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2.1 Introduction

This chapter develops the fundamental capacity limits and associated transmission

techniques for different cognitive radio network paradigms. These limits are based on

the premise that the cognitive radios of secondary users are intelligent wireless com-

munication devices that exploit side information about their environment to improve

spectrum utilization. This side information typically comprises knowledge about the

activity, channels, encoding strategies and/or transmitted data sequences of the primary

users with which the secondary users share the spectrum. Based on the nature of the

available side information as well as a priori rules about spectrum usage, cognitive ra-

dio systems seek to underlay, overlay or interweave the secondary users’ signals with

the transmissions of primary users. This chapter develops the fundamental capacity

limits for all three cognitive radio paradigms. These capacity limits provide guidelines

for the spectral efficiency possible in cognitive radio networks, as well as practical

design ideas to optimize performance of such networks.

While the general definition of cognitive radio was provided in Chapter 1, we now

interpret that definition in a mathematically precise manner that can be used in the

development of cognitive radio capacity limits. Specifically, in the mathematical ter-

minology of information theory, it is the availability and utilization of network side

information that defines a cognitive radio, which we formalize as follows:

A cognitive radio is a wireless communication device that intelligently utilizes any

available side information about the (a) activity, (b) channel conditions, (c) encoding

strategies or (d) transmitted data sequences of primary users with which it shares the

spectrum.

Based on the type of available network side information along with the regulatory

constraints, secondary users seek to underlay, overlay, or interweave their signals with

those of primary users without significantly impacting these users [51]. In the next

section we describe these different cognitive radio paradigms in more detail. The fun-

damental capacity limits for each of these paradigms are discussed in later sections.

2.2 Cognitive Radio Network Paradigms

There are three main cognitive radio network paradigms: underlay, overlay, and inter-

weave. The underlay paradigm allows secondary users to operate if the interference

they cause to primary users is below a given threshold or meets a given bound on pri-

mary user performance degradation. In overlay systems the secondary users overhear

the transmissions of the primary users, then use this information along with sophisti-

cated signal processing and coding techniques to maintain or improve the performance

of primary users, while also obtaining some additional bandwidth for their own com-

munication. Under ideal conditions, sophisticated encoding and decoding strategies

allow both the secondary and primary users to remove all or part of the interference

caused by other users. In interweave systems the secondary users detect the absence of

primary user signals in space, time, or frequency, and opportunistically communicate

during these absences. For all three paradigms, if there are multiple secondary users

then these users must share bandwidth amongst themselves as well as with the primary
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users, subject to their given cognitive paradigm. This gives rise to the medium access

control (MAC) problem among secondary users similar to that which arises among

users in conventional wireless networks. Given this similarity, MAC protocols that

have been proposed for secondary users within a particular paradigm are often derived

from conventional MAC protocols. In addition, multiple secondary users may transmit

to a single secondary receiver, as in the uplink of a cellular or satellite system, and

one secondary user may transmit to multiple secondary receivers, as in the correspond-

ing downlink. We now describe each of the three cognitive radio paradigms in more

detail, including the associated regulatory policy as well as underlying assumptions

about what network side information is available, how it is used, and the practicality of

obtaining this information.

2.2.1 Underlay Paradigm

The underlay paradigm, shown in Figures 2.1 and 2.2, mandates that concurrent pri-

mary and secondary transmissions may occur only if the interference generated by the

secondary transmitters at the primary receivers is below some acceptable threshold.

Rather than determining the exact interference it causes, a secondary user can spread

its signal over a very wide bandwidth such that the interference power spectral density

is below the noise floor at any primary user location. These spread signals are then

despread at each of their intended secondary receivers. This spreading technique is the

basis of both spread spectrum and ultrawideband (UWB) communications [88]. Al-

ternatively, the secondary transmitter can be very conservative in its output power to

ensure that its signal remains below the prescribed interference threshold. In this case,

since the interference constraints in underlay systems are typically quite restrictive, this

limits the secondary users to short range communications. Both spreading and severe

restriction of transmit power avoid exact calculation of secondary user interference at

primary receivers, instead using a conservative design whereby the collective interfer-

ence of all secondary transmissions is small everywhere. This collective interference,

sometimes called the interference temperature [12], is discussed in more detail in Sec-

tion 4.2. Determining the exact interference a secondary transmitter causes to a primary

receiver is one of the biggest challenges in underlay systems. The secondary user can

determine this interference at a given primary receiver by overhearing a transmission

from that primary user if the link between them is reciprocal. For MIMO systems,

a secondary user only interferes with a primary user in their overlapping spatial di-

mensions. If the secondary user occupies only the null space of the MIMO primary

receiver, no interference is caused, and hence this falls within the interweave paradigm

discussed below, whereby the primary and secondary users occupy orthogonal spatial

dimensions. The underlay paradigm is most common in the licensed spectrum, where

the primary users are the licensees, but it can also be used in unlicensed bands to pro-

vide different classes of service to different users.

2.2.2 Overlay Paradigm

The premise for overlay systems, illustrated in Fig. 2.3, is that the secondary trans-

mitter has knowledge of the primary user’s transmitted data sequence (also called its
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Figure 2.1: The underlay paradigm: wideband signaling (e.g. spread spectrum)

Figure 2.2: The underlay paradigm: transmit antenna array

message) and how this sequence is encoded (also called its codebook). Similar ideas

apply when there are multiple secondary and primary users. The codebook informa-

tion could be obtained, for example, if the primary users follow a uniform standard

for communication based on a publicized codebook. Alternatively, the primary users

could broadcast their codebooks periodically. A primary user’s data sequence might be

obtained by decoding it at the secondary user’s receiver or in other ways, as explained

further in Section 2.7.

Knowledge of a primary user’s data sequence and/or codebook can be exploited

in a variety of ways to either cancel or mitigate the interference seen at the secondary

and primary receivers. On the one hand, this information can be used to cancel the

interference due to the primary signals at the secondary receiver. Specifically, sophis-

ticated encoding techniques like dirty paper coding (DPC) [14] can be used to precode

the secondary user’s signal such that the known primary user interference at the sec-

ondary receiver is effectively removed. On the other hand, the secondary users can

assign part of their power for their own communication and the remainder of the power

to assist (relay) the primary transmissions. By careful choice of the power split, the in-

crease in the primary user’s signal-to-interference-plus-noise power ratio (SINR) due

to the cooperation with secondary users can be exactly offset by the decrease in the pri-

mary user’s SINR due to the interference caused by the fraction of the secondary user’s

power assigned to its own communication. If the primary receiver can be modified

to decode both its data sequence and all or part of the secondary user’s data sequence,

then the interference caused by the secondary transmitter to the primary receiver can be

partially or completely removed. This guarantees that the primary user’s rate either re-

mains unchanged or can be increased, while the secondary user obtains capacity based

on the power it allocates for its own transmissions. When there are multiple secondary

and primary users then a MAC protocol for each user class and more sophisticated

encoding and decoding techniques will be required.

There are many practical hurdles that must be overcome for overlay systems to be
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successful. These include the technical challenges of overhearing primary user trans-

missions and decoding them, as well as the encoding and decoding complexity associ-

ated with secondary users in these systems. Moreover, sharing of primary user private

data sequences with secondary users, even when encrypted, will raise significant se-

curity and privacy concerns for the primary system. These significant challenges may

preclude overlay implementations in some types of systems. However, many of these

challenges can be overcome in certain settings, especially when the primary user data

is not private, e.g. in a cellular overlay within the TV broadcast spectrum [72]. Note

that the overlay paradigm can be applied to either licensed or unlicensed band com-

munications. In licensed bands, secondary users would be allowed to share the band

with the licensed users since they would not interfere with, and might even improve,

their communication. In unlicensed bands secondary users would provide more effi-

cient spectral user by exploiting knowledge of the primary users’ data sequences and

encoding strategies to reduce interference.

Figure 2.3: The overlay paradigm

2.2.3 Interweave Paradigm

The interweave paradigm is based on the idea of opportunistic communication, and

was the original motivation for cognitive radio [62]. The idea came about after studies

conducted by the FCC [24], universities [6], and industry [80] showed that a major

part of the spectrum is not fully utilized most of the time. In other words, there exist

temporary space-time-frequency voids, referred to as spectrum holes or white spaces,

that are not in constant use in both the licensed and unlicensed bands, as shown in

Fig. 2.4. The spatial spectrum holes may be in a single spatial dimension or, for MIMO

devices, in the subset of spatial dimensions not occupied by the primary users (i.e. in

the null space of the primary users’ receivers) [101]. Spectral holes can be exploited

by secondary users to operate in orthogonal dimensions of space, time or frequency

relative to the primary user signals. Thus, the utilization of spectrum is improved

by opportunistic reuse over the spectrum holes. The interweave technique requires

detection of primary (licensed or unlicensed) users in one or more of the space-time-

frequency dimensions. This detection is quite challenging since primary user activity

changes over time and also depends on geographical location. Chapters 4 and 5 discuss

spectrum hole detection by a single receiver and by multiple receivers, respectively, in
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more detail. Interweave systems can also be applied to networks where all users in

a given band have equal priority, but existing users are treated as primary users, and

new users become secondary users that cannot interfere with communications already

taking place between existing users.

For interweave networks with multiple secondary users, a MAC protocol is needed

to share the available spectrum holes amongst them. Given the similarity of this prob-

lem with medium access control in conventional networks, the protocols that have been

proposed for this setting are often derived from conventional MAC protocols such as

ALOHA and CSMA [13]. Simple time-sharing mechanisms may also be used, and this

can greatly simplify capacity analysis. Advanced MAC protocols for multiuser inter-

weave networks utilize additional spatial degrees of freedom from multiple antennas,

optimization based on more advanced mathematical models such as partially-observed

Markov chains, or game theory and pricing mechnanisms [101, 102, 89, 43]. The chal-

lenge to medium access in the interweave setting above and beyond what has been

addressed in conventional MAC protocols is that the channel to be shared is unknown,

since it depends on the activity of the primary users. This primary user activity will

depend on the MAC protocol of the primary system, which is designed completely

independently of the secondary system. Given the many variants of MAC protocols

for conventional systems, developing an effective MAC protocol for secondary users

remains one of the biggest challenges in interweave system design.

To summarize, an interweave cognitive radio is an intelligent wireless commu-

nication system that periodically monitors the radio spectrum, detects primary user

occupancy over time, space, and frequency, and opportunistically communicates over

spectrum holes with minimal interference to the primary users. Additional motivation

and discussion of the signal processing challenges faced in interweave cognitive radio

is discussed in [41], as well as in Chapters 4 and 5.

Figure 2.4: Spectral occupancy measurements up to 6 GHz in an urban area at mid-day

(Berkeley Wireless Research Center (BWRC) [6]).
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2.2.4 Comparison of Cognitive Radio Paradigms

Underlay Overlay Interweave

Network Side Information:

Secondary transmitters know

interference caused to primary

receivers.

Network Side Information:

Secondary nodes know chan-

nel gains, encoding techniques

and possibly the transmitted

data sequences of the primary

users.

Network Side Information:

Secondary users identify

spectrum holes in space, time,

and/or frequency from which

the primary users are absent.

Simultaneous Transmission:

Secondary users can trans-

mit simultaneously with the

primary users as long as

interference caused is below

an acceptable limit.

Simultaneous Transmission:

Secondary users can transmit

simultaneously with the pri-

mary users; the interference

to the primary users can be

offset by using part of the

secondary users’ power to

relay the primary users’ data

sequences.

Simultaneous Transmission:

Secondary users transmit

simultaneously with a primary

user only when there is missed

detection of the primary user

activity.

Transmit Power Limits: Sec-

ondary user’s transmit power

is limited by a constraint on

the interference caused to the

primary users.

Transmit Power Limits: Sec-

ondary users can transmit at

any power, the interference to

primary users can be offset

by relaying the primary users’

data sequences.

Transmit Power Limits: Sec-

ondary user’s transmit power

is limited by the range of

primary user activity it can de-

tect (alone or via cooperative

sensing).

Hardware: Secondary users

must measure the interference

they cause to primary users’

receivers by either sounding

and exploiting channel reci-

procity or via cooperative

sensing.

Hardware: Secondary users

must also listen to primary user

transmissions. Encoding and

decoding complexity is also

significantly higher than other

paradigms.

Hardware: Receiver must be

frequency agile or have a wide-

band front end for spectrum

hole detection.

Table 2.1: Comparison of underlay, overlay and interweave cognitive radio techniques.

Table 2.1 summarizes the differences among the underlay, overlay and interweave

cognitive radio approaches. While underlay and overlay techniques permit concurrent

primary and secondary user transmissions, avoiding simultaneous transmissions with

primary users in overlapping dimensions of time, space, or frequency is the main goal

in the interweave technique. We also point out that the cognitive radio approaches re-

quire different amounts of side information: underlay systems require knowledge of the

interference caused by the secondary transmitters to the primary receivers, interweave

systems require considerable side information about the primary user activity (which
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can be obtained from sensing at one or more cognitive nodes in the system) and overlay

systems require a large amount of side information (knowledge of the primary user’s

encoding technique and possibly its transmitted data sequence, along with the channel

conditions in the network). Apart from device level power limits, the secondary user’s

transmit power in the underlay and interweave approaches is decided by the interfer-

ence constraint and range of sensing, respectively. Finally, hardware requirements vary

across the different paradigms, as discussed in more detail in Chapter 1.7. While un-

derlay, overlay and interweave are three distinct approaches to cognitive radio, hybrid

schemes can also be constructed that combine the advantages of different approaches.

For example, the overlay and interweave approaches are combined in [96].

2.3 Fundamental Performance Limits of Wireless Net-

works

A wireless network consists of a collection of wireless devices communicating over

a common wireless channel. The simplest wireless network consists of a single-user

(point-to-point) channel. In general, a wireless network contains multiple source nodes,

each communicating its information to a set of destination nodes. A wireless network

can have a supporting infrastructure (e.g. as in cellular networks), or an ad hoc struc-

ture, where nodes self-configure into a network and control is decentralized among the

nodes. The typical topologies of multiuser channels (in isolation or within one cell of a

cellular system) are multiple access (many transmitters to one receiver) and broadcast

(one transmitter to many receivers) channels. These channels correspond, respectively,

to the uplink and downlink of a satellite system or one base station in a cellular system.

In these networks, communication occurs between a group of nodes transmitting to or

receiving from a single node. In an ad hoc wireless network, each node can serve as a

source, destination and/or relay forwarding data for other users.

In cognitive radio applications, primary and secondary users accessing the same

spectrum form a wireless network. Primary and secondary users have different trans-

mit/receive constraints due to interference limitations at the primary receivers, as well

as possibly different transmit/receive capabilities. In cognitive radio networks the pri-

mary users can be cellular or ad hoc, whereas the secondary users are generally ad

hoc and fall into the paradigms of underlay, interweave or overlay. Hence, these two

types of cognitive radio network users form a two-tier wireless network. Performance

limits of wireless networks are thus of direct relevance to the performance limits of

cognitive radio networks. In particular, the fundamental capacity limits of ad hoc net-

works not only dictate how much information can be transmitted by secondary users

under a given set of network and interference conditions, but also limitations on the

information exchange possible between sensing nodes to collaboratively assess spec-

tral occupancy. In the following section we describe the broad range of performance

metrics relevant to wireless networks, including their capacity. We then formally de-

fine mutual information and capacity for single-user channels as well as for general

wireless networks.
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2.3.1 Performance Metrics

The fundamental performance limits of a wireless network define their best possible

performance relative to one or more specific metrics. Many different metrics can be

used to measure performance, such as capacity, throughput, outage, energy consump-

tion, as well as combinations of these and other metrics. Since wireless networks ex-

hibit significant dynamics (user movement, data traffic, channel variations, etc.), these

dynamics must be taken into account in the definition of the network performance met-

rics.

The most common fundamental performance limit for time-invariant communica-

tion systems is Shannon capacity [78] - the maximum rate that can be achieved over

a channel with asymptotically small probability of error. Shannon’s simple yet ele-

gant mathematics coupled with his revolutionary ideas for coding over noisy channels

and bounding their fundamental data rate limits via mutual information has inspired

generations of theorists and practitioners, and provided significant insights into com-

munication system design. For single-user channels the Shannon capacity is a number,

the maximum data rate of the channel, as will be defined mathematically in terms of the

channel’s maximum mutual information in the next section. For a multiuser (broadcast

or multiple access) channel Shannon capacity is a K-dimensional region defining the

maximum rates possible for all K users simultaneously. Shannon capacity of wire-

less single-user and multiuser channels is known in many cases, including static and

time-varying single-user, broadcast and multiple access channels with noise, fading,

multipath, and/or multiple antennas [18, 4, 33].

Time-varying channels are typically modeled based on the notion of a channel

state. The channel state s lies within the set Sc of all possible channel states, which

may be discrete or continuous. For stationary and ergodic time-varying channels, at

any given time the channel is assumed to be in state s with probability p(s). This

model is also refered to as a composite channel [21]. The Shannon capacity or capacity

region of a time-varying stationary and ergodic channel is therefore called the ergodic

capacity, since it corresponds to the data rate or rate region in a particular channel

state (e.g. a particular fading value) averaged over the probability distribution of the

channel states (e.g. the fading distribution). An alternate performance metric for such

channels is outage capacity, whereby transmission to one or more users is suspended

in some channel states, deemed outage states, and a fixed transmission rate is used in

the nonoutage states. The outage capacity is then the maximum fixed rate that can be

achieved in nonoutage states with asymptotically small probability of error multiplied

by the probability of nonoutage. The outage capacity metric is based on the underly-

ing assumption that the transmitter knows the channel state and suspends transmission

during outage.

Another performance metric for time-varying channels when the channel state is

not known at the transmitter is capacity versus outage probability. In this case the

transmitter cannot adapt to channel conditions; it therefore selects a given rate C or set

of rates C to transmit to the user(s). If the channel supports these rates, i.e. the rates

are within the capacity of the channel under its realized channel state, then the data is

received without error; if not errors occur which are deemed a data outage. For single-

user channels the capacity versus outage probability metric takes the form of a plot
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characterizing the capacity C associated with each outage probility Pout. This plot,

illustrated in Fig. 2.5a for a continuous-state single-user channel, thus corresponds to

the transmitter’s data rate versus the probability that this rate cannot be supported by

a given channel. The plot of C versus Pout is nondecreasing with Pout, since at high

outage probability more of the bad channel states need not support rate C , and hence

a higher capacity can be achieved in the nonoutage states. Consider now a finite-state

channel, where the set of channel states Sc is finite, and assume the states are ordered

so that the capacity Ci in state i satisfies Ci ≤ Cj for i ≤ j. Then C versus Pout has

a staircase shape with discrete increases for each n such that Pout =
∑n

i=1 pi where

pi is the probability of the ith channel state. For example, in a two state channel with

capacity Ci for state i and state probability pi, i = 1, 2, if C1 < C2 then capacity

versus outage is C2 for Pout ≥ p1 and C1 for Pout < p1, as shown in Fig. 2.5b. More

details on ergodic capacity, outage capacity, and capacity versus outage can be found

in [32, 4, 33, 87]. Note that when the channel is nonergodic, such that the channel state

is chosen at random from the set Sc and remains constant for all time, the channel is

referred to as a compound channel. In this case the capacity generally corresponds to

achievable rates associated with the worst-case channel state [91].

Figure 2.5: Capacity versus outage probability for a single-user channel.

Capacity results are much more limited for general wireless networks with multiple

sources and multiple destinations, even for simple static models. For a K-node network

where each node is both a source and a destination, the capacity is a K × (K − 1)-
dimensional region defining the maximum rates achievable between all node pairs.

Such regions are typically characterized by two-dimensional slices, which define the

maximum rates between two source-destination pairs in the network. More general

capacity regions whereby one source sends data to multiple destinations, also called

multicasting, can also be analyzed but we do not consider multicast in our network

models. In practice wireless networks often include multihop routing via relaying,

whereby intermediate nodes relay data toward its final destination. Such relaying can

increase the achievable data rates for the network as well as other performance met-

rics, often significantly [85]. Other advanced capabilities in the system design, such

as power control, multiple frequency bands to enable frequency reuse (the reuse of the

same frequency at spatially-separate locations), and interference cancellation can fur-

ther increase network performance. This is illustrated in Fig. 2.6 (from [85]), where a

two-dimensional capacity region slice for a five node network is illustrated for differ-
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ent design assumptions about the network. We see from this figure that spatial reuse of

frequencies, multihop routing, and interference cancellation all significantly increase

the achievable rates within this slice.

Figure 2.6: Capacity region slice for node pairs (1,2) and (3,4) of a five-node wireless

network (a) Single-hop routing, no spatial reuse. (b) Multihop routing, no spatial reuse.

(c) Multihop routing with spatial reuse. (d) power control added to (c). (e) Successive

Interference Cancellation (SIC) added to (c).

The Shannon capacities for many of the most basic wireless networks, including the

three-node relay channel and the four-node interference channel, illustrated in Fig. 2.7,

have remained open problems for decades. This makes it unlikely that the capacity re-

gion can be obtained exactly for these and other similar networks, especially when the

number of users is larger than in these canonical examples. Instead, capacity regions

are often characterized by their upper and lower bounds rather than the exact region

(where these bounds meet). Lower bounds are easier to obtain than upper bounds,

as any communication scheme yields an achievable rate region that lower bounds the

capacity region. Upper bounds are more difficult to obtain as they must contain all

achievable rate regions. Fano’s inequality is the most common tool used to obtain

capacity upper bounds [34]. There has also been significant progress on deriving ca-

pacity scaling laws, which characterize how the maximum sum of user rates scales in

an asymptotically large network [99]. However, these laws provide just one point, the

sum-rate point, on the K×(K−1)-dimensional network capacity region. In particular,

a network’s scaling law defines how the ratio of the sum-rate divided by the number of

users behaves in an asymptotically larger network. The sum-rate point, i.e. the point

on the capacity region corresponding to the maximum sum of user rates simultane-

ously achievable, can also be of interest for finite-size networks, especially symmetric

networks where this point defines the maximum symmetric rate per user. Similarly, in-

terference alignment can achieve the sum-rate point in interference networks, but does
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Figure 2.7: Simple Ad Hoc Networks for which Capacity is Unknown

not achieve the full capacity region [7].

Cognitive radio networks are wireless networks where secondary users overhear

the transmissions of primary users in the network and use that information in their en-

coding and decoding. From a Shannon capacity perspective, the two-user cognitive

radio channel is a generalization of the two-user interference channel of Fig. 2.7 in that

information about the primary user (source-destination pair 2) is assumed known by

the secondary user (source-destination pair 1). In particular, for the underlay paradigm

source 1 knows the amount of interference it causes to destination 2; for the interweave

paradigm source 1 knows the activity of source 2 across time, space, and frequency

dimensions (possibly through coordination with destination 1) and refrains from trans-

mitting in those dimensions when the primary user is active; for the overlay paradigm

source 1 is assumed to know the data sequence and encoding scheme of source 2 along

with network channel gains, and uses that information in its encoding. Capacity results

for the K-user interference channel are given in Section 2.4, and the capacity of the

different cognitive radio paradigms are given in Sections 2.5-2.7.

Fig. 2.8 illustrates a slice of the wireless network performance region (the slice is

for one source-destination pair in a K-node network) where capacity is not the only

performance metric of interest. Indeed, delay (average, maximum, tail probability, or

the entire delay distribution) is an important metric for many applications. In addition,

dynamic wireless channels may exhibit improved rates if some outage or error is al-

lowed (Shannon capacity regions assume zero outage). To illustrate tradeoffs for a set

of network performance metrics, the region in Fig. 2.8 shows a hypothetical tradeoff

between data rate (capacity), delay, and outage for a given source-destination pair in

a K-node network. Since this region includes three performance metrics, the perfor-

mance region for the entire network will be of dimension K × (K − 1) × 3; Fig. 2.8

shows the three-dimensional tradeoff between data rate, delay, and outage for the se-

lected source-destination pair in this network. Note that transmit power is not explicit in

this performance region but rather is a parameter of the underlying model. Other model

parameters might include available bandwidth, number of antennas at each node, and

complexity limitations. The capacity metric generally increases as delay and/or outage

increase, as indicated in the figure, since this entails a relaxation of system constraints.
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Shannon capacity generally assumes infinite delay and zero outage, hence these di-

mensions in Fig. 2.8 collapse. Outage capacity and capacity versus outage have been

well-studied for point-to-point and multiuser channels, but there are few fundamental

outage results for general wireless networks, where outage can be declared for any

subset of node pairs within the network.

Figure 2.8: Performance region where capacity is not the only metric.

For systems with multiple degrees of freedom, i.e. multiple dimensions over which

to transmit data, the tradeoff between different performance metrics can be character-

ized more formally. In such systems some degrees of freedom are used for diversity

whereby the same information is sent over multiple dimensions for robustness to errors

and outage. Other degrees of freedom are used for multiplexing, whereby indepen-

dent data is multiplexed over independent channels enabled by the multiple degrees of

freedom. The multiple dimensions associated with degrees of freedom are typically

obtained via space, time, and frequency. Time and frequency degrees of freedom are

obtained by dividing the total signaling dimension into orthogonal time and frequency

slots. The spatial dimension is obtained via multiple antennas at the transmitter and

receiver (MIMO) systems. For single-user MIMO systems, Zheng and Tse [103] de-

veloped a fundamental diversity versus multiplexing tradeoff (DMT) in the limit of

asymptotically large signal-to-noise power ratio (SNR). The multiplexing gain r in this

setting is defined as the number of degrees of freedom utilized for data transmission:

more formally, the constant that preceeds the log function in the bandwidth-normalized

capacity expression (called the capacity pre-log). Diversity gain d is defined as the

negative of the slope of the probability of error curve as a function of SNR at a fixed

transmission rate. The diversity–multiplexing tradeoff at asymptotically high SNR was

shown to obey the simple expression d(r) = (Mr − r)(Mt − r), where Mt and Mr

are the number of transmit and receive antennas, respectively. The DMT region has

also been investigated for broadcast, multiple access and relay channels. The single-

user region was also extended to include delay, creating a performance region called

the diversity–multiplexing–delay tradeoff (DMDT) region [28]. In this work the delay

tradeoff is introduced by automatic-repeat-request (ARQ), which provides robustness

by identifying data received in error and requesting a retransmission of such data. This

introduces diversity in the time domain at the expense of delay in the request for a

retransmission. The DMDT has also been extended to multihop networks with ARQ

in [98, 97], where delay is caused by both queueing as well as ARQ retransmissions.

The number of ARQ retransmissions invokes a diversity–delay tradeoff, and these re-
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transmissions must be optimally allocated between all hops in the network as well as

in the end-to-end link to achieve the optimal DMDT tradeoff. The DMDT of multihop

networks under hierarchical cooperation, whereby the network is stratified into tiers

and cooperation takes place within a tier, has also been characterized in [67].

While capacity, delay, and outage are key performance metrics for most wireless

networks, they are not the most critical metrics for every system. For example, nodes

powered by non-rechargeable batteries, as is typical in sensor networks, have energy

consumption as a critical metric. Shannon-theoretic analysis was used in [90] to ob-

tain fundamental results for capacity per unit energy (cost) of point-to-point, multiple

access, and interference channels. Since this landmark paper there have been many

follow-on works examining capacity per unit cost under different channel conditions,

different input alphabet constraints, and different single and multiuser channel mod-

els. The most relevant for wireless networks are [71, 3] (and the references therein).

The first of these works develops the bits-per-joule capacity of wireless networks, a

scaling law that defines the maximum total number of bits that the network can deliver

per joule of transmit energy deployed into the network. This scaling law is found to

be (K/ logK).5(γ−1) for γ the common path loss exponent of all channels and K the

number of nodes in the network. The assumptions used to obtain this energy scaling

law are similar to those used to develop capacity scaling laws. The second paper takes

a unique approach relative to most work on minimum energy per bit; it considers to-

tal energy consumption — transmit energy plus circuit energy — as opposed to just

transmit energy. In particular, [3] derives the tradeoff between total energy consump-

tion and end-to-end data rate in wireless multihop networks, assuming interference

treated as noise and orthogonal scheduling of user transmissions. The inclusion of

circuit energy, which can include the energy associated with analog front-end electron-

ics as well as signal processing hardware, can change the nature of the energy–rate

tradeoff dramatically when transmit power does not dominate total energy consump-

tion (e.g. at relatively short transmission distances). For example, sophisticated codes

and multiple antenna techniques can save transmit power but increase circuit power.

Similarly, in multihop routing, using intermediate nodes to forward data saves total

transmit power but increases circuit power due to intermediate node processing. Thus,

optimizing energy consumption in networks depends heavily on transmission distances

(since transmit power dominates circuit power at large distances but not at small ones),

as well as the precise models for circuit energy consumption associated with the dif-

ferent hardware blocks of a transceiver. Characterizing the tradeoffs between energy

consumption and other network performance metrics has generally been hampered by

a lack of fundamental energy consumption models for hardware. Hence, a fundamental

characterization of such tradeoffs remains largely an open problem. Robustness is also

important for many systems, yet it is not clear how to translate robustness to a mathe-

matical metric. Information-theoretic tools are not always well-suited to characterizing

fundamental performance limits in networks that have bounded delay, complexity, and

power. In [34] a new theoretical framework is proposed to determine fundamental

performance limits of wireless networks based on an interdisciplinary approach that

incorporates Shannon Theory along with network theory, combinatorics, optimization,

stochastic control, and game theory.

We now proceed to formally define mutual information and capacity for single-user
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and multiuser channels and networks. These definitions will also be used in the more

complex capacity analysis for cognitive networks.

2.3.2 Mathematical Definition of Capacity

Shannon’s Mathematical Theory of Communication [78, 76, 77] defined the capacity

of a single-user channel, denoted by C , in terms of the mutual information between

the input and output of the channel. Moreover, Shannon showed that this capacity

equals the maximum rate at which reliable communication can be performed, without

any constraints on encoding or decoder complexity and delay. Specifically, for any

data transmission rate R < C there exist channel codes of rate R with arbitrarily small

error probability. Thus, for any desired rate R < C and any desired probability of error

Pe > 0, there exists a code of rate R that achieves error probability Pe. In addition,

Shannon showed that codes operating at rates R > C cannot achieve an arbitrarily

small error probability and, in fact, the error probability for any code operating at a rate

R > C is bounded away from zero.

The most basic discrete-time channel model for which mutual information is de-

fined consists of a random input X ∈ X (also called a symbol), a random output Y ∈ Y ,

and a probabilistic relationship between X and Y which is generally characterized by

the conditional distribution of Y given X, or p(y|x). For continuous random variables

p(y|x) is a probability distribution function (pdf) and for discrete random variables it

is a probability mass function (pmf). In this notation, random variables are denoted

by capital letters (e.g. X) while their realizations and probability distributions are de-

noted by small letters (e.g. x and p(x), respectively). If the channel has memory,

such that the output yn at a given time n depends on the current as well as past inputs

xn = (x1, . . . , xn), then the input, output, and probability distribution are defined in

terms of vectors Xn , Y n, and p(yn |xn). The channel is said to be memoryless if the

channel output at any time n is independent of past inputs, i.e. if p(yn|xn) = p(yn|xn).
The mutual information of a discrete-time memoryless single-user channel, assuming

continuous input and output random variables, is defined as

I(X; Y )
4
=

∫

X ,Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy, (2.1)

where the integral is taken over the set of possible values X ,Y for the random variables

X and Y , respectively, which are also called the input and output alphabets, and p(x),
p(y), and p(x, y) denote the pdfs of the random variables. When the input and output

alphabets X and Y are finite, the integral becomes a summation over their joint pmf:

I(X; Y ) =
∑

X ,Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

. (2.2)

The log function is typically with respect to base 2, in which case the units of mutual

information are bits per channel use, since input X and output Y correspond to a single

use of the channel.

Shannon proved that capacity of a large class of single-user time-invariant channels

is equal to the mutual information of the channel maximized over all possible input
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distributions:

C = max
p(x)

I(X; Y ) = max
p(x)

∫

X ,Y

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy. (2.3)

For a real discrete time-invariant additive white Gaussian noise (AWGN) channel with

bandwidth W , received signal power P, and receiver noise power spectral density N0,

the maximizing input distribution is Gaussian, which results in the channel capacity

C =
1

2
log2

(

1 +
P

N0W

)

bits/channel use. (2.4)

The units of bits per channel use are alternatively referred to as bits per dimension.

The dimension of a scalar channel with bandwidth W over transmission time T is

2WT . Channels with additional dimensions, e.g. MIMO channels with M spatial

dimensions, have dimension 2WTM . Defining capacity in terms of bits per channel

use or dimension is typical for multidimensional channels such as MIMO channels, and

we will follow this convention. In system designs the data rates are typically given in

terms of bits per second. We can convert bits per channel use (corresponding to 2WT
dimensions) to bits per second (corresponding to 2W dimensions over T seconds) by

multiplying (2.4) by 2W , yielding

C = W log2

(

1 +
P

N0W

)

bits/second. (2.5)

Capacity expressions will generally be in units of bits per second unless otherwise

stated. For complex AWGN channels, the real and imaginary signal components com-

prise orthogonal signal dimensions, so capacity is double that of (2.5).

Cognitive radios generally operate in channels far more complex than the AWGN

channel. As discussed in more detail in Chapter 3, these channels exhibit flat or

frequency-selective fading, and multiple antenna channels exhibit angular dispersion

and fading correlation across antennas. These propagation characteristics lead to a

more complex characterization of channel capacity. In particular, frequency-selective

fading channels give rise to a set of parallel channels across the frequency domain, as

described in more detail in Section 3.8. Let us first consider a time-invariant chan-

nel with frequency response H(f) known at both the transmitter and receiver. First

suppose that H(f) is block-fading in frequency, so that H(f) = hj is constant over

subchannel j of bandwidth W . The frequency-selective fading channel thus consists

of a set of independent AWGN channels in parallel with SNR |hj|2Pj/(N0W ) on the

jth subchannel, where Pj is the power allocated to the jth channel in this parallel set,

subject to the power constraint
∑

j Pj ≤ P. The capacity of this parallel set of chan-

nels is the sum of rates associated with each channel with power optimally allocated

over all channels [25, 18]

C =
∑

maxPj:
∑

j
Pj≤P

W log2

(

1 +
|hj|2Pj

N0W

)

. (2.6)
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The optimal power allocation is found by solving the Lagrangian, which leads to the

optimal power allocation

Pj

P =

{ 1
γ0

− 1
γj

γj ≥ γ0

0 γj < γ0
(2.7)

for some cutoff value γ0, where γj = |hj|2P/(N0W ) is the SNR associated with

the jth subchannel assuming it is allocated the entire power budget. This optimal

power allocation is referred to as water-filling over frequency, whereby water (power)

is poured into a bowl of variable depth 1/γj up to the water line 1/γ0. Hence, more

power is allocated to subchannels with higher gains above the cutoff value γ0, which is

dictated by the power constraint. The capacity with this optimal power allocation then

becomes

C =
∑

j:γj≥γ0

W log2(γj/γ0). (2.8)

This capacity is achieved by sending at different rates and powers over each subchan-

nel, similar to adaptive techniques used in OFDM. When H(f) is continuous the ca-

pacity under power constraint P is similar to the case of the block-fading channel with

the sum over subchannel capacities replaced by an integral of incremental capacity per

frequency over the frequency domain; details can be found in [25, Chapter 8.5][42].

Let us now consider multiple-input multiple-output (MIMO) channels, for which

the channel input is a random vector X = (X1, . . . , XMt
) sent from the Mt transmit

antennas, the channel output is the vector Y = (Y1, . . . , YMr
) obtained at the Mr re-

ceive antennas, and the channel is characterized by an Mt × Mr matrix H of gains

between each transmit and receive antenna. The multiple dimensions associated with

MIMO channel inputs and outputs give rise to the multiple spatial degrees of free-

dom over which independent data streams can be transmitted. Assuming the channel

is known at both the transmitter and receiver, capacity is achieved by optimizing the

transmit power and rate allocation across these spatial degrees of freedom. Specifically,

when the channel H is constant and known perfectly at the transmitter and receiver, the

capacity (maximum mutual information) in units of bits per channel use is

C = max
Q : tr(Q)=P

log2 det
(

IN + HQHH
)

(2.9)

where the optimization is over the input covariance matrix Q, which is Mt × Mt and

must be positive semi-definite by definition. Using the singular value decomposition

(SVD) of H, the MIMO channel can be converted into RH = rank(H) spatially paral-

lel, non-interfering single-input/single-output channels [84][32]. The jth spatial chan-

nel corresponding to singular value σj has SNR γj = |σj|2Pj/(N0W ), where power

Pj is optimally allocated across these spatial channels similar to the case of frequency

selective fading, which results in a water-filling power allocation over the spatial do-

main. The capacity formula is the same as in the frequency-selective fading case, given

by (2.8): the sum of capacities across the parallel spatial channels with this optimal

power allocation based on SNR per spatial dimension γj .

For time-varying channels, ergodic capacity is defined based on the channel state

distribution p(s) for both scalar and matrix channels. Specifically, the ergodic capacity
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of a time-varying channel with instantaneous channel knowledge at both the transmitter

and receiver is given by

Cerg =

∫

s∈Sc

max
xs

C(s, xs)p(s)ds, (2.10)

where Sc is the set of all possible channel states, C(s, xs) is the capacity of a channel

in state s with input x, p(s) is the probability of state s, and xs is the channel input

for state s. These channel inputs are based on optimal allocation of transmit power

over time, subject to an average power constraint. For example, consider a flat-fading

channel, where the instantaneous SNR γ varies with time according to a distribution

p(γ). A discussion of fading distributions p(γ) under different conditions can be found

in Section 3.6. If the transmit power P(γ) is adapted relative to γ, subject to an average

power constraint P , then the flat-fading channel capacity is given by

C = max
P(γ):

∫

P(γ)p(γ)dγ=P

∫ ∞

0

W log2

(

1 +
P(γ)γ

P

)

p(γ)dγ. (2.11)

The optimal power allocation P(γ) is found by solving the Lagrangian, similar to the

case of frequency selective fading. This yields optimal power allocation as a water-

filling over time:

P(γ)

P =

{

1
γ0

− 1
γ

γ ≥ γ0

0 γ < γ0
(2.12)

for some “cutoff” value γ0 which is found via the average power constraint. If γ(t) is

below this cutoff at time t then no data is transmitted at that time. With this optimal

power allocation, the capacity of the time-varying flat-fading channel becomes

C =

∫ ∞

γ0

W log2

(

γ

γ0

)

p(γ)dγ, (2.13)

where the rate corresponding to instantaneous SNR γ is W log2(γ/γ0). Since γ0 is

constant, this means that as the instantaneous SNR increases, the data rate sent over the

channel for that instantaneous SNR also increases.

There is a strong similarity between time-varying flat-fading channels, MIMO chan-

nels, and time-invariant frequency-selective fading channels in that these channels can

be represented as a set of independent parallel channels in time, space, or frequency,

respectively. This property can be exploited in cognitive radio paradigms, in particu-

lar the interweave paradigm. Specifically, if the cognitive radio can sense that a given

dimension in time, space, or frequency is not being utilized by the primary user, it

can occupy that dimension with no harm to the primary system. The capacity analy-

sis for interweave systems is based on this concept, whereby the interweave cognitive

radio channel is modeled as a channel varying over time, frequency, or space. When a

given dimension is occupied by the primary user, under perfect sensing the interweave

channel in that dimension is unavailable to the cognitive radio, i.e. it is assumed to

have an SNR of zero. The capacity analysis above for parallel channels in time, space,

or frequency can then be applied directly to determine the capacity of the interweave

cognitive radio, as described in more detail in Chapter 2.6.
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Figure 2.9: Wireless network model.

Capacity of multiuser channels and wireless networks are also built upon notions

of mutual information. However, the encoding and decoding strategies and their as-

sociated mutual information become more complicated with multiple users, and hence

the capacity regions are typically defined by a set of mutual information bounds that

implicitly define the capacity region boundary. Before launching into capacity results

for the different cognitive radio paradigms, we will first review capacity results for the

interference channel. Since, as discussed in Sec. 2.3.1, cognitive radio networks are all

special cases of the interference channel in Fig. 2.7, the capacity region and optimal

encoding and decoding strategies of the interference channel will provide fundamental

building blocks for obtaining capacity and design insights for cognitive networks.

2.3.3 Capacity Region of Wireless Networks

We consider a wireless network consisting of K source-destination pairs communicat-

ing over a common wireless channel, as shown in Fig. 2.9. We assume a discrete-time

network model with discrete channel inputs and outputs. At each time instant, a source

sk chooses a channel input Xk from a finite set Xk of possible inputs. Each destination

node dj observes a channel output Yj from output set Yj . The channel is described by

the conditional distribution p(y1, . . . , yK |x1 . . . xK), which characterizes the proba-

bility of the given set of outputs (y1, . . . , yK) at the destinations, for the given set of

channel inputs (x1, . . . , xK). A source sk wishes to communicate a data sequence or

message Wk ∈ Wk = {1, . . . , 2nRk} to destination dk , at rate Rk. To do so, the source

encoder maps the data sequence into a codeword Xn consisting of n symbols from the

input alphabet, and sends it in n time instants over the channel. All data sequences are

mutually independent. Upon receiving the sequence Y n
j of length n, decoder j maps

it to its estimate of the transmitted data sequence, denoted by Ŵj . The data sequence

sets W1,W2, . . . ,WK along with the encoder and decoder mappings of all users define

an (R1, R2, . . . , RK, n) code for this channel. The encoding function at source sk for

data sequence Wk at time i is given as:

Xki = fk,i(Wk, Y i−1
k ), k = 1, . . . , K. (2.14)

Note that the encoding function fk,i(·) allows the source to use its receiver’s previ-

ous observations of the channel (typically obtained via feedback) to encode Wk. This
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allows sources to obtain information about data sequences sent by other users and po-

tentially forward them through the network. The decoding function at destination j at

time i is given as:

Ŵj = gj(Y
n
j ), j = 1, . . . , K. (2.15)

A decoding error at destination k occurs when Ŵk 6= Wk . We consider that an error

occurs unless all destinations decode their data sequences correctly. Thus, the error

probability is given by the probability of the union of error events associated with

incorrect detection on each of the different data sequences:

Pe = p

[

K
⋃

k=1

[

Ŵk 6= Wk

]

]

. (2.16)

If the error probability can be made arbitrarily small for a code of sufficiently large n,

the rates (R1, . . . , RK) will be simultaneously achievable in the considered network.

More precisely, rates (R1, R2, . . . , RK) are achievable if, for any ε > 0, there exists,

for sufficiently large n, an (R1, R2, . . . , RK, n) code such that Pe ≤ ε. The capacity

region is the closure of the set of all achievable rates (R1, R2, . . . , RK), due to time-

sharing between strategies associated with any set of points on the rate region.

The above formulation assumes a single destination for each data sequence. This

definition can be extended to include multicasting to a set of destinations, broadcasting

from one source to a set of destinations or multiple access from multiple sources to

a single destination. The capacity region of a general wireless network is unknown.

A general outer bound to the network performance is provided by the cut-set bound

[18, 2, 26, 79], stated next.

Let S denote a subset of all network nodes and Sc be a complement of S. The pair

(S,Sc) is a cut separating source sk and destination dk if source sk ∈ S and dk ∈ Sc.

Cut-set outer bound; Any achievable (R1, . . . , RK) satisfies

∑

sk∈S,dk∈Sc

Rk ≤ I(X(S); Y (S) | X(Sc)), (2.17)

where mutual information is evaluated for some distribution p(x1, . . . , xK) for any S.

Rk is the rate across the cut from source sk to destination dk. We observe that (2.17)

bounds the sum rate going across a cut by the conditional mutual information between

all sources in S and all destinations in Sc, given all sources in Sc.

As an example of the cut-set outer bound, consider K source–destination pairs with

AWGN links of bandwidth W . The channel inputs and outputs are then vectors defined

by

Y = HX + Z (2.18)

where X is the vector of channel inputs from all the sources with average power con-

straint P, Y is the vector of all channel outputs, H ∈ RK×K is the channel gain matrix

and Z is the vector of independent, unit-variance Gaussian noises at the destinations.

The cut-set bound in (2.17) evaluates to [27]
∑

sk∈S,dk∈Sc

Rk ≤ W log2 det
(

I + H(S)K(S)H(S)T
)

(2.19)
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where I is the identity matrix, K(S) is the covariance matrix of X(S) given X(Sc),
and H is determined such that

Y(Sc) = H(S)X(S) + HT (S)X(Sc) + Z(Sc). (2.20)

As another example of the cut-set outer bound, consider the three-node relay chan-

nel shown in Fig. 2.7. Assume that links are AWGN links of bandwidth W . Let Xs

denote the symbol sent from the source, and Xr denote the symbol sent from the relay.

Source and relay powers are denoted by Ps and Pr . The received symbols at the desti-

nation and the relay, respectively, are Yd and Yr. There are two cuts in the network: in

the first cut, only the source forms the set S, whereas in the second cut the source and

the relay form the set S. The cut-set bound (2.17) evaluates to

R ≤ max
p(xs,xr)

min{I(Xs; Yr, Yd|Xr)I(Xs, Xd; Yr)} . (2.21)

In the AWGN relay channel this yields

R ≤ max
0≤ρ≤1

min

{

W log2

(

1 + Ps + Pr + 2ρ
√

PsPr

)

,
1

2

(

1 + (Ps + Pr)(1 − ρ2)
)

}

,

(2.22)

where we normalize the noise power to one. The parameter ρ determines the correlation

between inputs Xs and Xr. A larger ρ corresponds to a larger coherent combining gain.

The cut-set bound is a tight outer bound only for certain special scenarios. In

general, the cut-set bound is loose relative to the network capacity region. Alternative

outer bounds to the cut-set outer bound can be derived by using genie-based techniques

in which the network is modified by assuming that additional information is known

(a.k.a., given by a genie) to a subset of terminals. The goal of providing this information

is to obtain a modified network for which capacity or an outer bound can be obtained.

Due to the additional information, the modified network outperforms the original one.

Consequently, its capacity (or any outer bound on it) yields a capacity outer bound

for the original network. Outer bounds can also be obtained by the theory of network

equivalence [50]. This approach provides conditions under which the capacity of a

wireless network can be upper bounded by the performance of an equivalent noiseless

network of bit pipes, for which the capacity can then be determined. Another technique

to tighten the cut-set bound is by modification of the network connectivity graph [53,

54].

Obtaining the Shannon capacity region of a wireless network is generally intractable;

in fact the capacity of several simple canonical topologies such as the relay channel and

the interference channel have remained open problems for decades. As an alternative

capacity metric, a landmark result by Gupta and Kumar [38] introduced the notion of

scaling laws for noncognitive wireless network throughput as the number of nodes in

the network K grows asymptotically large. They found that the throughput in terms

of bits per second for each node in the network decreases with K at a rate between

1/
√

K logK and 1/
√

K . In other words the per-node rate of the network goes to zero,

although the total network throughput, equal to the sum of rates, grows at a rate be-

tween
√

K/ logK and
√

K. This surprising result indicates that when interference

is treated as noise (as is typical in practical designs), even with optimal routing and
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scheduling, the per-node rate in a large ad hoc wireless network goes to zero. The

reason is that in this relatively simple relaying scheme, intermediate nodes spend much

of their resources forwarding packets for other nodes, so few resources are left to send

their own data. There has been much follow-on work to this result, including the im-

pact on wireless network scaling laws of mobility, multiple antennas, and cooperation

[36, 5, 68]. In particular, [68] showed that more sophisticated cooperation schemes

allow per-node rates in large networks to remain constant with network size rather than

decrease. The tradeoff between throughput (in terms of scaling laws) and delay in

asymptotically large networks was characterized in [39, 86, 22].

2.4 Interference Channels Without Cognition

2.4.1 K-user Interference Channels

In cognitive radio networks, we would like to characterize capacity associated with

communications between primary user pairs and between secondary user pairs. Al-

though one could envision deployment of relays to improve the performance, these

networks typically do not involve multihop routing of information, i.e., there is no

forwarding of information through intermediate nodes. Without cognition, networks

with K source-destination pairs can be modeled as a K-user interference channel, as

shown in Fig. 2.10. Although the capacity region of this channel is in general unknown,

there has been a lot of progress in understanding how to cope with interference in this

model and, consequently, in developing spectrally-efficient transmission schemes for

this channel. In some scenarios, these techniques lead to capacity. A cognitive radio

network forms a two-tier K-user interference channel, due to the different capabilities

and restrictions of primary and secondary users. Schemes that efficiently cope with

interference can improve performance of both primary and secondary users in these

networks. For that reason, some of the techniques developed for interference chan-

nels have been adopted for overlay cognitive networks as well. We next review these

techniques, their performance and their known capacity results. In addition, cognition

enables additional encoding/decoding techniques to improve the performance. Hence,

performance of interference channels can serve as a lower bound to the capacity of

cognitive networks.

In the K-user interference channel model, each of the K sources wishes to commu-

nicate with its corresponding destination over a shared wireless channel, as illustrated

in Fig. 2.10. Source sk encodes and sends a data sequence Wk at rate Rk to destination

dk. The K-user interference channel is a special case of a K-user wireless network,

and hence we use the same definitions as in Chapter 2.3.1 for encoding, decoding, er-

ror probability, and capacity. However, the encoding function of the kth user in the

interference channel is given by

Xn
k = fk(Wk). (2.23)

Thus, in this case a channel input at each source depends only on its own data sequence,

which, in turn, is independent of data sequences from other sources. Hence, there is
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Figure 2.10: K-user interference channel. Sender k wishes to communicate to desti-

nation k.

no cooperation (e.g. relaying) between sources in transmitting information about each

other’s data sequences. The cut-set bound (2.17) can then be tightened to become

∑

sk∈S,dk∈Sc

Rk ≤ I(X(S); Y (S)|X(Sc), V ) (2.24)

for any p(v)
∏

k p(xk|v) where V , referred to as a time-sharing random variable, has

the property that the inputs {xk} are independent when conditioned on v,

Lower bounds to the capacity region are obtained by deploying specific communi-

cation techniques in the given network. We next present encoding schemes that achieve

capacity for special cases of the two-user interference channel.

2.4.2 Two-user Interference Channel Capacity

Figure 2.11: Two-user interference channel.
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A two-user discrete-time memoryless interference channel is shown in Fig. 2.11.

The interference channel contains only two communicating pairs (K = 2). Therefore,

there are two channel inputs X1 and X2, and two channel outputs, Y1 and Y2. The

discrete-time channel is characterized by the conditional distribution p(y1, y2|x1, x2).
Each source sk , k = 1, 2, wishes to send a data sequence Wk ∈ W = {1, . . . , 2nRk} to

destination dk. Definitions for the channel code, the error probability and the capacity

region follow the definitions for the K-user interference channel. In particular, an

(R1, R2, n) code consists of two data sequence sets W1,W2, two encoding functions

Xn
1 = f1(W1) (2.25)

Xn
2 = f2(W2) (2.26)

and two decoding functions

Ŵk = gk(Y n
k ), k = 1, 2. (2.27)

The error probability of the code is

Pe,k = P
[[

Ŵ1 6= W1

]

⋃

[

Ŵ2 6= W2

]]

. (2.28)

A rate pair (R1, R2) is achievable if, for any ε > 0, there exists for sufficiently large n
an (R1, R2, n) code such that Pe ≤ ε. The capacity region of the interference channel

is the closure of the set of all achievable rate pairs (R1, R2).
We will also consider the AWGN interference channel, defined by the input–output

relation:

Y1 = X1 + aX2 + Z1

Y2 = bX1 + X2 + Z2 (2.29)

where a and b are real numbers representing cross-channel gains, E[X2
k ] ≤ Pk are

power constraints, and Zk ∼ N(0, 1) for k = 1, 2 where N(0, σ2) denotes the Gaussian

distribution with variance σ2.
The capacity of the interference channel is known in strong interference [15]. In

this regime, the interfering signal at each receiver is strong enough so that the other

user’s data sequence carried by that signal can be decoded and hence removed. It is then

optimal for each receiver to decode both data sequences. In the AWGN interference

channel (2.29), the strong interference conditions are given by [74, 40]

|a| ≥ 1

|b| ≥ 1 (2.30)

implying that in this regime the cross-channel gains are larger than the direct link gains.

In general discrete memoryless channel, the strong interference conditions can be

expressed in terms of the conditional mutual information inequalities. These conditions

require that

I(X1 ; Y1|X2) ≤ I(X1; Y2|X2) (2.31)

I(X2 ; Y2|X1) ≤ I(X2; Y1|X1) (2.32)
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are satisfied for every distribution p(x1)p(x2). From (2.31) we observe that Y2 con-

tains more information about input X1 than Y1, given X2. Hence, X1 conveys more

information to receiver 2 than to receiver 1. A similar interpretation can be made for

(2.32).

The capacity region in strong interference is:

C =
⋃

{(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ I(X1 ; Y1 | X2, V )

R2 ≤ I(X2 ; Y2 | X1, V )

R1 + R2 ≤ min{I(X1 , X2; Y1 | V ), I(X1, X2; Y2 | V )}} (2.33)

where the union is over distributions of the form p(v)p(x1 |v)p(x2|v) and V is once

again a time-sharing random variable for which the inputs are independent when con-

ditioned on it.

The capacity region (2.33) can be expressed via two multiple-access channel (MAC)

rate regions [18] as:

C =
⋃

{

RMAC1

⋂

RMAC2

}

. (2.34)

Recall that the multiple access channel consists of multiple transmitters simultaneously

sending to one receiver. In Fig. 2.11, the channel MAC1 consists of two encoders and

decoder 1 and, similarly, the channel MAC2 consists of two encoders and decoder 2.

The capacity region of this network is in general a lower bound on the capacity of the

interference channel because both receivers need to decode data sequences sent from

both sources. In the interference channel, in contrast, each receiver decodes data se-

quences sent from only one source. In strong interference, however, each receiver can

decode unwanted data sequences without reducing the capacity region of the interfer-

ence channel, and the capacity region of the interference channel then coincides with

(2.34).

Note that, in strong interference, the capacity is achieved by joint decoding of both

data sequences at the decoders, and then subtracting the effect of their interference.

In the special case of very strong interference, decoders do not need to perform joint

decoding of the data sequences. Instead, interference cancellation can be performed

successively, allowing for interference-free decoding of the desired data sequence [10].

We next consider the opposite interference regime in which the interference is

weak. In this regime, the interfering data sequence cannot be decoded, but it is not

strong enough to significantly degrade the rate of the impacted user. When the inter-

ference is weak, intuitively we expect that the optimal decoding strategy is to treat it

as noise. However, it has been difficult to prove that this intuition is correct, and hence

the capacity remains unknown. Conditions under which treating interference as noise

leads to sum-rate capacity in Gaussian channels were determined in [75, 1, 63]. In this

regime (termed noisy interference in [75]), the channel gains as well as the transmit

powers are small, specifically satisfying:

a(b2P1 + 1) + b(a2P2 + 1) ≤ 1. (2.35)
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The sum-rate capacity is then given by [75, Theorem 2]

C = W log2

(

1 +
P1

1 + a2P2

)

+ W log2

(

1 +
P2

1 + b2P1

)

. (2.36)

The proof of this result required a genie-based outer bound for the Gaussian interfer-

ence channel.

The above described regimes are two extremes with respect to the amount of in-

terference that is being experienced and removed by receivers. Not surprisingly, in

strong interference the highest-rate scheme is to decode the unwanted data sequences

and subtract their corresponding signals, thus removing their interference from the re-

ceived signal. In the other extreme of weak interference, the highest-rate strategy is to

ignore the interference, that is, treat it as noise.

In regimes that are in between the two extremes, the interference is not strong

enough so that decoding of the unwanted data sequence is optimal, nor it is weak

enough to be treated as noise without loss of optimality. In this scenario, decoding

part of an interfering data sequence to partially remove interference from the received

signal is beneficial. This idea is realized in the scheme developed by Carleial and sub-

sequently improved by Han and Kobayashi, also referred to as rate-splitting [11, 40].

The rate-splitting concept is illustrated in Fig. 2.12. To perform rate-splitting, each

encoder divides its data sequence into two data sequences, each of lower rate than the

original sequence, and encodes them via superposition coding. In this superposition

coding, the source encodes each of the two data sequences using a separate codebook,

divides its transmit power between the two (in the case of the AWGN interference chan-

nel), and adds them together to obtain the channel input. Separate encoding enables a

receiver to decode one data sequence intended for the other user jointly with its own

data sequence, while treating the signal carrying the other part of the undesired data

sequence as noise. The communication rate for this user increases due to reduced in-

terference, but the rate for the other communicating pair decreases due to an additional

decoding constraint. Hence, there is a tradeoff between the amount of information sent

only to the desired receiver and the amount of interference decoded at the other one.

In AWGN interference channels, this encoding tradeoff translates into optimizing

the power allocated to each of the two parts of the encoder’s data sequence. By choos-

ing Gaussian codebooks, , i.e. random codebooks generated according to a Gaus-

sian distribution, and a specific power split, the Han-Kobayashi scheme achieves rates

within one bit per dimension from the two-user interference channel capacity [23].

The power split is chosen so that the created interference at each receiver has the same

power as the Gaussian noise at that receiver. Thus, the created interference is suf-

ficiently weak so as not to significantly impair performance. At the same time, the

undesired data sequence that is decoded at each destination allows for significant inter-

ference reduction. In Section 2.7 we will give more details on how rate splitting can be

used in overlay cognitive radio networks.

In a K-user interference channel, each receiver is exposed to interference arriving

from multiple sources. A generalization of the Han-Kobayashi scheme would allow

for partial decoding of each interfering signal. A receiver could then jointly decode its

own data sequence along with some portion of the interfering data sequences dictated
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Figure 2.12: Rate splitting. Each encoder splits its message into two messages of lower

rate encoded via superposition coding. A decoder jointly decodes one message of the

other user together with its desired message.

by the rate-splitting code design. While such a generalization is possible mathemati-

cally, it would result in very complex encoding and decoding schemes at each node.

Specifically, this approach requires a receiver to separately decode parts of interfering

data sequences sent from many interferers in order to reduce interference. Instead, the

interference at each receiver can be treated collectively in a more efficient manner via

interference alignment [7, 58] or via structured codes [65]. These approaches exploit

the fact that a receiver is not interested in information associated with interfering data

sequences and hence does not need to decode them (or parts of them). Interference

alignment achieves the optimal capacity scaling law in the interference channel [69].

Lattice codes outperform the Han-Kobayashi scheme in the K-user interference chan-

nel [83].

The AWGN channel considered so far in this section assumes constant channel

coefficients and hence does not capture flat or frequency-selective fading. Incorpo-

rating these channel characteristics leads in general to channel models that are more

difficult to analyze. However, these characteristics open up possibilities for encoding

and transmission strategies that exploit fading. In particular, frequency-selective and

time-varying channels can be modeled as parallel interference channels [8]. Results

in [8] demonstrate that parallel interference channels are optimized by joint encoding

across subchannels. This is in contrast to point-to-point, multiple access and broadcast

parallel channels in which separate encoding over the subchannels is optimal. Further

exploration of K-user interference channels has revealed that time-variations can be

exploited to combat interference in the form of interference alignment. Interference

alignment relies on channel time-variations to achieve half of the interference-free ca-

pacity for each user in the system [7, 66].

2.4.3 Interference Channel Techniques for Cognitive Radios

In interference networks with no cognition, a plausible transmission scheme to avoid

interference is to split the bandwidth and assign orthogonal channels to each com-
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municating pair, e.g., via a MAC protocol that divides channels orthogonally in time,

frequency or space. In cognitive radio networks, this corresponds to the interweave ap-

proach to avoid interference between cognitive and primary users. However, in general,

dividing the bandwidth orthogonally reduces spectral efficiency in comparison with as-

signing the full bandwidth to all users and then coping with the introduced interference.

One exception is in the low-SNR regime where the network is power-limited rather than

interference-limited. In this regime, bandwidth is plentiful compared to power, and thus

assigning orthogonal channels to users incurs no performance loss. In the interference-

limited regime this is no longer true. Furthermore, as the number of network users

increases, the rate per user of an orthogonal MAC scheme goes to zero. This reason-

ing emphasizes why the overlay approach may be a more spectrally-efficient technique

for cognitive radios than the interweave approach. We analyze capacity regions of the

interweave and the overlay cognitive radio in Sections 2.6 and 2.7, respectively.

Rate-splitting and superposition coding can also be applied to treat interference in

overlay cognitive radio networks. An overlay cognitive radio shares its bandwidth with

one or more primary users, thereby creating interference at the primary receivers. At

the same time, the secondary receivers experience interference from the primary user

transmissions. Efficiently coping with interference can thus improve the performance

of both secondary and primary users in the system. We will see that in overlay cognitive

radio systems there exists a regime of strong interference in which decoding of the

unwanted data sequences is optimal. Similarly, there is a weak interference regime in

which interference can be treated as noise without loss of optimality.

Furthermore, cognitive capabilities enable radios to deploy transmission strategies

that cannot be deployed in interference channels without cognition. By listening to the

channel, a secondary user can obtain information about primary user data sequences,

assuming the security and privacy concerns of the primary system can be addressed.

Given this information, the secondary user can cooperate with the primary user. By

relaying the information (or a part of it) to the primary receiver, the secondary user can

improve the quality of reception and thus the rate for the primary user. Alternatively,

the secondary user can allocate a part of its power to relay the primary data sequence

and the rest of its power to transmit its own information. The power split should be

chosen such that the resulting SINR ratio at the primary receiver yields the same rate

performance as if the secondary user was not present.

In summary, when compared to wireless networks with no cognition, a cognitive

radio can cope with interference using techniques developed for interference channels.

In addition, cognition enables the secondary encoder to protect its own information

from the interference caused by the primary system by precoding against interference.

These techniques will be described in more detail in Section 2.7.

2.5 Underlay Cognitive Radio Networks

The underlay approach to cognitive radio allows for spectrum sharing between pri-

mary and secondary users, under the constraint that the interference caused by sec-

ondary users does not noticeably degrade the performance of the primary users. When

the performance of a primary user is measured by its SINR in each signal dimension,
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the total interference that secondary users cause to any primary user is typically con-

strained to be within a given spectral mask, i.e. a limit on the power spectral density

of the interference over frequency and, for MIMO channels, over space. The interfer-

ence constraint, in turn, imposes a constraint on the total power spectral density per

dimension received from all secondary transmitters at any primary receiver. In order to

satisfy the interference constraint, several different conditions can be imposed on the

secondary transmission. Interference caused by secondary transmissions can be lim-

ited by imposing an average received power per dimension constraint or a peak received

power per dimension constraint at the primary user. When primary and secondary users

experience time-varying channels, the primary users’ performance requirements may

be based on meeting a given interference constraint at each time instant or an average

interference power constraint over time. An alternative underlay paradigm does not im-

pose constraints on interference but rather on the minimum value of the primary user’s

capacity. However, this is not a common paradigm since it is simpler for a secondary

user to determine the interference it causes to a primary receiver than to determine the

capacity degradation it causes. Thus, we will focus on capacity of underlay systems

under interference constraints imposed on the secondary users.

When multiple secondary and primary users coexist, their interference constraint

needs to be satisfied at the primary user that is the most impaired by the interference

from secondary users. As explained earlier, satisfying the interference condition re-

quires that a secondary transmitter knows the channel to the primary receiver. Other-

wise, in order to guarantee that the interference constraint is satisfied under unknown

channel conditions, the secondary user’s transmit power needs to be severely restricted.

In the presence of multiple secondary users, determining the interference at the primary

receiver becomes more demanding, as the interference depends on transmit powers and

channel conditions from all secondary transmitters, as described in more detail later in

this section.

2.5.1 Underlay Capacity Region

The capacity region of the underlay cognitive radio network can be defined following

the capacity definition for wireless ad hoc networks, while taking into account the

interference constraints at the primary users as well as the channel characteristics. To

define the received power constraint, we consider first a narrowband system with one

secondary and one primary user, as shown in Fig. 2.13. We extend this to networks with

multiple primary and secondary users below. In this two-user network, an interference

constraint translates to a received power constraint on the secondary user’s signal at

the primary user’s receiver. Let Xi denote the channel input at time i by the secondary

user and Yi denote the corresponding channel output at the primary receiver. The

channel between the secondary transmitter and the primary receiver is assumed to be

memoryless and hence can be described by a conditional probability distributionp(y|x)
at each time i, as illustrated in Fig. 2.13 for the link between the secondary transmitter

and primary receiver. With each input-output pair (x, y), we associate a cost function

c(x, y). The average cost function over n transmissions is then defined as the average
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of the per-symbol cost:

E[cn(Xn , Y n)] =
1

n

n
∑

i=1

E[c(Xi, Yi)], (2.37)

where the expectation is with respect to Xi and Yi. The interference constraint is based

on imposing a maximum value for this average cost:

E[cn(Xn , Y n)] ≤ η (2.38)

The average received power constraint is a special case of (2.38), where a constraint

is imposed only on the received signal and the cost function is chosen to be c(y) = |y|2:

1

n

n
∑

i=1

E

[

|Yi|2 | Xi

]

≤ η. (2.39)

Note that the constraint (2.39) is based on requiring that the average power of the re-

ceived interference plus noise falls below η; to obtain the corresponding interference

constraint, the noise power must be subtracted from η. The received peak power con-

straint,indexconstraint!received peak power based on a per symbol constraint, is given

by

E

[

|Yi|2 | Xi

]

≤ ηpeak i = 1, . . . , n. (2.40)

When the channel is static, the channel and corresponding input distribution on Xi is

the same for all i, so the average and peak power constraints are the same, given by

(2.40) with η = ηpeak. When the channel is wideband such that the received power

constraint is defined by a spectral mask over frequency, the average and peak power

constraint definitions can be extended to constraints on average or peak power spectral

density over frequency. The capacity region can then be defined equivalently to the

capacity region of the wireless network while taking into account the average or peak

received power constraint, as we now describe in more detail. In this development we

will assume a narrowband channel with average or peak power constraints given by

(2.39) or (2.40), but the results can be easily extended to wideband channels with a

spectral mask constraint by considering the received power spectral density over all

frequencies.

Let us now consider a network with K source-destination pairs communicating

over a common memoryless channel. The conditional distribution of the channel inputs

and outputs is given by p(y1, . . . , yK |x1, . . . , xK). We assume further that the network

contains Kp primary and Ks secondary pairs such that Kp + Ks = K. Each source

sk wishes to communicate to a corresponding destination dk at rate Rk, over n uses

of the channel. The code for the network, (R1, . . . , RK, n), is defined as before by

(2.14)-(2.15). The error probability of the code is given by (2.16). We denote the set of

primary receivers as SPR, and the set of secondary transmitters as SST.

Let Yi,j denote the interference at the jth primary receiver caused by all secondary

transmitted symbols Xi,m at time i, for m ∈ SST. Under an average power constraint,

we thus require that

1

n

n
∑

i=1

E

[

|Yi,j|2 | {Xi,m, m ∈ SST}
]

≤ η, ∀j ∈ SPR. (2.41)
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Figure 2.13: Underlay system with single primary and secondary pair.

Condition (2.41) thus extends condition (2.39) to a K-user setting by requiring that the

average received interference power from all interfering secondary users is smaller than

threshold η at all primary receivers. Alternatively, a received peak power constraint at

each time i can be imposed as

E

[

|Yi,j|2 | {Xi,m, m ∈ SST}
]

≤ ηpeak, i = 1, . . . , n, ∀j ∈ SPR. (2.42)

Rates (R1, . . . , RK) are achievable if, for any ε there exists an (R1, . . . , RK, n) code

such that Pe < ε and the constraint (2.41) is satisfied for the set SPR. The capacity

under the cost constraint is the closure of the set of the achievable rates since time-

sharing between different strategies can be used.

The capacity region will characterize the set of achievable rates for both primary

and secondary users. In underlay cognitive radio networks, the premise is that the

primary users’ performance is minimally affected by the presence of secondary users.

This impact on capacity can be approximated by modeling the secondary users as an

additional source of Gaussian noise with power given by the imposed received power

constraint. The capacity for secondary users can then be considered separately, under

the average or peak received power constraints, and treating the interference from the

primary system to the secondary system as noise. We now determine the capacity of

the secondary user system under these assumptions for several different channel and

network assumptions.

2.5.2 Capacity Results for Specific Scenarios

Single Secondary User: Static Scalar Channel

Suppose the secondary user transmits over a point-to-point static channel. Its input-

output relationship to the primary user’s receiver is then given by

Y = hX + Z (2.43)
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where h is the complex channel gain assumed known by the secondary user and Z ∼
N [0, σ2] is additive white Gaussian noise with variance σ2. In our model this noise

consists of both receiver noise and the noise associated with the primary system. Since

the channel is static, the expected power of each transmitted symbol is the same. Hence,

the average received power constraint (2.39) for this channel is given by

E|Y |2 = |h|2E|X|2 + σ2 ≤ η. (2.44)

This can be translated to a transmit power constraint as

E|X|2 ≤ η − σ2

|h|2 . (2.45)

The capacity is then given by the capacity of the AWGN channel (2.5) with transmit

power constraint (2.45).

Single Secondary User: Static MIMO Channel

The static Gaussian MIMO channel is given by

Y = HX + Z (2.46)

where X ∈ CM , Y ∈ CN , H ∈ CN×M is the channel gain matrix and Z ∈ CN is the

vector of AWGN noise components at each receive antenna, where each component

has variance σ2. The capacity of this channel assuming the channel is known at the

transmitter and receiver and under a transmit power constraint was given by (2.8),

and equals the sum of capacities over each spatial channel with optimal spatial power

allocation via water-filling. Since this is also a static channel, the underlay average

received power constraint (2.39) corresponds to a received power constraint on the

vector Y = (Y1, . . . , YN) received at the primary user, which is given by

E
[

||Y||2 | X, HSP

]

= ν + Nσ2 ≤ η, (2.47)

where Y = HSP X + Z for HSP the matrix of channel gains from the secondary

transmitter to the primary receiver. We have separated the received power constraint

into two components, ν and Nσ2, where the former is based on interference and the

latter based on noise. Thus, ν = ||HSPX||2. The received power constraint (2.47)

changes the capacity significantly as it precludes the optimal spatial water filling over

the matrix H of channel gains for the secondary user’s channel based on a transmit

power constraint. In particular, it was shown in [29, Sec. III] that the capacity of the

secondary user MIMO channel H under constraint (2.47) is

C = rank(H) log2

(

1 +
ν

rank(H)σ2

)

, (2.48)

This capacity formula depends only on the rank of the secondary user’s channel H

matrix, rather than on its singular values as in (2.8), although the code that achieves the

capacity in (2.48) depends on the full matrix H and not just its rank.

Single Secondary User: Flat-Fading Channel
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We next assume that the channel (2.43) is a flat-fading channel with random channel

gain h that varies over time. In this case, power should be optimally allocated over

time, and both the ergodic and outage capacity are performance metrics of interest. It

is shown in [31] that the ergodic capacity under the average received power constraint

imposed by the primary system yields

C =

∫ ∫

W log2

( |hs|2
|h|2WN0λ

)

p(hs)p(h)dhsdh, (2.49)

where hs is the channel gain from the secondary transmitter to the secondary receiver.

The optimal power allocation in this case is given by

P ∗ =

(

1

λ|h|2 − N0W

|hs|2
)+

, (2.50)

where λ is determined to satisfy the received power constraint as

∫ ∫
(

1

λ
− N0W

|h|2
|hs|2

)+

p(hs)p(h)dhsdh = η. (2.51)

This optimal power allocation is similar to the time water-filling given by (2.12) un-

der a transmit power constraint. However, imposing a power constraint at the primary

receiver results in a time-varying water level inversely proportional to |h|2, the magni-

tude squared of the instantaneous time-varying channel gain. Moreover, the cutoff fade

depth below which no data is transmitted by the secondary user depends both on his

channel gain hs as well as the gain h between the secondary transmitter and primary

receiver. In particular, the secondary user increases his transmit power when either hs

increases (as his channel is better, i.e. conventional water-filling) or when h decreases,

since less interference is caused to the primary. Note that, from (2.49), the capacity

depends on channel statistics from the secondary transmitter to both primary and sec-

ondary receivers. Interestingly, it is shown in [31] that the capacity (2.49) when both

hs and h experience Rayleigh fading is larger than the capacity of the corresponding

AWGN channel with the same average SNR. However, with this Rayleigh fading on

both channels, the average SNR is low, and it is known that at low SNRs the ergodic

capacity of a Rayleigh fading channel exceeds that of an AWGN channel with the same

SNR [32, Figure 4.7]. Note, however, that this is in some sense an artifact of the in-

finitely long tail probability of the Rayleigh distribution, which results in a set of very

high SNR channels with very low probability. These rare high–SNR channels can be

exploited by allocating significant power and rate during these low probability events,

which results in a slightly higher capacity than a static channel maintaining a fixed

rate commensurate with the same average SNR. Note, also, that the propagation char-

acteristics which induce fading also cause some reduction in average received power.

Hence, comparing fading and nonfading channels with the same average SNR does not

fully capture the impact of fading on performance.

Under the peak constraint (2.40), the optimum power strategy for the secondary

user is simply to transmit at the highest power allowed by (2.40). The capacity is then

given by

C =

∫ ∫

W log

( |hs|2
|h|WN0λ

)

p(hs)p(h)dhsdh. (2.52)
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Alternatively, the constraint imposed on the secondary user might be to meet an

outage capacity constraint on the primary user. This condition is equivalent to a peak

transmit power constraint that has to be satisfied at the secondary transmitter for some

percentage of time Pout. The peak transmit power constraint will be chosen based on

channel characteristics to guarantee that outage occurs at the primary with probability

not exceeding Pout. Finally, imposing the ergodic capacity constraint at the primary

receiver would require that the power allocation for the secondary user is determined

for which the SINR at the primary receiver yields the desired ergodic rate. Further

results on underlay cognitive radio in the presence of fading can be found in [64, 31].

In the presence of multiple secondary and primary users, a received signal at any

primary user contains interference from all the secondary transmissions. Secondary

transmitters then collectively have to choose their transmission such that the desired

interference constraints are satisfied at all primary users. Even in the presence of one

primary user, secondary users form a wireless network and hence finding their capacity

region is, in general, a difficult problem. In case there is no cooperation between sec-

ondary users, their transmitter/receiver pairs form an interference channel, and hence

the capacity is unknown. The performance will further be impacted by cooperation

among terminals which allows for coherent combining in relaying of each other’s in-

formation. Without cooperation, the received power from all secondary users simply

sums incoherently. The capacity results with or without cooperation can be evaluated

for some specific topologies [29]. We next present the capacity for one of these topolo-

gies, the Gaussian multiple access channel.

Multiple Secondary Users: Static Scalar Channel

The static scalar AWGN multiple access channel consists of K secondary users

communicating at rate Rk over an AWGN channel to a common secondary receiver.

The rates that can be achieved are constrained by the constraint on the interference

these users cause to primary receivers. Consider a single primary receiver where the

channel between the kth secondary transmitter and the primary receiver has gain hk.

The received interference plus noise signal at the primary receiver is thus given by

Y =

K
∑

k=1

hkXk + Z, (2.53)

where Xk is the kth user’s transmitted symbol and Z is the primary user’s receiver

noise, modeled as AWGN with variance σ2. Since the channel is static, the average

interference power constraint (2.41) corresponds to

E

[

|Y |2 |{Xk, hk}
]

= ν + σ2 ≤ η, (2.54)

where ν represents the power of the received interference and σ2 the noise power. It is

shown in [29, Sec. IV] that under this constraint the capacity region of the secondary

user multiple access channel is given by the set of rate vectors that satisfy

K
∑

k=1

Rk ≤ log
(

1 +
ν

σ2

)

. (2.55)
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Broadcast Channel

The broadcast channel consists of one secondary user communicating simultane-

ously with K receivers. Since there is only one secondary transmitter creating inter-

ference to a primary user, this case is equivalent to the case of the broadcast AWGN

channel (between the secondary transmitter and the primary receiver) with average

received power constraint. Thus, the total rate at which the secondary encoder can

transmit to all K receivers is given by the capacity of the corresponding point-to-point

AWGN channel with a transmit power constraint.

In fading channels, the constraint on average or peak received power, ergodic or

outage capacity can be considered as before. And while the capacity of networks of the

multiple secondary users capacity is in general unknown, the performance for specific

topologies can be evaluated under each of these constraints. For example, for a net-

work with multiple primary users and a single secondary user, the received peak power

constraint translates to multiple transmit peak power constraints at the secondary trans-

mitter. The optimal power allocation is then to choose the lowest peak power allowed

by these constraints.

2.6 Interweave Cognitive Radio Networks

The fundamental performance limits of interweave cognitive radios depend on assump-

tions about the overall system model as well as assumptions about the ability of the

cognitive radio system to sense the interference it causes to primary users. In some

cases these assumptions allow known capacity results or bounds to be applied. When

detection is imperfect, the impact of missed detection and false alarms of primary user

activity reduces capacity of both the secondary and primary users, and this loss of ca-

pacity must be formally characterized. In addition to capacity regions, scaling laws for

interweave cognitive networks will be presented for different models that indicate how

capacity scales as the number of secondary users grows.

This section focuses on the rate limits based on information-theoretic capacity of

interweave channels. Specifically, we discuss Shannon capacity, outage and ergodic

capacity, as well as scaling laws. In addition to these information-theoretic limits, per-

formance of interweave cognitive systems can also be limited by detection and hard-

ware constraints. In particular, interweave systems with poor sensing capability will

have high probabilities of missed detection and false alarm, which will significantly

degrade the performance of both the primary and secondary users. Similarly, the fre-

quency agility of the secondary transmitter and receiver front ends drive performance

limits, since systems without sufficient agility cannot exploit spectrum holes whose

locations are changing rapidly. Thus, in addition to capacity, the performance limits

of interweave systems are affected by limits of the system and hardware sensing capa-

bility as well as the front end capabilities of the radios, as discussed earlier in Section

1.7.
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2.6.1 Shannon Capacity

The Shannon capacity region of an interweave network dictates the maximum rates

achievable for all secondary source-destination pairs, subject to the modeling assump-

tions and constraints imposed by the primary users. The modeling assumptions include

the number of both primary and secondary users, the number of frequency bands avail-

able in the system, the statistics of the primary user traffic, and the topology of the

network. When there are multiple primary or multiple secondary users, then a MAC

protocol for how each type of user shares the available bandwidth with users of the

same type must also be optimized. Alternatively, we can define a MAC protocol a

priori and derive capacity based on the constraints associated with this MAC. In the in-

terweave paradigm, the sharing of available bandwidth between primary and secondary

users is subject to the constraint that the secondary user does not occupy any spectrum

that it detects as currently occupied by primary users. It can still cause interference to

primary users due to missed detection, when a spectrum hole is detected despite the

presence of a primary user. The interweave system typically has a constraint on this

missed detection probability imposed on it by the primary system.

We begin the discussion of capacity for interweave networks with the most basic

model: one primary transmit-receive pair and one secondary transmit-receive pair. This

system can be modeled by the 4-node interference channel shown in Fig. 2.7, where

source-destination pair 1 corresponds to the secondary user pair and source-destination

pair 2 corresponds to the primary user pair. Suppose there is only one frequency band

available to all users. We assume perfect detection of the primary user activity by the

secondary user, and that the two users share the interference channel via a time-sharing

medium access strategy whereby only one of the sources transmits at any given time

(this will be the primary user if it has data to send, otherwise the secondary user).

The primary user transmits at the Shannon capacity C1 of its channel (assuming the

secondary user is silent) whenever it has data to send. Thus, the fraction of time α
that the primary user occupies the channel will equal its average throughput divided

by its channel capacity, i.e. α = T1/C1, where T1 is the primary user’s throughput

averaged over its traffic arrival statistics. Then the rate region (R1, R2) associated

with the time-sharing strategy between the primary and secondary users is the trian-

gle of Fig. 2.14 defined by (αC1, (1 − α)C2), with x and y intercepts C1 and C2,

respectively, where C2 defines the Shannon capacity of the secondary user’s channel

assuming the primary user is silent. These ideas are easily extended to multiple pri-

mary and secondary users if there is perfect coordination among the primary users and

among the secondary users, and perfect detection of primary user channel occupancy

by the secondary users, as illustrated in Fig. 2.15. This figure shows the two primary

users coordinating via time-sharing and the two secondary users coordinating via time-

sharing to utilize the timeslots where primary users are absent. More generally, for

a network with Kp primary users and Ks secondary users, Kp + Ks = K, assume

a time-sharing strategy where the fraction of time allocated to primary user i on its

channel of interference-free capacity Ci is αp
i , with

∑Kp

i=1 αp
i = α. Assume the jth

secondary user with interference-free capacity Cj is allocated time fraction αs
j of the

remaining time fraction 1 − α, such that
∑Ks

j=1 αs
j = 1 − α. Then the capacity region
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for the K users, i.e. for the Kp primary users and the Ks secondary users, is

(R1 = αp
1C

p
1 , R2 = α2

2C
p
2 , . . . , RKp

= αp
Kp

Cp
Kp

, RKp+1 = αs
1C

s
1 , . . . , RK = αs

Ks
Cs

Ks
).

(2.56)

Figure 2.14: Two-user capacity region for an interweave channel with perfect spectrum

hole detection.

Figure 2.15: Capacity under time-sharing: primary users PU1 and PU2 coordinate

their channel time-sharing (alternate use in this case). Secondary users SU1 and SU2

perfectly detect the spectrum holes and coordinate sharing these holes (alternate use in

this case).

These ideas also extend to the case when there is more than one frequency band

available. In this case the primary users coordinate to allocate the timeslots and fre-

quency bands available via the primary user MAC protocol. The primary system uses

spectral pooling, discussed in Section 1.8.1, to make unused time and frequency slots

available to the secondary users. These resources are then shared either equally or un-

equally amongst secondary users via the secondary user MAC protocol. As discussed

above, the capacity region is similar to that of a multiple user interference channel with

the constraint that available resources (i.e. time and frequency slots) are first allocated

to the primary users to support their traffic, then the remaining resources are allocated

orthogonally among the secondary users. More sophisticated encoding and decoding

strategies for medium access can be used such that the secondary and primary users
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simultaneously transmit over the same channel, with rate splitting, superposition en-

coding, error-correction coding, and joint detection techniques used to ensure reliable

data detection from all users. The capacity in this case is treated based on the more

general capacity analysis of the unconstrained interference channel discussed previ-

ously in Chapter 2.4. These ideas can also be extended to the case where the secondary

transmitters are part of a broadcast or multiple access channel within the cognitive

network. Then, as before, available resources are first allocated to the primary users

to support their traffic, e.g. over a time fraction α, then the remaining resources are

allocated among the secondary users. If a secondary user is transmitting to multiple

receivers over a time fraction 1 − α, then its capacity over that time fraction will be

the corresponding broadcast capacity region instead of a single rate. Similarly, if there

are multiple secondary users transmitting to one receiver over a time fraction 1 − α,

then capacity over that time fraction will be the corresponding multiple access channel

capacity region.

The capacity results discussed above all assume perfect detection of spectrum holes

by the secondary users. There are two types of imperfect detection: missed detection

and false alarm, which are defined formally in Section 4.3. A false alarm occurs when

a primary user is detected but in fact none is present, i.e. a spectrum hole is undetected

by the secondary user or users. For a single secondary user, assuming a stationary and

ergodic system, a false alarm has no effect on the primary users (since no interference

is generated). However, it reduces the secondary user’s data rate by a fraction (1 −
PFA) for PFA the probability of false alarm since, under perfect detection, the missed

spectrum holes would have been used for the secondary user’s transmission. When

there are multiple secondary users, the reduction in each of their data rates due to

false alarm depends on how the spectrum holes are allocated. If the spectrum holes

have the same length and are equally allocated among Ks secondary users, then each

of the secondary user’s data rates due to false alarm would be reduced by a fraction

(1 − PFA)/Kc.

In the case of missed detection, the secondary users fail to detect primary user ac-

tivity when in fact these users are active, i.e. a spectrum hole is detected incorrectly.

During missed detection, the channel becomes the interference channel of Fig. 2.7,

since both primary and secondary users are transmitting simultaneously. However,

in the interweave scenario, the encoding and decoding for both the primary and the

secondary users do not take this interference into account since it occurs due to an un-

expected detection error. Hence, interference from the secondary user to the primary

user will degrade its capacity. The capacity reduction is typically derived by treating

the interference as noise and computing capacity based on the SINR associated with

the interference generated by the secondary users at the primary users’ receivers. Sim-

ilarly, a secondary user transmitting during a spectrum hole obtained through missed

detection experiences interference from the primary users also occupying that hole, and

its capacity degradation can be determined in a similar manner by treating the interfer-

ence from all primary users operating during that spectrum hole as noise. Alternatively,

data transmitted when secondary and primary transmissions overlap can be declared as

erasures at the secondary receiver, assuming the receiver detects the interference and

hence doesn’t attempt to decode the data. Erasures correspond to data that cannot be

decoded except through channel codes that are designed to correct for erasures. An
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overview of erasure-codes for cognitive radio systems can be found in [55, 81]. Pri-

mary users can also treat data received while experiencing interference from secondary

users as an erasure, but since the secondary user is typically at a much lower power

than the primary user, this is rarely done in practice; instead the interference caused by

secondary user transmissions is typically treated as noise. Since detection of spectrum

holes is a dynamic and imperfect process, the impact of false alarm or missed detec-

tion on the capacity of both primary and secondary users is characterized by ergodic or

outage capacity, as discussed in the next subsection.

A model for the impact of false alarm and missed detection on the capacity of an

interweave channel using cooperative detection between the secondary transmitter and

receiver is developed in [45]. The distributed nature of this spectrum sensing is cap-

tured mathematically via a two-switch model, one switch at the secondary transmitter

and one at the secondary receiver. When the secondary transmitter detects a spectrum

hole then it moves its switch to the ON position, and similarly at the receiver. When

both switches are ON, a hole is deemed to be present for utilization by the secondary

user, and this information is disseminated to the secondary transmitter and receiver

(perhaps via a separate cooperation channel). This model captures the fact that the far-

ther apart the secondary transmitter and receiver, the less correlated the primary user

activity will be that they each detect. Since the location of the primary receiver is un-

known, detection of primary signals at more than one location via cooperative sensing

will lead to more accurate estimation of spectrum holes, as discussed in more detail

in Chapter 5.2.1. More general models for false alarm and missed detection can be

mapped to this two-switch model via the switch probabilities of being ON or OFF. In-

ner and outer bounds on capacity of this two-switch model are developed in [45] based

on information-theoretic results for the capacity of memoryless channels with causal

and noncausal partial channel knowledge.

2.6.2 Ergodic and Outage Capacity

Ergodic and outage capacity of interweave channels capture the impact of primary

user activity and its detection on capacity. In particular, primary users may choose

to transmit or not. When they transmit, their activity can be detected correctly as

the lack of a spectrum hole, or not; when they don’t transmit, their lack of activity

can be detected correctly as a spectrum hole, or not. For a single secondary user and

assuming perfect detection of spectrum holes, we can model the interweave channel

for the secondary user as a channel with a random switch, as shown in Fig. 2.16. When

primary user activity is detected, the switch is OFF and the channel is unavailable.

When no primary activity is detected, the switch is ON, indicating that the channel

is available for the secondary user. The channel is randomly varying since within

any time interval [0, T ] the amount of time that the switch is ON or OFF, Toff and

Ton, respectively, is random. Assume that when the switch is ON, the capacity of

the channel is C , e.g. for an AWGN channel C = W log2(1 + snr) bps where W
is the channel bandwidth associated with the spectrum hole and snr is the ratio of

received signal-to-noise power at the secondary receiver (there is no interference from

primary users since detection is assumed to be perfect). The capacity of the randomly-

varying switch channel then depends on what is known about the switch position at the
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transmitter and receiver.

In the interweave paradigm the switch position is assumed to be known to the sec-

ondary transmitter and receiver: the secondary transmitter must know the switch posi-

tion so that it doesn’t transmit during a primary user’s transmission, and the secondary

receiver must know the switch position in order to decode the secondary user’s trans-

mission. When the switch is ON, the secondary user transmits at rate R ≤ C . Over

a time interval [0, T ], the fraction of time that the secondary user transmits is Ton/T .

For stationary and ergodic primary user activity, in the limit as T approaches infinity,

this equals the probability that the switch is ON, Pon. The ergodic capacity of this two-

state channel is then Cerg = PonC , since the secondary user obtains zero rate when

the switch is OFF, which occurs with probability Poff = 1− Pon. The outage capacity

of this channel is also PonC , since the secondary user transmits at rate C when the

switch is ON and is in outage when the switch is OFF. Note that as in [45], the details

of detection that lead to a switch being ON or OFF is not relevant for capacity analysis;

only the probability Pon is needed, which can be determined based on the primary user

activity characteristics and the given detection strategy.

Figure 2.16: Channel model for interweave secondary user: random switch position

indicates detected presence (OFF) or absence (ON) of a primary user.

The same switch model also applies when detection is imperfect, but the capacities

for both the secondary and primary users change in this case. Consider the simplest

case of one primary user and one secondary user where both have fixed transmit pow-

ers and static channels to their respective receivers of bandwidth W and noise power

spectral density N0. When the primary user’s transmissions are not detected (missed

detection), its capacity is degraded due to interference from the secondary user. The

capacity of the secondary user during these transmissions is also degraded due to in-

terference from the primary user. Let CPU equal the capacity of the primary user’s

channel during transmission when the secondary user is inactive, and let CI
PU equal

the capacity of the primary user’s channel during transmission when the secondary

user is active. For AWGN channels of bandwidth W , noise power N0W , and inter-

ference treated as noise, these correspond to CPU = W log2(1 + PPU/(N0W )) and

CI
PU = W log2(1 + PPU/(N0W + ISU)), respectively, for PPU the received power

at the primary user’s receiver and ISU the interference power caused by the secondary

transmitter to the primary user’s receiver.

Recall that Pon is the probability that the secondary user has its switch in the ON

position. Let PMD denote the probability that the switch is ON due to missed detection

of a primary user, i.e. incorrect detection of spectrum hole, in which case the secondary

and primary users interfere with each other. The switch is ON due to correct detection
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of a spectrum hole with probability (1 − PMD) and in this case the primary user is

silent. We will first examine the impact of incorrect detection on the primary user’s

capacity. Assuming the primary user is not aware of the secondary user transmitting

due to missed detection, the correct metric for its performance while it is transmitting

is capacity versus outage. This capacity versus outage is CPU for outage probability

Pout ≥ PMDPon and CI
PU for Pout < pMDPon, since the primary user can correctly

decode at transmission rate CPU unless the secondary user transmits due to missed

detection of the primary user, which occurs with probability PrmMDPon. Note that the

primary user in general does not know the secondary user’s interference, and thus it

does not know CI
PU . Hence, it must choose some transmission rate R ≤ CPU without

this knowledge. If the outage probability PMDPon is acceptable, then the primary user

can transmit at rate R = CPU and accept that a fraction PMDPon of the data will be

decoded in error. If that is an unacceptable outage probability then, assuming it can

bound the maximum interference of the secondary user as ISUmax, it can transmit at a

rate R = W log2(1 +PPU/(N0W +ISUmax)). As long as the bound is accurate, data

sent at this rate will always be correctly decoded. Similarly, if it does know CI
PU then

it can send at that rate with no outage.

A primary user adapting to the behavior of a secondary user is atypical for an

interweave channel, where primary users are meant to be oblivious to the presence of

secondary transmissions. However, some systems have been proposed where primary

users either aid or react to secondary users. Suppose the primary user can measure the

interference caused by the secondary user due to missed detection. Then it can adapt

its transmission rate during the time that it transmits to R = CPU in the absence of

secondary interference (i.e. when the switch is OFF) and to R = CI
PU in the presence

of secondary interference (i.e. when the switch is ON due to missed detection). This

yields an ergodic rate for the primary user averaged over all time of

Cerg
PU = PoffCPU + PMDPonC

I
PU. (2.57)

since the primary user elects to be silent with probability (1 − PMD)Pon. Thus, its

ergodic rate during the time it is transmitting can be computed by dividing (2.57) by

this probability. Note that for typical wireless channels this rate can be achieved even

when the primary user’s transmitter is not adapting its rate to the presence or absence

of interference, as long as the primary user’s receiver is aware of the interference from

the secondary user [32, Chapter 4.2].

The secondary user is unaware of primary user transmissions during missed de-

tection, which happens with probability PMD. Hence the two-state switch channel of

the secondary user becomes a three-state channel: when the switch is OFF capacity

is zero since the secondary user does not transmit; when the switch is ON the ca-

pacity of the channel equals the interference-free capacity when the spectrum hole is

correctly detected, and it equals capacity with the interference from the primary user

when the hole is falsely detected. Let us consider the capacity of the channel when

the switch is in the ON position - this is a two-state channel that depends on whether

the spectrum hole is correctly detected or not. Let CSU equal the capacity of the sec-

ondary user’s channel during transmission when the primary user is inactive (correct

detection), and let CI
SU equal the capacity of the secondary user’s channel during trans-
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mission when the primary user is active (false detection). For AWGN channels with

bandwidth W , noise power N0W and interference treated as noise, these correspond

to CSU = W log2(1 +PSU/(N0W )) and CI
SU = W log2(1 +PSU/(N0W + IPU )),

respectively, for PSU the received signal power at the secondary user’s receiver, and

IPMR the interference caused by the primary transmitter to the secondary user’s re-

ceiver. The correct metric for capacity of the secondary user when its channel switch

is ON is capacity versus outage. Its capacity versus outage is CSU for outage proba-

bilities Pout ≥ PMD and CI
SU for Pout < PMD. Similar to the case of the primary

user under missed detection above, if the outage probability PMD is acceptable, then

the secondary user can transmit at rate R = CSU and accept that a fraction PMD of

the data will be decoded in error. If that is an unacceptable outage probability then, as-

suming it can bound the maximum interference power of the primary user as IPUmax,

it can transmit at a rate R = W log2(1 + PSU/(N0W + IPUmax)) such that, as long

as the bound is accurate, data sent at this rate will be correctly decoded. Similarly, if it

does know CI
SU then it can send at that rate with no outage.

In addition to incorrectly detecting a spectrum hole, the secondary user may detect

the presence of a primary user when none is present, and hence turn its switch OFF

when in fact it should be ON. Given this false alarm occurs with probability PFA, the

capacity of the secondary user is reduced by PFACSU relative to the case of no false

alarm (i.e. PFA = 0), as the secondary user could transmit at rate CSU during the

missed detection periods since there is no interference from the primary user during

those periods. As with the case of perfect detection, the exact detection strategy is

not needed for capacity calculations. Only the probability of missed detection and

false alarm is used in capacity calculations, and this can be determined for any given

detection strategy, as discussed in Chapters 4 and 5.

2.6.3 Scaling Laws for Interweave Networks

In Chapter 2.3.3 we discussed scaling laws for K-user wireless networks. We now

discuss scaling laws in interweave networks with one or more primary and secondary

users. Not much is known about scaling laws for this type of network, although scaling

laws have been derived for a single-hop interweave network where multiple secondary

users transmit in the presence of a single primary user in [93]. This work defined the

notion of a primary exclusive region, or PER, around the primary transmitter. Sec-

ondary transmitters cannot operate within this PER, and the distance between a sec-

ondary user’s transmitter and receiver must be less than some specified distance. These

two constraints restrict the amount of interference a secondary transmitter can cause

to the primary receiver, and hence its outage probability, thereby enabling a closed-

form derivation of scaling laws. The capacity was found to scale linearly with the

number of secondary users, in contrast to the classical sublinear scaling in Gupta and

Kumer’s result, where multihop routing was assumed. These interweave scaling law

results were extended in [46] to a network with multiple primary as well as multiple

secondary users, along with multihop routing. This work assumes that the locations of

the primary user transmitters and receivers are known by the secondary network, and

also that the primary network is less dense than the secondary network. The multihop

routing protocols assume a preservation region around each primary node such that
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the secondary users route their traffic around these regions. This routing protocol is

shown to achieve almost the same scaling law as if the primary network was absent,

while the primary network throughput is subject to only a fractional loss that decreases

asymptotically. Specifically, a Kp-user primary network achieves a throughput scaling

of
√

Kp = K.5
p while a Ks-user cognitive network achieves a throughput scaling of

K.5−δ
s for any δ > 0 with an arbitrarily small probability of outage. Similar scaling

laws under the same model, constraints, and assumptions were obtained in [100], how-

ever in this work the location of the primary receivers was unknown. Hence preserva-

tion regions were only formed around the primary transmitters. This paper also showed

that the same throughput-delay tradeoff as was obtained in [22] for a single asymptot-

ically large network can be achieved by both the primary and secondary networks as

the number of each type of user grows asymptotically. These results assume that the

relative density of the primary users relative to the secondary users remains the same

as the number of users grows.

2.7 Overlay Cognitive Radio Networks

The motivation for overlay cognitive radio networks is to exploit intelligent radio capa-

bilities to their fullest: 1) from the information-theoretic point of view, the interweave

constraint of orthogonal transmissions used by secondary and primary communicating

pairs is unnecessarily restrictive and, as such, reduces capacity; 2) cognitive capabili-

ties can be exploited more broadly than just for spectrum hole detection.

For these reasons, and in contrast to interweave networks, overlay cognitive ra-

dio networks allow for concurrent secondary and primary transmissions over the same

dimensions. Furthermore, in contrast to both interweave and underlay networks, in

overlay networks a secondary transmitter may improve the communication of a pri-

mary user. In this setting, relaying and techniques for coping with interference become

key tools to maximize the performance of both primary and secondary users.

Modeling Cognition

In the analysis of overlay cognitive radio models, the cognitive capability is typ-

ically captured by assuming that the secondary user’s encoder, called the cognitive

encoder, knows the data sequence to be sent by the primary encoder in the next trans-

mission block. This assumption is often too idealistic for practical systems. However,

it is reasonable when the secondary and primary transmitters are close to each other,

or the primary data sequence is being retransmitted after an initial failure and the sec-

ondary decoder was able to successfully decode it in the first transmission. This as-

sumption is also applicable when the primary transmitter sends its data sequence in

advance to a secondary transmitter, which might be done in a separate frequency band.

Although idealistic, once the encoding and decoding strategies for this channel model

under this assumption are fully understood, this assumption can be relaxed to assume:

1) that primary data sequences are conveyed to the secondary user over links of finite

capacity; 2) partial data sequence knowledge or, 3) causality in learning the primary

data sequence. These relaxations were respectively investigated in [60, 59, 9].



2.7. OVERLAY COGNITIVE RADIO NETWORKS 43

Figure 2.17: Two-user overlay channel

2.7.1 Cognitive Encoder for the Two-user Overlay Channel

The simplest overlay cognitive network consists of one secondary and one primary

pair, as shown in Fig. 2.17. The cognitive encoder corresponding to the secondary

user is assumed to have full knowledge of data sequence WP communicated by pri-

mary encoder to the primary decoder. The encoding strategies and channel gains are

assumed known to all users in the channel. Overlay encoding techniques have mostly

been investigated for this two-user channel. Without cognition, this network reduces

to the two-user interference channel of Fig. 2.11 the secondary user corresponding to

User 1 and the primary user corresponding to User 2. Due to the similarities between

these two models, in the information theory literature, this network is referred to as the

interference channel with one cognitive encoder. It is also referred to as the cognitive

radio channel, the interference channel with asymmetric message knowledge, the in-

terference channel with degraded message sets or the cognitive interference channel.

Another special case of this channel model is obtained when the primary user does not

transmit. Since the secondary transmitter knows the messages intended for both re-

ceivers, the channel reduces to the broadcast channel [16]. The two-user overlay chan-

nel thus contains elements of both interference and broadcast channels. The encoding

strategies that have been developed for these canonical channels, or their combinations,

are capacity-achieving for the overlay channel in certain conditions. We next review

the encoding strategies that have been proposed for the two-user overlay channel, and

discuss scenarios in which these schemes or their combinations achieve capacity.

Formally, the two-user overlay channel, with one secondary (cognitive) user and

one primary user consists of two input alphabets XS ,XP , two output alphabets YS ,YP ,

and a conditional probability distribution p(ys, yp|xs, xp), where (xs, xp) ∈ Xs × Xp

are channel inputs and (ys, yp) ∈ Y1×Y2 are channel outputs. The secondary source ss

wishes to send a message Ws ∈ W = {1, . . . , 2nRs} to its destination, and the primary

source sp wishes to send a message Wp ∈ W = {1, . . . , 2nRp} to its destination. Data

sequence Wp is also known at the secondary (cognitive) encoder. An (Rs, Rp, n) code

consists of two data sequence sets Ws,Wp, encoding functions

Xn
s = fs(Ws, Wp) (2.58)

Xn
p = fp(Wp) (2.59)
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and two decoding functions

Ŵs = gs(Y
n
s ), Ŵp = gp(Y

n
p ). (2.60)

The error probability of the code is

Pe = P
[[

Ŵs 6= Ws

]

⋃

[

Ŵp 6= Wp

]]

. (2.61)

A rate pair (Rs, Rp) is achievable if, for any ε > 0, there exists, for sufficiently large

n, an (Rs, Rp, n) code such that Pe ≤ ε. The capacity region of the two-user overlay

channel is the closure of the set of all achievable rate pairs (Rs, Rp).

We observe that the only difference between this definition and the corresponding

definitions for the interference channel is in the encoding function of the secondary

cognitive encoder (2.58). Unlike in the interference channel, in this case the encoder

knows both data sequences Ws and Wp and can thus form encoded sequences that

depend on both of them. We will also consider the AWGN interference channel given

by (2.29), augmented with cognitive encoding by the secondary user.

The additional information allows the cognitive encoder to deploy cooperation to

increase the rate of the primary pair and precoding against interference to increase its

own rate. Before summarizing encoding strategies used by the cognitive encoder, we

give a brief overview of the Gelfand-Pinsker encoding technique. This technique, also

referred to as binning, is used for the precoding against interference.

Gelfand-Pinsker Coding

For overlay networks, transmission by any primary transmitter causes interference

at the secondary receiver. Since the cognitive encoder knows this interference, it de-

ploys an encoding scheme that mitigates the effect of the interference at its receiver,

thereby increasing its rate. In the overlay channel, since the cognitive encoder has per-

fect knowledge of the data sequence and the encoding strategy of the primary user, the

secondary transmit-receiver pair can view this situation as communication in a channel

with a random state noncausally known at the encoder, also known as the Gelfand-

Pinsker problem [30], shown in Fig. 2.18. In this figure, a single source communicates

data sequence W ∈ {1, . . . , 2nR} to the destination over a channel given by p(y|x, s).
The channel state sequence Sn is assumed to be a random i.i.d. sequence generated

from the distribution p(s) over the random state. Sn is noncausally known at the en-

coder.

We next consider an AWGN channel where the random state is an additional in-

terference term S. Specifically, an AWGN channel with a random interference state is

given by

Y = X + S + Z (2.62)

where Z is zero-mean Gaussian noise at the receiver with power N and S is zero-

mean Gaussian noise at the receiver with power Ns. The transmit power constraint

is E[X2] ≤ P. The Gelfand-Pinsker encoding in this channel model reduces to DPC,

described above for the interference channel, whereby precoding is used to cancel the

effect of the inteference term S. In this setting DPC achieves the capacity of the AWGN
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Figure 2.18: A channel with a random state. The state Sn is known noncausally at the

encoder.

channel as if there were no interference, i.e. it completely cancels the effect of inter-

ference S, yielding capacity

C = W log2

(

1 +
P
N

)

. (2.63)

The capacity of the general discrete-time memoryless channel with random state is

given by

C = max
p(u|s),f(·)

I(U ; Y ) − I(U ; S) (2.64)

where U − (X, S) − Y form a Markov chain, and is achieved by Gelfand-Pinsker

encoding [30]. The role of the random variable U is to generate a codebook at the

encoder that will allow, in each transmission, a codeword that depends both on the data

sequence and on the random state Sn . The Gelfand-Pinsker encoding can play a crucial

role in overlay cognitive radio, as will be described next.

Communication schemes deployed in the overlay channel contain the following

three encoding strategies:

1. Rate-splitting; Rate-splitting, as briefly described in Section 2.4, can improve

rates for both communicating pairs by enabling (partial) interference cancellation

at the decoders in the same fashion as in interference channels without cognition.

This technique can potentially be deployed by both encoders, as it requires no

cognition about other user’s data sequences as the encoder is only splitting its

own rate. For the rate-splitting to be exploited by the primary user, this ap-

proach requires that the decoding at the primary receiver be modified to decode

and cancel part of secondary user’s transmission. This approach differs from the

approach used in interweave and underlay cognitive radio where the communi-

cation technique of the primary users is not adapted in the presence of secondary

users. If this constraint were to be imposed in overlay cognitive networks as

well, the rate-splitting is no longer applicable since it requires that the primary

receiver decodes a part of the message of the secondary user.

2. Cooperation; Full, partial or delayed knowledge of the primary user’s data se-

quence allows the cognitive encoder to relay this information to the primary user,
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thereby increasing the rate of the primary pair. The cognitive encoder uses a frac-

tion of its power to transmit message Wp to the primary user and thus increase the

primary rate Rp. When the primary user’s data sequence (or a part of it) is known

to the cognitive encoder without the delay, i.e., at the beginning of the transmis-

sion block, relaying is performed via superposition coding, where secondary and

primary messages are superimposed and sent by the cognitive encoder. Due to

the noncausal knowledge, there is no need for Markov block encoding otherwise

used for relaying [17].

3. Gelfand-Pinsker Encoding (Binning); Any signal carrying all or part of Wp is

interference at the secondary receiver. Hence, both the primary encoder as well

as the cognitive encoder cause interference at the secondary receiver. However,

if the cognitive encoder knows Wp at the beginning of the transmission block

(as well as the codebooks and channel state information), it can infer the inter-

ference created at the secondary receiver. Knowing the interference, it can apply

Gelfand-Pinsker encoding and, specifically in AWGN channels, DPC in order to

pre-cancel this interference. Another motivation for deploying Gelfand-Pinsker

encoding is found in the relationship between the overlay channel and the broad-

cast channel whereby when the primary transmitter is silent, the overlay chan-

nel reduces to a two-user broadcast channel. For the discrete-time memoryless

broadcast channel, the encoding scheme that yields the largest known achiev-

able rate region is based on Gelfand-Pinsker encoding [61]. In the Gaussian case

the two-user overlay channel is related also to the MIMO Gaussian broadcast

channel. Specifically, a MIMO broadcast channel with two transmit antennas is

equivalent to a two-user overlay channel when both encoders are cognitive, i.e.

both encoders know the message intended for each receiver, since in fact these

encoders are part of the same broadcasting transmission strategy. For MIMO

Gaussian broadcast channels, DPC is the optimal encoding strategy [94, 92].

Motivated by these observations, binning and DPC have been applied to the two-

user overlay channel, resulting in the highest known achievable rates, including

capacity, in some cases, as will be presented later in this section.

2.7.2 Capacity Results

Determining the capacity region for the general overlay channel remains an open prob-

lem. However, as for the interference channel without cognition, the capacity has been

determined for some regimes. The capacity in strong interference has been determined

in [60, Thm. 5]. The capacity for the Gaussian channel in weak interference has been

derived in [95], [49]. For a more general case that unifies the results under these two

regimes, the capacity was determined in [70]. For a class of discrete memoryless cog-

nitive Z-channels (i.e., channels where there is no interference at the primary receiver)

in which only the receiver of the secondary pair suffers interference the capacity has

been determined in [57]. Capacity of a class of Gaussian cognitive Z-channels for the

opposite case, when the interference is at the primary receiver, has been found in [47].

In each case, some combination of rate-splitting, cooperation and/or binning achieves

capacity. These regimes and their capacity-achieving encoding techniques are as fol-
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lows:

1. Strong interference [60]. As in the interference channel, this is the regime in

which both decoders can decode each other’s messages without rate penalty. In

AWGN interference channels with one cognitive encoder (2.29), the following

interference conditions are sufficient for strong interference to be satisfied:

|b| ≥ 1

|a| ≥ b

α
+

|α− 1|
α

if ab > 0

|a| ≥ b

α
+

α + 1

α
if ab < 0 (2.65)

where α =
√

Ps/Pp,

with Ps is the power associated with the secondary user and Pp is the power

associated with the primary user. For PS = PP and a, b ≥ 0 these conditions

simplify to

b ≥ 1, a ≥ b. (2.66)

In a general discrete-time memoryless channel, these conditions can be expressed

in terms of the conditional mutual information as

I(Xs; Ys|Xp) ≤ I(Xs; Yp|Xp)

I(Xs, Xp; Ys) ≤ I(Xs, Xp; Yp), (2.67)

and need to be satisfied for all input distributions p(xs, xp). We observe that

the first inequality is the same as in the interference channel. In this regime,

cooperation via superposition coding achieves capacity. The capacity region in

AWGN channel is given by:

C =
⋃

|ρ|≤1

{

(Rs, Rp) : Rs ≥ 0, Rp ≥ 0,

Rs ≤
1

2
log
(

1 + (1 − ρ2)Ps

)

(2.68)

Rs + Rp ≤ 1

2
log
(

1 + Ps + Pp + b2Ps + 2ρb
√

PsPp

)}

, (2.69)

where ρ is the correlation between inputs Xs and Xp. Note that a larger ρ results

in a larger coherent combining gain. The general capacity region is given by:

C =
⋃

{

(Rs, Rp) : Rs ≥ 0, Rp ≥ 0,

Rs ≤ I(Xs; Ys|Xp) (2.70)

Rs + Rp ≤ I(Xs, Xp; Yp)
}

, (2.71)

where the union is over all input distributions p(xs, xp).
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2. Weak interference at the primary receiver [95], [49].

In the AWGN overlay channel (2.29), weak interference at the primary receiver

corresponds to |b| ≤ 1, i.e., the cross-channel gain from the secondary to the pri-

mary user is smaller than the direct link gain. Because the interference is weak,

the primary receiver does not attempt to decode the unwanted data sequence and

instead treats it as noise. Interference at the secondary receiver can be eliminated

by DPC at the cognitive encoder, allowing for the interference-free, single-user

rate to be achieved. The optimum coding strategy at the cognitive encoder con-

sists of encoding message W1 via DPC while treating the primary user’s input

sequence Xn
2 as interference, and superposition coding to help convey W2 to the

primary receiver. Thus, there is no need for rate-splitting; DPC and cooperation

via superposition coding achieve capacity. The capacity region is given by:

Rs ≤ 1

2
log(1 + (1 − α)Ps) (2.72)

Rp ≤ 1

2
log

(

1 +
(b
√

αPs +
√

Pp)
2

1 + b2(1 − α)Ps

)

, (2.73)

where α is the fraction of power that the cognitive encoder uses for cooperation.

The rest of the power, (1−α)Ps, the encoder uses to transmit signal carrying its

own data. That signal is the interference at the primary receiver.

In the case of the discrete-time memoryless channel, the weak interference con-

ditions are given by:

I(U ; Yp|Xp) ≤ I(U ; Ys|Xp)

I(Xp; Yp) ≤ I(Xp ; Ys) (2.74)

for all distributions p(u, xs, xp). The random variable U has the same role as

in the Gelfand-Pinsker encoding, i.e., it is used for precanceling the interference

via binning. The capacity region is given by

C =
⋃

{

(Rs, Rp) : Rs ≥ 0, Rp ≥ 0,

Rs ≤ I(Xs; Ys|U, Xp) (2.75)

Rp ≤ I(U, Xp; Yp)
}

(2.76)

where the union is over all distributions p(u, xs, xp).

Regimes of strong and weak interference for Gaussian channels with Ps = Pp

for a, b ≥ 0 are shown in Fig. 2.19.

3. Better cognitive decoding regime [70].

This is the regime for which the condition

I(U, Xp; Yp) ≤ I(U, Xp; Ys) (2.77)

holds for any p(u, xs, xp).
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Figure 2.19: Values of (a, b) for which the channel is in weak or strong interference

and capacity is known.

The capacity region is given by

Rs ≤ I(U, Xs; Ys|Xp)

Rp ≤ I(U, Xp; Yp)

Rs + Rp ≤ I(U, Xp; Yp) + I(Xs; Ys|Xp, U)

Rs + Rp ≤ I(U, Xs, Xp; Yp). (2.78)

Again, the random variable U has the same role as in the Gelfand-Pinsker encod-

ing, i.e., it is used for binning. In addition to binning and superposition coding,

the encoding scheme requires rate-splitting at the cognitive encoder.

4. Common information: If the cognitive decoder wishes to decode both data

sequences, there is no interference at that decoder and hence there is no need for

binning. Then, rate-splitting and superposition coding achieve capacity [56, 48].

The capacity results presented above indicate that in order to maximize perfor-

mance of cognitive radio networks, its users should be allowed to share the bandwidth

and cope with the introduced interference via (partial) decoding, relaying or precod-

ing. Gains from the various techniques depend on channel conditions and the network

topology. As explained earlier, gains also depend on the amount of information that

the cognitive radio is able to collect about the primary user transmissions.

For overlay channels, results that incorporate time variations in the channel model

are scarce. One possible approach to model time variations is to assume that channel

parameters depend on the random state sequence. In a point-to-point channel when the

encoder knows the random state, this approach leads to the Gelfand-Pinsker problem

discussed earlier in this section. Overlay channels with a state were analyzed in [82].

This model generalizes the interference channel with one cognitive encoder model that

assumes constant channel gains. The paper develops inner and outer bounds for overlay

channels with a state, and establishes capacity in the weak interference regime.
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Another important aspect of this problem is the impact of imperfect channel state

information (CSI) at the cognitive encoder. The lack of channel knowledge will affect

all cognitive encoding schemes. With phase uncertainty at the cognitive encoder, DPC

cannot be applied directly. Hence this uncertainty precludes canceling interference and

results in significant performance loss [37]. In this case, feedback about channel state

information to the cognitive encoders could be very beneficial. Relaying strategies can

be realized without CSI at the transmitter, but would require CSI at the receiver [52].

However, CSI at the transmitter could allow for additional relaying approaches (e.g.,

beamforming) and thus further improve the network performance.

2.7.3 K-user Overlay Networks

Analysis of the two-user overlay channel focuses on a single secondary pair and a sin-

gle primary pair. Yet, as in the interweave networks, multiple secondary and multiple

primary users in the overlay network can simultaneously share the same spectrum. As

with the two-user overlay case, in this more general setting we also seek efficient ways

to minimize interference among users.

We have seen in Section 2.4 that for the K-user interference channel, generalizing

the rate-splitting approach as a way to cope with interference from multiple senders is

too complex. Moreover, this approach can be outperformed by collective treatment of

interference via interference alignment or structured codes. Not surprisingly, interfer-

ence alignment as well as structured codes are promising approaches for the K-user

overlay cognitive radio network as well. These techniques could be deployed by cog-

nitive nodes to reduce the interference at both the primary and the cognitive receivers.

But in contrast to the encoders in interference channels, secondary users can also per-

form relaying of primary messages, and precoding against interference. The interplay

between these techniques is not yet well understood and presents an important and

interesting research topic.

Another interesting problem is the impact of cognition when present at different

points in the network. In particular, not only encoders but also (or only) decoders

can be cognitive. This will significantly impact the available encoding and decoding

techniques. No cognition at the encoder will preclude both cooperation and precoding

techniques. On the other hand, it will enable decoders to directly cancel interference.

The impact of different points of cognition in the case of single primary and secondary

pair has been investigated in [44].

Once the capacity results and achievable rates, along with their encoding and de-

coding strategies, are obtained indicating the most promising encoding approaches,

protocols for coexistence among many secondary users will need to be developed. As

a final remark we note that in principle the presence of cognitive radios in overlay sys-

tems can improve not only spectrum utilization and rates of both primary and secondary

users, but also the robustness, the delay and the energy consumption of the primary sys-

tem. The presence of cognitive transmitters that have the ability to learn primary users’

information enables this information to be send over multiple paths in the network,

thereby adding diversity to the primary system, and deploying more energy and delay

efficient paths for information flow in the network. However, the implementation chal-

lenges associated with overlay systems may preclude many of these potential benefits
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being realized in practice.

2.8 Summary

Determining the fundamental performance limits of general cognitive radio networks is

a daunting challenge. Few fundamental performance bounds are available for conven-

tional wireless networks, let alone when a second tier of cognitive users is introduced

into such a network. The most common metric for performance of wireless systems

is Shannon capacity. Although there are few capacity results for general wireless net-

works, this chapter has described how existing Shannon-theoretic tools can be used

directly or extended to obtain some results or bounds on the fundamental capacity lim-

its of cognitive networks.

The building block for all known cognitive network capacity results is the two-

user interference channel, where one primary transmit-receiver pair and one secondary

transmit-receive pair share a common channel. This simple four-node network mod-

els all three cognitive radio paradigms — underlay, interweave, and overlay — with

one secondary user and one primary user. Specifically, in the underlay paradigm the

cognitive transmitter is restricted such that its interference to the primary receiver is

below some threshold, in the interweave paradigm the cognitive transmitter may only

transmit when it detects a spectrum hole, and in the overlay paradigm both users trans-

mit simultaneously, with the secondary user improving the performance of the primary

user while obtaining some bandwidth for its own communication. Based on this four-

node model, we have shown that the capacity region of an underlay network can be

determined based on Shannon capacity analysis with the interference from the primary

users to the secondary users, and the interference from the secondarye users to the

primary users, treated as AWGN. Hence, capacity of an underlay single-user channel,

with fading and multiple antennas, as well as that of a multiple access and broadcast

underlay channel, is the same as in the absence of primary users, except that the trans-

mit power of the secondary user(s) is constrained relative to the interference caused to

the primary users. In this case of multiple secondary users, a MAC protocol may also

be used when the sum of secondary interference exceeds the primary users’ threshold,

so that some of the secondary users stop transmitting to reduce the total interference

below the required level.

Treating interference as noise is also used in the capacity analysis of interweave

networks. However, unlike in underlay networks, interweave capacity analysis requires

that the dynamics associated with detection of primary user activity, as well as the prob-

ability of missed detection and false alarm, be incorporated into the capacity analysis.

To capture these dynamics, the secondary user’s interweave channel in the four-node

case is modeled as a switch. When the switch is ON, the secondary user has detected

a spectrum hole (lack of primary user activity) and transmits. When the switch is

OFF, the secondary transmitter is silent, and the primary user experiences no interfer-

ence. If a spectrum hole is correctly detected, then the secondary user experiences no

interference; when the spectrum hole is incorrectly detected, both the secondary and

primary users transmit simultaneously and interfere with each other’s transmissions.

Given the time variations of the switch, under perfect detection the secondary user’s
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channel can be modeled as a two-state channel corresponding to the switch being ON

or OFF. Using this model, the ergodic and outage capacities are derived. Under im-

perfect detection both the primary and secondary user channels have three states. For

the secondary user’s channel, the switch can be OFF or ON; when the switch is OFF

there is no transmission, when the switch is ON, the spectrum hole can be correctly

(resulting in no interference) or incorrectly (primary user interference) detected. Since

the secondary user is not aware of false detections, the correct capacity metric is capac-

ity versus outage, which can be computed based on the probability of missed detection

and the SINR that results due to primary user interference. Similarly, the primary user

experiences interference from the secondary user due to missed detection, and its ca-

pacity versus outage can be computed based on this missed detection probability and

the SINR resulting from secondary user interference. These capacity calculations can

be generalized to multiple primary and secondary users by generalizing the models for

missed detection and false alarm along with the resulting interference.

Overlay networks do not treat interference as noise. Instead novel encoding and

decoding strategies are used by the secondary users to enhance the performance of the

primary users while obtaining some interference-free bandwidth for their own trans-

missions. These encoding techniques include rate splitting, whereby one user splits

its data sequence and encodes it via superposition coding such that a part of this se-

quence can be decoded and removed by the receiver of the other user. In the overlay

network, this would allow the secondary transmitter’s interference to be removed by

the primary receiver. However, this interference removal requires a modified decoder

for the primary user, so it is not applicable when the primary system is oblivious to

the secondary system in terms of its design or operation. In addition to rate splitting,

the secondary encoder uses its knowledge of the primary user’s encoded data sequence

to enhance the transmission of the sequence to the primary receiver via a cooperative

protocol. Finally, knowledge of the primary user’s data sequence allows the secondary

transmitter to employ Gelfand-Pinsker encoding, or binning, to pre-cancel the interfer-

ence that the primary user causes to the cognitive receiver. Similarly, if the primary

user knows the secondary user’s sequence, it can use binning in a similar fashion.

These information-theoretic strategies have not yet made their way into commercial

systems, where underlay and interweave currently dominate. Moreover, extensions of

these ideas to networks of more than a few secondary and primary users remain open

problems. However, as this chapter has shown, the overlay paradigm holds significant

promise for increasing the capacity of both secondary and primary users above that

of the other cognitive radio paradigms. If these information-theoretic results can be

translated to practice, then perhaps at some point in the future overlay systems will

dominate the cognitive radio landscape.

There are many open problems in determining fundamental performance limits of

cognitive networks. In the context of underlay networks, capacity when nodes have

multiple antennas that can direct secondary transmissions away from primary users has

not yet been investigated. Capacity versus outage based on incorrect information about

the interference caused between primary and secondary users has also not yet been ex-

plored. For interweave networks, there is much active research to determine optimal

medium access protocols that achieve capacity. In addition, the scaling laws to date as-

sume single-hop routing and an exclusion region around the primary users — perhaps
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these scaling laws can be improved upon by considering relaying as well as hierarchi-

cal cooperation, which have proved fruitful in developing improved scaling laws for

noncognitive networks. Capacity results for overlay networks to date mainly assume

one secondary and one primary user. Since the capacity regions for conventional ad hoc

networks with more than a few users have proved elusive, we expect the same will be

true with overlay networks, unless somehow the intelligence associated with cognition

proves to simplify the problem and facilitate a solution. There are few fundamental

performance results for metrics other than capacity such as energy, delay, and com-

plexity, nor have asymptotic scaling laws been developed for any of these networks. In

particular, while capacity strategies for overlay networks with more than a few nodes

may be difficult to obtain, perhaps scaling laws that exploit previous work on scal-

ing in the absence of primary users can be extended to take the primary network into

account. Performance bounds with respect to energy require models for energy con-

sumption that includes both transmit and circuit (analog and processor) energy, which

have proved difficult to obtain. This complicates determining tradeoffs between per-

formance (which improves via sophisticated signal processing and encoding/decoding)

and energy consumption. Indeed, the development of fundamental performance met-

rics for cognitive networks is a rich and active area of research. Results in this area will

prove essential to obtain insights and performance bounds for these emerging systems.

The next chapter develops the models associated with signal propagation in cog-

nitive networks. These models are critical to determine the nature of interference at

primary receivers and of the desired received signals at all receivers. In particular, dif-

ferent radio bands will have very different interference characteristics since propaga-

tion is highly dependent on frequency. Moreover, the time-variations of these channels

dictate how well the information required under the different cognitive user paradigms

can be obtained, and how fast such systems need to adapt. The next chapter describes

the models for these different aspects of cognitive radio channels.

2.9 Further Reading

The four-node cognitive radio channel is a special case of the four-node interference

channel, whose capacity was first investigated in the late 1970s by Sato and by Carleial

[73, 11]. The model where one encoder in the interference channel is a cognitive

encoder was first proposed and its capacity region analyzed in [19]. Since then there

has been tremendous activity determining achievable rate regions and capacity outer

bounds for this channel, as well as special cases such as strong, very strong, and weak

interference regimes where these bounds meet. Tutorial papers [20, 35] describe the

large body of work on the capacity of interference channels with cognitive encoders

and the resulting capacity regions and encoding/decoding strategies for these special

regimes. Scaling laws for interweave networks were first investigated in [93] using the

idea of a primary exclusion region. The first work to analyze capacity of the interweave

channel based on a switch model for primary user detection was [45].
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