobayashi Region for the IC (best region for ICs)

Improved Robustness

- Without cognitive relays
 - When base station is gone, the entire transmission is dead
- With cognitive relays
 - When base station is gone, cognitive relays can pick up the role of base station, and the ongoing transmission continues
 Cognitive relays and the receivers form an interference channel

A Numerical Example

• Special Gaussian configuration with a single cognitive relay,

• Rate region for this special case (obtained from region for BCCR)

$R_{1} \leq \frac{1}{2}\log_{2}(1+P_{1}) + \frac{1}{2}\log_{2}(1+(1-\alpha)b^{2}P_{0}),$
$R_2 \leq \frac{1}{2} \log_2(1 + \frac{\alpha P_0}{(1 - \alpha)P_1 + 1}).$

A Numerical Example

- No existing rate region can be specialized to this region for the example except [Sridharan et al'08]
- This rate region also demonstrates strict improvement over one of the best known region for the cognitive radio channel

Overlay Challenges

- Complexity of transmission and detection
- Obtaining information about channel, other user's messages, etc.
- Full-duplex vs. half duplex
- Synchronization
- And many more ...

Summary

- Cognition can substantially increase capacity • Can be applied to many types of systems
- · Capacity of cognitive channels uses all "tricks" from broadcast, MAC, interference channels
- · Many idealized assumptions used in obtaining capacity
- Very interesting to reduce these ideas to practice

Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad-Hoc Networks: A POMDP Framework

- Authors: Qing Zhao, Lang Tong, Anathram Swami, and Yunxia Chen
- Presented by: Kun Yi