Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad-Hoc Networks: A POMDP Framework

Qing Zhao, Lang Tong, Anathram Swami, and Yunxia Chen

EE360 Presentation: Kun Yi Stanford University

Main Challenges for Ad-hoc OSA Network

- I. Cognitive radio nodes cannot sense the full spectrum
- Energy inefficient
- Hardware complexity

Main Challenges for Ad-hoc OSA Network

- I. Cognitive radio nodes cannot sense the full spectrum
- Energy inefficient
- Hardware complexity

- 2. Transmitter-receiver synchronization
- Avoid unnecessary control messages

Main Challenges for Ad-hoc OSA Network

- I. Cognitive radio nodes cannot sense the full spectrum
- Energy inefficient
- Hardware complexity

- 2. Transmitter-receiver synchronization
- Avoid unnecessary control messages

POMDP: Partially Observable Markov Process

Contents

- System Model
 - POMDP Formulation
- Spectrum Sensing/Access Strategy
 - Optimal
 - Sub-optimal
- Decentralized MAC Protocol
- Simulation Results
- Discussion

System Model: Network Model

- N channels, $M = 2^N$ states
- ▶ Each channel is either 0 (occupied) or I (idle)
- Channel state evolves as a discrete-time Markov process
- Assume knowledge of transition probabilities
- Usage statistics unchanged for T slots

System Model: Cognitive Radio Network

- Secondary network seeking spectrum holes
- Join/exit network and transmit/receive independently
- Decentralized protocol
- ▶ Each user can only sense no more than L_1 channels, access no more than L_2 channels
- Slot structure:
 - I. sense a set of channels, then access some of them
 - 2. randomly backoff, transmits if no other accesses channel
 - > 3. acknowledges successful transmission

Illustrating the challenges

POMDP formulation

- S is set of states
- A is a set of actions
- \triangleright Θ is a set of observations
- R reward function
- Λ belief vector, $\Lambda(t) = [\lambda_1(t), \dots, \lambda_M(t)]$
 - $\lambda_i(t)$: conditional probability (given observation decision and history) that network state is i at beginning of slot t
 - sufficient statistic for the design of optimal action
- ▶ π policy: sequence of function $\Lambda(t) \to A(t)$
- Dbjective: maximize accumulated reward over a horizon

POMDP formulation:

- ▶ Beginning of slot, chooses a set A_1 channels to sense, $|A_1| \le L_1$
- ▶ Choose subset of $A_2 \subset A_1$ channels to access (transmit/receive), $|A_2| \leq L_2$
- Given state is j, observes Θ_{j,A_1}
- Acknowledge successful/unsuccessful transmission
- Calculate reward r_{j,A_1,A_2}
 - $r_{j,A_1,A_2}(t) = \sum_{i \in A_2} S_i(t)B_i$, number of bits transmitted
- Objective: maximize sum(r) over T slots

II

Optimal Sensing/Access Strategy

- Assume error-free sensing, $L_1 = L_2 = 1$
- Choice of A_2 :Transmit iff channel is sensed to be available
- $V_t(\Lambda(t))$ denote the maximum expected remaining reward there can be from time t

$$V_t(\Lambda(t)) = \max_{a=1,\cdots,N} \{\sum_{i=1}^M \lambda_i \sum_{j=1}^M p_{i,j} \sum_{\theta=0}^1 \Pr[\Theta_{j,a} = \theta | (\theta B_a) + V_{t+1}(T(\Lambda(t)|a,\theta)))\}$$
 immediate future reward reward

Optimal Sensing/Access Strategy

- $V_t(\Lambda(t))$ denote the maximum expected remaining reward there can be from time t
- Convex and piecewise linear
- Calculate backwards:
 - $Y_i(t+1) \rightarrow optimal\ action\ and\ Y_i(t)$

Optimal Sensing/Access Strategy

- Assume error-free sensing, $L_1 = L_2 = 1$
- Choice of A_2 : Transmit iff channel is sensed to be available
- $V_t(\Lambda(t))$ denote the maximum expected remaining reward there can be from time t

$$V_t(\Lambda(t)) = \max_{a=1,\cdots,N} \{\sum_{i=1}^M \lambda_i \sum_{j=1}^M p_{i,j} \sum_{\theta=0}^1 \Pr[\Theta_{j,a} = \theta | (\theta B_a) + V_{t+1}(T(\Lambda(t)|a,\theta)))\}$$
 immediate future reward reward

$$<\Lambda(t+1),\Upsilon_{i_{\Lambda(t+1)}}(t+1)>$$

Sub-optimal Strategy

- \blacktriangleright Reason: dimension of Λ grows exponentially
- Assume each channel independent, then can reduce the dimension of the sufficient statistics from 2^N to N
- New sufficient statistic: belief of each channel $\Omega(t) = [\omega_1(t), ..., \omega_N(t)]$
- Channel model

Sub-optimal Strategy

Channel:

Simple recurrence

$$\Omega(t+1) = [\omega_{1}(t+1), \cdots, \omega_{N}(t+1)] \stackrel{\Delta}{=} T(\Omega(t)|a_{*}(t), \Theta_{a_{*}}(t)),
\omega_{i}(t+1) = \begin{cases}
1 & \text{if } a_{*}(t) = i, \Theta_{a_{*}}(t) = 1 \\
0 & \text{if } a_{*}(t) = i, \Theta_{a}(t) = 0 \\
\omega_{i}(t)\beta_{i} + (1 - \omega_{i}(t))\alpha_{i} & \text{if } a_{*}(t) \neq i
\end{cases}$$

- Strategy: maximize immediate reward
- (probability of sensing a current idle channel)

$$a_*(t) = \arg\max_{a=1,\dots,N} (\omega_a(t)\beta_a + (1 - \omega_a(t))\alpha_a)B_a.$$

Problem: Sensing Error

- Does the optimal strategy change?
- Keep the collision probability below the constraint
 - miss detection chance $\delta \leq \zeta$

Receiver
Operating
Characteristics
for different
spectrum
sensors

choose $\delta^* = \zeta$ operating on the threshold!!

Decentralized Cognitive MAC: Accessing

- Key: if transmitter and receiver carry out the same algorithm based on the same information, their belief vector should be the same!! (Always synchronized)
- If sensing error, receiver don't have observation Θ_{a^*}
- Update belief according to
 - \bullet a*: decision on which channel to sense
 - K_{a^*} : whether an acknowledgement sent/received
- Assume error-free ACK (what if not?)

$$\omega_i(t+1) \ \stackrel{\triangle}{=} \ \Pr[S_i(t) = 1 | \Omega(t), a_*, K_{a_*}]$$

$$= \begin{cases} \omega_i(t)\beta_i + (1-\omega_i(t))\alpha_i & \text{if } a_* \neq i \\ 1 & \text{if } a_* = i, K_{a_*} = 1 \\ \frac{\epsilon(\omega_{a_*}\beta_{a_*} + (1-\omega_{a_*})\alpha_{a_*})}{\epsilon(\omega_{a_*}\beta_{a_*} + (1-\omega_{a_*})\alpha_{a_*}) + (\omega_{a_*}(1-\beta_{a_*}) + (1-\omega_{a_*})(1-\alpha_{a_*}))} & \text{if } a_* = i, K_{a_*} = 0 \end{cases}$$

Problem: Hidden/Exposed Terminals

Recall basic slot protocol

Revised MAC

Revised MAC: sending RTS/CTS to alleviate hidden/exposed terminals

Combined with sensing/accessing choice between slots:
 Complete Cognitive MAC protocol

Simulation Result

Fig. 12. Performance of the optimal cognitive MAC protocol under different spectrum occupancy statistics (N=3 independent channels with the same bandwidth B=1 and transition probabilities $\{\alpha,\beta\}$).

Comparing Greedy and Optimal

Fig. 13. Performance comparison of the greedy approach and the optimal strategy (in the upper plot, we have N=3 independent channels with the same bandwidth B=1 and transition probabilities $\{\alpha=0.2,\beta=0.8\}$; in the lower plot, N=3, $\vec{\alpha}=[0.8,0.6,0.4]$, $\vec{\beta}=[0.6,0.4,0.2]$, $\vec{B}=[3/4,1,3/2]$).

Performance in Sensing Error

Fig. 14. OSA performance in the presence of sensing error (N=3) independent channels with the same bandwidth B=1 and transition probabilities $\{\alpha=0.4,\beta=0.5\}$).

Discussion and Extension

- What assumptions do the formulation make?
 - Known transit probabilities
 - Slotted structure
 - Error-free control message
 - Channel fading/shadowing not taken into account
- Algorithms for Dynamic Spectrum Access With Learning for Cognitive Radio, Unnikrishnan et al.
 - Argues hard to maintain synchronization
 - Centralized control with learning
 - Can deal with unknown transition probabilities
 - Don't need ACK

Summary

- Cognitive radio nodes may not be able to sense the whole spectrum
- Ad-hoc nature requires decentralized protocol
- Synchronization obtained without dedicated control
- Combination of theory from different fields
- Make certain assumptions/simplifications to separate the problems

References

- Qing Zhao, Lang Tong, Ananthram Swami, Yunxia Chen. <u>Decentralized</u> cognitive MAC for opportunistic spectrum access in ad hoc networks: A <u>POMDP framework</u>, Selected Areas in Communications, IEEE Journal on, vol.25, no.3, pp.589-600, April 2007.
- R. Smallwood and E. Sondik, <u>The optimal control of partially ovservable</u> <u>Markov processes over a finite horizon</u>, *Operations Research*, pp. 1071–1088, 1971.
- J. Unnikrishnan and V.V. Veeravalli, <u>Algorithms for dynamic spectrum access</u> with learning for cognitive radio, IEEE Trans. Signal Process., vol. 58, no. 2, pp. 750-760, Feb. 2010.