EE360: Lecture 10 Outline Capacity of Ad Hoc Nets

- Announcements
 - Revised proposals due tomorrow
 - HW 1 posted, due Feb. 24 at 5pm
- Definition of ad hoc network capacity
- Capacity regions
- Scaling laws and extensions
- Achievable rate regions
- Capacity under cooperation
- Interference alignment
- Cross layer design

Ad-Hoc Network Capacity

- Fundamental limits on the maximum possible rates between all possible node pairs with vanishing probability of error
- Independent of transmission and reception strategies (modulation, coding, routing, etc.)
- Dependent on propagation, node capabilities (e.g. MIMO), transmit power, noise, etc

Network Capacity: What is it?

- n(n-1)-dimensional region
 - Rates between all node pairs
 - Upper/lower bounds
 - Lower bounds achievable
 - Upper bounds hard

- Other possible axes
 - Energy and delay

Fundamental Network Capacity

The Shangri-La of Information Theory

- Much progress in finding the capacity limits of wireless single and multiuser channels
- Limited understanding about the capacity limits of wireless networks, even for simple models
- System assumptions such as constrained energy and delay may require new capacity definitions
- Is this elusive goal the right thing to pursue?

Shangri-La is synonymous with any earthly paradise; a permanently happy land, isolated from the outside world

Some capacity questions

- How to parameterize the region
 - Power/bandwidth
 - Channel models and CSI
 - Outage probability
 - Security/robustness
- Defining capacity in terms of asymptotically small error and infinite delay has been highly enabling
 - Has also been limiting
 - Cause of unconsummated union in networks and IT
 - What is the alternative?

Network Capacity Results

- Multiple access channel (MAC)
 - (IAC) Gallage
- Broadcast channel
- Relay channel upper/lower bounds
- Strong interference channel

• Scaling laws

• Achievable rates for small networks

Capacity for Large Networks (Gupta/Kumar'00)

- Make some simplifications and ask for less
 - Each node has only a single destination
 - All nodes create traffic for their desired destination at a uniform rate λ
 - Capacity (throughput) is maximum λ that can be supported by the network (1 dimensional)
- Throughput of random networks
 - Network topology/packet destinations random.
 - Throughput λ is random: characterized by its distribution as a function of network size n.
- Find scaling laws for $C(n)=\lambda$ as $n\to\infty$.

Ad Hoc Network Achievable Rate Regions

- All achievable rate vectors between nodes
 - Lower bounds Shannon capacity
- An n(n-1) dimensional convex polyhedron
 - Each dimension defines (net) rate from one node to each of the others
 - Time-division strategy
 - Link rates adapt to link SINR
 - Optimal MAC via centralized scheduling
 - Optimal routing
- Yields performance bounds
 - Evaluate existing protocols
 - Develop new protocols

Example: Six Node Network

Capacity region is 30-dimensional

Extensions

- Fixed network topologies (Gupta/Kumar'01)
 - Similar throughput bounds as random networks
- Mobility in the network (Grossglauser/Tse'01)
 - Mobiles pass message to neighboring nodes, eventually neighbor gets close to destination and forwards message
 - Per-node throughput constant, aggregate throughput of order n, delay of order n.
- Throughput/delay tradeoffs
 - Piecewise linear model for throughput-delay tradeoff (ElGamal et al'04, Toumpis/Goldsmith'04)
 - Finite delay requires throughput penalty.
- Achievable rates with multiuser coding/decoding (GK'03)
 - Per-node throughput (bit-meters/sec) constant, aggregate infinite.
 - · Rajiv will provide more details

Achievable Rates

Achievable rate vectors achieved by time division

Capacity region is convex hull of all rate matrices

 A matrix R belongs to the capacity region if there are rate matrices R₁, R₂, R₃,..., R_n such that

$$R = \sum_{i=1}^{n} \alpha_i R_i; \quad \sum_{i=1}^{n} \alpha_i \le 1; \alpha_i > 0$$

- Linear programming problem:
 - Need clever techniques to reduce complexity
 - Power control, fading, etc., easily incorporated
 - Region boundary achieved with optimal routing

Capacity Region Slice (6 Node Network)

- (a): Single hop, no simultaneous transmissions.
-): Multihop, no simultaneous transmissions.
- :): Multihop, simultaneous transmissions.
- l): Adding power control
- e): Successive interference cancellation, no power control.

Extensions:

- Capacity vs. network size
- Capacity vs. topology
 Fading and mobility
- Multihop cellular

Achievable Region Slice (6 Node Network)

Cooperation in Wireless Networks

- Routing is a simple form of cooperation
- Many more complex ways to cooperate:
 - Virtual MIMO, generalized relaying, interference forwarding, and one-shot/iterative conferencing
- Many theoretical and practice issues:
 - Overhead, forming groups, dynamics, synch, ...

Virtual MIMO

- TX1 sends to RX1, TX2 sends to RX2
- TX1 and TX2 cooperation leads to a MIMO BC
- RX1 and RX2 cooperation leads to a MIMO MAC
- · TX and RX cooperation leads to a MIMO channel
- · Power and bandwidth spent for cooperation

Capacity Gain with Cooperation (2x2)

- TX cooperation needs large cooperative channel gain to approach broadcast channel bound
- MIMO bound unapproachable

Capacity Gain vs Network Topology

Relative Benefits of TX and RX Cooperation

- Two possible CSI models:
 - Each node has full CSI (synchronization between Tx and relay).
 - Receiver phase CSI only (no TX-relay synchronization).
- Two possible power allocation models:
 - Optimal power allocation: Tx has power constraint aP, and relay (1-a)P; 0≤a≤1 needs to be optimized.
 Equal power allocation (a = ½). loint work with C. Ne

Joint work with C. Ng

Example 1: Optimal power allocation with full CSI

- Cut-set bounds are equal.
- Tx co-op rate is close to the bounds.
- Transmitter cooperation is preferable.

Example 2: Equal power allocation with RX phase CSI

- Non-cooperative capacity meets the cut-set bounds of Tx and Rx co-op.
- Cooperation offers no capacity gain.

Capacity: Non-orthogonal Relay Channel

Transmitter vs. Receiver Cooperation

- Capacity gain only realized with the right cooperation strategy
- With full CSI, Tx co-op is superior.
- With optimal power allocation and receiver phase CSI, Rx co-op is superior.
- With equal power allocation and Rx phase CSI, cooperation offers no capacity gain.
- Similar observations in Rayleigh fading channels.

Multiple-Antenna Relay Channel

Conferencing Relay Channel

- Willems introduced conferencing for MAC (1983)
 - Transmitters conference before sending message
- We consider a relay channel with conferencing between the relay and destination
- The conferencing link has total capacity C which can be allocated between the two directions

Iterative vs. One-shot Conferencing

- Weak relay channel: the iterative scheme is disadvantageous.
- Strong relay channel: iterative outperforms one-shot conferencing for large C.

Generalized Relaying

- Can forward message and/or interference
 - Relay can forward all or part of the messages
 - Much room for innovation
 - Relay can forward interference
 - To help subtract it out

Lessons Learned

- Orthogonalization has considerable capacity loss
 - Applicable for clusters, since cooperation band can be reused spatially.
- DF vs. CF
 - DF: nearly optimal when transmitter and relay are close
 - CF: nearly optimal when transmitter and relay far
 - CF: not sensitive to compression scheme, but poor spectral efficiency as transmitter and relay do not joint-encode.
- The role of SNR
 - High SNR: rate requirement on cooperation messages increases.
 - MIMO-gain region: cooperative system performs as well as MIMO system with isotropic inputs.

Beneficial to forward both interference and message

In fact, it can achieve capacity

Interference Alignment

- Addresses the number of interference-free signaling dimensions in an interference channel
- Based on our orthogonal analysis earlier, it would appear that resources need to be divided evenly, so only 2BT/N dimensions available
- Jafar and Cadambe showed that by aligning interference, 2BT/2 dimensions are available
- Everyone gets half the cake!

Basic Premise

- For any number of TXs and RXs, each TX can transmit half the time and be received without any interference
 - Assume different delay for each transmitter-receiver pair
 - Delay odd when message from TX i desired by RX j; even otherwise.
 - Each TX transmits during odd time slots and is silent at other times.
 - All interference is aligned in even time slots.

Is a capacity region all we need to design networks?

Yes, if the application and network design can be decoupled

Application metric: f(C,D,E): (C^*,D^*,E^*) = arg max f(C,D,E)

• Imperfect channel knowledge

• Multipath channels

Fading channels

MIMO channelsCellular systems

Limitations in theory of ad hoc networks today

Extensions

- Shannon capacity pessimistic for wireless channels and intractable for large networks
- Large body of wireless (and wired) network theory that is ad-hoc, lacks a basis in fundamentals, and lacks an objective success criteria.
- Little cross-disciplinary work spanning these fields
- Optimization techniques applied to given network models, which rarely take into account fundamental network capacity or dynamics

Consummating Unions

- When capacity is not the only metric, a new theory is needed to deal with nonasymptopia (i.e. delay, random traffic) and application requirements
 - Shannon theory generally breaks down when delay, error, or user/traffic dynamics must be considered
- Fundamental limits are needed outside asymptotic regimes
- Optimization, game theory, and other techniques provide the missing link

Crosslayer Design in Ad-Hoc Wireless Networks

Substantial gains in throughput, efficiency, and end-to-end performance from cross-layer design

Why a crosslayer design?

- The technical challenges of future mobile networks cannot be met with a layered design approach.
- QoS cannot be provided unless it is supported across all layers of the network.
 - The application must adapt to the underlying channel and network characteristics.
 - The network and link must adapt to the application requirements
- Interactions across network layers must be understood and exploited.

Diversity-Multiplexing-Delay Tradeoffs for MIMO Multihop Networks with ARQ

- · MIMO used to increase data rate or robustness
- · Multihop relays used for coverage extension
- ARQ protocol:
 - Can be viewed as 1 bit feedback, or time diversity,
 - Retransmission causes delay (can design ARQ to control delay)
- Diversity multiplexing (delay) tradeoff DMT/DMDT
 - Tradeoff between robustness, throughput, and delay

Asymptotic DMDT Optimality

- Theorem: VBL ARQ achieves optimal DMDT in MIMO multihop relay networks in long-term and short-term static channels.
- An intuitive explanation by stopping times: VBL ARQ has the smaller outage regions among multihop ARQ protocols

• Proved by cut-set bound

How to use Feedback in Wireless **Networks**

- - Capacity Delay
 - Other

Multihop ARQ Protocols

Delay/Throughput/Robustness across Multiple Layers

- Multiple routes through the network can be used for multiplexing or reduced delay/loss
- Application can use single-description or multiple description codes
- · Can optimize optimal operating point for these tradeoffs to minimize distortion

Cross-layer protocol design for real-time media

Video streaming performance

Approaches to Cross-Layer Resource Allocation*

*Much prior work is for wired/static networks

Network Utility Maximization

• Maximizes a network utility function

• Dynamics are only in the queues

Wireless NUM

- Extends NUM to random environments
- Network operation as stochastic optimization algorithm

 $E[r(G)] \le E[R(S(G), G)]$ $E[S(G)] \le \bar{S}$

WNUM Policies

- Control network resources
- Inputs:
 - Random network channel information Gk
 - Network parameters
 - Other policies
- Outputs:
 - Control parameters
 - Optimized performance, that
 - Meet constraints
- Channel sample driven policies

Example: NUM and Adaptive Modulation

- Policies
 - Information rate
 - Tx power
 - Tx Rate
 - Tx code rate
- Policy adapts to
 - Changing channel conditions
 - Packet backlog
 - Historical power usage

Rate-Delay-Reliability

Game theory

- Coordinating user actions in a large ad-hoc network can be infeasible
- Distributed control difficult to derive and computationally complex
- Game theory provides a new paradigm
 - Users act to "win" game or reach an equilibrium
 - Users heterogeneous and non-cooperative
 - Local competition can yield optimal outcomes
 - Dynamics impact equilibrium and outcome
 - Adaptation via game theory

Summary

- Capacity of wireless ad hoc networks largely unknown, even for simple canonical models.
- Scaling laws, degrees of freedom (interference alignment) and other approximations promising
- Capacity not the only metric of interest
- Cross layer design requires new tools such as optimization and game theory

Presentation

- "Hierarchical Cooperation Achieves
 Optimal Capacity Scaling in Ad Hoc
 Networks" by Ayfer Ozgur, Olivier
 Leveque, and David N. C. Tse
- Presented by Alexandros Manolakos