Head Mounted Display Optics I

Gordon Wetzstein Stanford University

EE 267 Virtual Reality
Lecture 7
stanford.edu/class/ee267/

Logistics

- HW3 is probably the longest homework, so get started asap if you have not done so already
- hardware kits will be handed out in TA office hours this week

Lecture Overview

1. stereo rendering for HMDs
2. field of view and visual field
3. lens distortion correction using GLSL
4. overview of microdisplay technology

Stereo Rendering for HMDs

A/l Current-generation VR HMDs are
"Simple Magnifiers"

Image Formation

HMD

Image Formation

HMD

Side View

Image Formation

HMD
world origin is in the center of the virtual image!

Side View

Side View

个見 Gaussian thin lens formula:

Side View
virtual image

virtual image

virtual image

virtual image

Image Formation

HMD

Top View

Image Formation - Left Eye

HMD

Top View
virtual image
Image Formation - Left Eye

virtual image
Image Formation - Left Eye

virtual image

Image Formation - Left Eye

virtual image

Image Formation - Left Eye

Image Formation - Right Eye

view frustum

asymmetric

Top View

View Matrix - Lookat

Top View

Prototype Specs - View-Master Deluxe VR Viewer

- roughly follows Google Cardboard 2.0:
- lenses focal length: 40 mm
- lenses diameter: 34 mm
- inter-lens distance: 64 mm
- screen to lens distance: 39 mm
- eye relief: 18 mm
- Topfoison 6" LCD: width 132.5 mm , height $74.5 \mathrm{~mm} ; 1920 \times 1080 \mathrm{px}$ OR
- Topfoison 5.5" LCD: width 120.96 mm, height $68.03 \mathrm{~mm} ; 1920 \times 1080 \mathrm{px}$

Image Formation

- use these formulas to compute the perspective matrix in WebGL
- you can use:

```
THREE.Matrix4().makePerspective(left,right,top,bottom,near,far)
THREE.Matrix4().lookAt(eye,center,up) - attention: this only does
                                    rotation, not the translation,
                                    which is required in addition
                                    to the rotation!
```

- that's all you need to render stereo images on the HMD

Image Formation for More Complex Optics

- especially important in free-form optics, off-axis optical configurations \& AR
- use ray tracing - some nonlinear mapping from view frustum to microdisplay pixels
- much more computationally challenging \& sensitive to precise calibration; our HMD and most magnifier-based designs will work with what we discussed so far

Field of View and Visual Field

Example Calculations for Field of View

- use Google Cardboard 2 lenses ($f=40 \mathrm{~mm}$, d'=39mm, interpupillary/interlens distance $=64 \mathrm{~mm}$, eye relief $=18 \mathrm{~mm}$)
- Topfoison 6" LCD panel (132.5 x 74.5 mm)

Example Calculations for Field of View

Example Calculations for Field of View

Example Calculations for Field of View

vertical field of view:

$$
\begin{aligned}
\text { fov }_{v} & =f o v_{v}^{\text {(superior) }}+f o v_{h}^{(\text {inferior })} \\
& =2 \tan ^{-1}\left(\frac{M^{h / 2}}{d}\right)=87^{\circ}
\end{aligned}
$$

87° vertical field of view is approx. 64\% of the vertical visual field of a single eye (135° total)

Example Calculations for Field of View

total monocular field of view of both eyes:

$$
f o v_{h}^{(\text {total })}=2 f o v_{h}^{(\text {temporal) })}=82^{\circ}
$$

82° monocular field of view is approx. 41% of the full monocular visual field of both eyes (200° total)

binocular field of view of both eyes:

$$
f o v_{h}^{(\text {total })}=2 f o v_{h}^{(\text {nasal })}=78^{\circ}
$$

78° binocular field of view is approx. 65% of the binocular visual field of both eyes (120° total)

Lens Distortion Correction

All lenses introduce image distortion, chromatic aberrations, and other artifacts - we need to correct for them as best as we can in software!

Lens Distortion

- grid seen through HMD Iens
- lateral (xy) distortion of the image
- chromatic aberrations: distortion is wavelength dependent!

Lens Distortion

Lens Distortion

optical

Barrel Distortion
digital correction

Lens Distortion

Lens Distortion

- x_{u}, y_{u} undistorted point

Lens Distortion

- x_{u}, y_{u} undistorted point

$$
\begin{aligned}
x_{d} & \approx x_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right) \\
y_{d} & \approx y_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right)
\end{aligned}
$$

x_{d}, y_{d} distorted point coordinates
K_{1}, K_{2} distortion coefficients
r normalized distance from center
$x_{c}, y_{c} \quad$ center of optical axis
\rightarrow this is the origin, i.e. all other points are defined relative to this

Barrel Distortion digital correction

Lens Distortion

- x_{u}, y_{u} undistorted point
- $x_{d} \approx x_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right)$ $y_{d} \approx y_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right)$
x_{d}, y_{d} distorted point coordinates
K_{1}, K_{2} distortion coefficients
r normalized distance from center
$x_{c}, y_{c} \quad$ center of optical axis
\rightarrow this is the origin, i.e. all other points are defined relative to this

NOTES:

- center is assumed to be the center point (on optical axis) on screen
- distortion is radially symmetric around center point
- easy to get confused!
- can implement in fragment shader (not super efficient, but easier for us)

Normalizing r

- x_{u}, y_{u} undistorted point
- $x_{d} \approx x_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right)$

$$
y_{d} \approx y_{u}\left(1+K_{1} r^{2}+K_{2} r^{4}\right)
$$

un-normalized radial distance from center:

$$
\begin{aligned}
& \tilde{r}^{2}=\left(x_{u}-x_{c}\right)^{2}+\left(y_{u}-y_{c}\right)^{2} \longrightarrow \begin{array}{l}
\text { Calculate } \tilde{r} \text { in metric units, e.g. } \mathrm{mm} \text {. Need } \\
\text { physical size of the pixels of your screen for } \\
\text { this! }
\end{array} \\
& x_{c}, y_{c} \text { center }
\end{aligned}
$$

virtual image

Lens Distortion - Center Point!
$-x_{c}, y_{c}$ right eye

Top View

Lens Distortion Correction Example

stereo rendering without lens distortion correction

Lens Distortion Correction Example

stereo rendering with lens distortion correction

How to Render into Different Parts of the Window?

- WebGLRenderer.setViewport(x,y,width,height)
- x, y lower left corner; width, height viewport size

Overview of Microdisplays

Liquid Crystal Display (LCD) - Subpixels

TN subpixels

IPS

$\stackrel{\infty}{\underline{\omega}}]$

LCD Backlight

Liquid Crystal on Silicon (LCoS)

- basically a reflective LCD
- standard component in projectors and head mounted displays

Alignment Layer
Liquid Crystal Layer
Reflective Layer
CMOS

Control Layer

Organic Light Emitting Diodes (OLED)

- Self emissive

- Lower persistence (can turn on and off faster than LCD/LCoS, which is great for VR)
- used e.g. VR-compatible phones, like Google's Pixel

Digital Micromirror Device (DMD)

- developed by TI
- MEMS device
- binary states (e.g. +/- 10 degrees)
- gray-level through pulse width modulation (PWM)
- Super-fast (10-20 kHZ binary display
- More light efficient than LCD/LCoS!

Texas Instruments

Figure $1.1 \mathrm{~mm} \times 9 \mathrm{~mm}$ scanning fiber projector.

B. T. Schowengerdt, R. Johnston, C.D. Melville, E.J. Seibel. 3D Displays Using Scanning Laser Projection. SID 2012.

Next Lecture: HMD Displays Optics II

- advanced VR \& AR optics

