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Main Challenges for Ad-hoc OSA Network 
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 Hardware complexity 
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System Model: Network Model 

 N channels , M = 2N states 

 Each channel is either 0 (occupied) or 1 (idle) 

 Channel state evolves as a discrete-time Markov process 

 Assume knowledge of transition probabilities 

 Usage statistics unchanged for T slots 
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System Model: Cognitive Radio Network 

 Secondary network seeking spectrum holes 

 Join/exit network and transmit/receive independently 

 Decentralized protocol 

 Each user can only sense no more than L1 channels, 

access no more than L2 channels 

 Slot structure:  

 1. sense a set of channels, then access some of them 

 2. randomly backoff, transmits if no other accesses channel 

 3. acknowledges successful transmission 
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Illustrating the challenges 
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POMDP formulation 

 S is set of states 

 A is a set of actions 

 Θ is a set of observations 

 R reward function 

 Λ belief vector, Λ 𝑡 = 𝜆1 𝑡 , … , 𝜆𝑀 𝑡  

 𝜆𝑖 𝑡 : conditional probability (given observation decision and 

history) that network state is i at beginning of slot t 

 sufficient statistic for the design of optimal action 

 𝜋 policy: sequence of function Λ 𝑡 → 𝐴(𝑡) 

 Objective: maximize accumulated reward over a horizon 
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POMDP formulation:  

 Beginning of slot, chooses a set 𝐴1channels to sense, 

𝐴1 ≤ 𝐿1 

 Choose subset of 𝐴2 ⊂ 𝐴1 channels to access 

(transmit/receive), 𝐴2 ≤ 𝐿2 

 Given state is j, observes Θ𝑗,𝐴1 

 Acknowledge successful/unsuccessful transmission 

 Calculate reward 𝑟𝑗,𝐴1,𝐴2 

 𝑟𝑗,𝐴1,𝐴2 𝑡 =   𝑆𝑖 𝑡 𝐵𝑖𝑖∈𝐴2
, number of bits transmitted 

 Objective: maximize  sum(r) over T slots 
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Optimal Sensing/Access Strategy 

 Assume error-free sensing, 𝐿1 = 𝐿2 = 1 

 Choice of 𝐴2: Transmit iff channel is sensed to be available 

 𝑉𝑡 Λ 𝑡  denote the maximum expected remaining 

reward there can be from time t 

immediate 

reward 

future reward 
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Optimal Sensing/Access Strategy 
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Sub-optimal Strategy 

 Reason: dimension of Λ grows exponentially 

 Assume each channel independent, then can reduce the 

dimension of the sufficient statistics from 2N to N 

 New sufficient statistic: belief of each channel 

Ω 𝑡 = 𝜔1 𝑡 , … , 𝜔𝑁 𝑡  

 Channel model 
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Sub-optimal Strategy 

 Channel: 

 

 Simple recurrence 

 

 

 

 

 Strategy: maximize immediate reward 

 (probability of sensing a current idle channel) 
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Problem: Sensing Error 

 Does the optimal strategy change? 

 Keep the collision probability below the constraint 

 𝑚𝑖𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑐𝑒 𝛿 ≤ 𝜁 

Receiver 

Operating 

Characteristics 

for different 

spectrum 

sensors 

choose  

𝛿∗ = 𝜁 
operating on the 

threshold!! 
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Decentralized Cognitive MAC: Accessing 

 Key: if transmitter and receiver carry out the same 

algorithm based on the same information, their belief 

vector should be the same!! (Always synchronized) 

 If sensing error, receiver don’t have observation Θ𝑎∗ 

 Update belief according to  

 𝑎∗: decision on which channel to sense 

 𝐾𝑎∗ : whether an acknowledgement sent/received 

 Assume error-free ACK (what if not?) 
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Problem: Hidden/Exposed Terminals 

 Recall basic slot protocol 
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Revised MAC 

 Revised MAC: sending RTS/CTS to alleviate 

hidden/exposed terminals 

 

 

 

 

 Combined with sensing/accessing choice between slots: 

Complete Cognitive MAC protocol 
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Simulation Result 
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Comparing Greedy and Optimal 
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Performance in Sensing Error 
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Discussion and Extension 

 What assumptions do the formulation make? 

 Known transit probabilities 

 Slotted structure 

 Error-free control message 

 Channel fading/shadowing not taken into account 

 Algorithms for Dynamic Spectrum Access With Learning for Cognitive 

Radio, Unnikrishnan et al. 

 Argues hard to maintain synchronization 

 Centralized control with learning 

 Can deal with unknown transition probabilities 

 Don’t need ACK 
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Summary 

 Cognitive radio nodes may not be able to sense the 

whole spectrum 

 Ad-hoc nature requires decentralized protocol 

 Synchronization obtained without dedicated control 

 Combination of theory from different fields 

 Make certain assumptions/simplifications to separate the 

problems 
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