The Human Visual System

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 5

stanford.edu/class/ee267/

nautilus eye, wikipedia

Figure 5.8 (opposite) A range of invertebrate eyes that illustrate approaches to the formation of crude but effective images: (a) *Nautilus*'s pinhole eye; (b) marine snail; (c) bivalve mollusc; (d) abalone; (e) ragworm.

a) Region of photosensitive cells b) Depressed/folded area allows limited directional sensitivity **Photoreceptors** Nerve fibres c) "Pinhole" eye allows finer directional d) Transparent humor develops sensitivity and limited imaging in enclosed chamber Water-filled Retina chamber Area of Transparent photoreceptors/ humor retina wikipedia e) Distinct lens develops f) Iris and separate cornea develop Lens Cornea Aqueous humor Cornea Optic Lens nerve /itreous Retina

humor

Evolution of the Eye

owl, https://www.pinterest.com/pin/452400725039917330/

pigeon, http://globe-views.com/dreams/pigeon.html

national geographics

Lecture Overview

- visual acuity: 20/20 is ~1 arc min
- visual acuity varies over retina: can exploit via foveated rendering
- visual field: ~200° monocular, ~120° binocular, ~135° vertical
- **temporal resolution**: ~60 Hz (depends on contrast, luminance)
- depth cues in 3D displays: disparity, vergence, accommodation, blur, ...
- accommodation range: \sim 8cm to ∞ , degrades with age

Overview

Overview

Overview

Anatomy of the Human Eye

The Retina

photoreceptors: 3 types of cones (color vision), rods (luminance only, night vision)

The Retina

^{© 2011} Pearson Education, Inc.

Color Perception

Color Perception - Sensitivity of Cones

Visual Field

superior: 60°

vertical (superior / inferior directions)

horizontal (nasal / temporal directions)

monocular visual field of right eye

Visual Field

temporal left + temporal right: 200°

visual field of both eyes

total visual field of both eyes

Visual Field

nasal left + nasal right: 120°

binocular visual field or region of binocular overlap → stereo vision

visual field of both eyes

Visual Field - Terminology

• monocular visual field: visual field of either only the left or right eye

 <u>binocular visual field or region of binocular overlap</u>: intersection of monocular visual fields, i.e. only the overlapping part of both eyes – this is where we see stereo!

• <u>total visual field</u>: union of monocular visual fields, i.e. visual fields of both eyes combined – not all of this is stereo, temporal peripheries are mono!

Immersive VR – How Important is the FOV?

Visual Angle

- vision scientists often measure size in visual angle
- visual angle \approx object size / object distance in degree

Visual Acuity

each photorecepter ~ <u>1 arc min</u> (1/60 of a degree) of visual angle

Visual Acuity

20/200

20/100

20/70

20/50

20/40 20/30

Е	1
FР	2
тог	3
LPED	4
РЕСГD	5
ЕДГСZР	6
FELOPZD	7
DEFPOTEC	8
LEFODPCT	9
FDPLTCEO	10
FEZOLCFTD	11

characters are 5 arc min of visual angle, need to resolve 1 arc min to read

Retina VR Display – What does it Take?

<u>need per eye</u>:

- 150° x 135° with pixels covering 1 arc min of visual angle
- = 9000 x 8100 pixels (probably 2-3x of that in practice)

biggest challenge: bandwidth

- capture or render stereo panoramas or images at that resolution
- compress and transmit huge amount of data
- drive and operate display pixels

Relative Acuity Over Retina

Eccentricity (i.e., distance to fovea in degrees of visual angle)

Density of Photoreceptors on Retina

Density of Photoreceptors on Retina

Patney et al. 2016

Density of Photoreceptors on Retina

Acuity Over Retina / MAR

acuity falls off due to:

- reduced receptor and ganglion cell density
- reduced optical nerve "bandwidth"
- reduced "processing" devoted to periphery in the visual cortex

Acuity Over Retina / MAR

acuity falls off due to:

- reduced receptor and ganglion cell density
- reduced optical nerve "bandwidth"
- reduced "processing" devoted to periphery in the visual cortex

MAR: minimum angle of

resolution in deg/cycle slope

$$\dot{\omega} = \dot{m}e + \omega_0$$

eccentricity in degrees

smallest resolvable angle at fovea in deg/cycle

Acuity Over Retina / MAR

acuity falls off due to:

- reduced receptor and ganglion cell density
- reduced optical nerve "bandwidth"
- reduced "processing" devoted to periphery in the visual cortex

MAR: minimum angle of resolution in deg/cycle slope

$$\dot{\omega} = \dot{m}e + \omega_0$$

$$\omega_0 = (1/48)^\circ {}_{de}^{sol}$$

o somewhere between 20/20 (30 cycles per degree) and 20/10 (60 cycles per degree)

$$m = 0.022 - 0.034$$

range of acceptable – equivalent for observed image guality

eccentricity in degrees smallest resolvable angle at fovea in deg/cycle

eccentricity in degrees

smallest resolvable angle at fovea in deg/cycle

- Guenter et al. 2012: split image into *n* layers,
 e.g. inner (foveal, 1), middle (2), outer (3)
- render image in each zone with progressively
 lower resolution

• goals: save computation & bandwidth!

Guenter et al. 2012: split image into *n* layers,
e.g. inner (foveal, 1), middle (2), outer (3)

convert MAR (in degrees/cycle) to pixels

Foveated Rendering – Performance Gain

n is number of layers

speedup is total number of display pixels / number of pixels in all layers combined <u>conclusion</u>: for large fov & high-res displays, we need to shade much fewer pixels!

Depth Perception

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Binocular Disparity

Retinal Blur

Focus Cues (Monocular)

Visual Cue

Binocular Disparity

Focus Cues (Monocular)

Visual Cue

Focus Cues (Monocular)

Visual Cue

Depth Perception

New Cold

Depth Perception

wikipedia

monocular cues

- perspective
- relative object size
- absolute size
- occlusion
- accommodation
- retinal blur
- motion parallax
- texture gradients
- shading

. . .

binocular cues

- (con)vergence
- disparity / parallax

Ames room [±] conflict between perspective & relative object size

Depth Perception

longer-term: holographic displays

Depth Perception

Stereoscopic Displays

Charles Wheatstone., 1841. Stereoscope.

Walker, Lewis E., 1865. Hon. Abraham Lincoln, President of the United States. Library of Congress

Stereoscopic Displays

Stereoscopic Displays

Charles Wheatstone 1838

stereoscopic displays

A Brief History of Virtual Reality

Stereoscopes Wheatstone, Brewster, ... VR, AR, Ivan Sutherland VR explosion Oculus, Sony, Valve, MS, ...

Focus Cues

Oculumotor Processes

Conventional Display

0.25m (4D) 0.3m (3.33D) 0.35m (2.86D)

0.5m (2D)

0.7m (1.43D)

∞ (0D)

Conventional Display

0.25m (4D) 0.3m (3.33D) 0.35m (2.86D)

0.5m (2D)

0.7m (1.43D)

D)

1 m

virtual image of screen

2m (0.5D)

∞ (0D)

Conventional Display

0.25m (4D) 0.3m (3.33D) 0.35m (2.86D)

0.5m (2D)

0.7m (1.43D)

1 m

virtual image of screen

2m (0.5D)

∞ (0D)

0.7m (1.43D)

Conventional Display

Conventional Display

Conventional Display

Conventional Display

∞ (0D)

Accommodation-dependent Point Spread Functions

Focusing Ability Degrades With Age - Presbyopia

Myopia, Hyperopia, Presbyopia

Focal range (range of clear vision)

Modified from Pamplona et al. SIGGRAPH 2010
• pupil controls amount of light

distance

• pupil controls amount of light

accommodation

distance

• out of focus blur

accommodation

distance

Retinal Blur / Depth of Field Rendering

Circle of Confusion

$$c = M \cdot D \cdot \frac{\left|S - S_1\right|}{S}$$

Blur Affects Relative Object Size!

Real World:

Vergence & Accommodation Match!

Stereo Displays Today:

Vergence-Accommodation Mismatch!

Vergence-Accommodation Conflict

effects

- visual discomfort
- visual fatigue
- nausea
- diplopic vision
- eyestrain

. . .

- compromised image quality
- pathologies in developing visual system

Zone of Comfort

Summary

- visual acuity: 20/20 is ~1 arc min
- visual acuity varies over retina: can exploit via foveated rendering
- visual field: ~200° monocular, ~120° binocular, ~135° vertical
- **temporal resolution**: ~60 Hz (depends on contrast, luminance)
- depth cues in 3D displays: disparity, vergence, accommodation, blur, ...
- accommodation range: \sim 8cm to ∞ , degrades with age

References and Further Reading

interesting textbooks on perception:

- Wandell, "Foundations of Vision", Sinauer Associates, 1995
- · Howard, "Perceiving in Depth", Oxford University Press, 2012

foveated rendering:

- Guenter, Finch, Drucker, Tan, Snyder "Foveated 3D Graphics", ACM SIGGRAPH Asia 2012
- Patney, Salvi, Kim, Kaplanyan, Wyman, Benty, Luebke, Lefohn "Towards Foveated Rendering for Gaze-Tracked Virtual Reality", ACM SIGGRAPH Asia 2016

depth cues and more:

- Cutting & Vishton," Perceiving layout and knowing distances: The interaction, relative potency, and contextual use of different information about depth", Epstein and Rogers
 (Eds.), Perception of space and motion, 1995
- Held, Cooper, O'Brien, Banks, "Using Blur to Affect Perceived Distance and Size", ACM Transactions on Graphics, 2010
- Hoffman and Banks, "Focus information is used to interpret binocular images". Journal of Vision 10, 2010
- Hoffman, Girshick, Akeley, and Banks, "Vergence-accommodation conflicts hinder visual performance and cause visual fatigue". Journal of Vision 8, 2008
- · Huang, Chen, Wetzstein, "The Light Field Stereoscope", ACM SIGGRAPH 2015

the retina, visual acuity, visual field

- Roorda, Williams, "The arrangement of the three cone classes in the living human eye", Nature, Vol 397, 1999
- Snellen chart: https://en.wikipedia.org/wiki/Snellen_chart
- · Ruch and Fulton, Medical physiology and biophysics, 1960

contrast sensitivity function & hybrid images:

- Oliva, Torralba, Schyns, "Hybrid Images", ACM Transactions on Graphics (SIGGRAPH), 2006
- Spatio-temporal CSF: Kelly, Motion and Vision. II. Stabilized spatio-temporal threshold surface, Journal of the Optical Society of America, 1979