EE 267: Introduction and Overview

Gordon Wetzstein
Stanford University

EE 267 Virtual Reality
Lecture 1

stanford.edu/class/ee267/
virtual reality

the computer-generated simulation of a three-dimensional image or environment that can be interacted with in a seemingly real or physical way by a person using special electronic equipment, such as a helmet with a screen inside or gloves fitted with sensors.
simulated & training

visualisation & entertainment

remote control of vehicles, e.g. drones

gaming

robotic surgery

architecture walkthroughs

education

virtual travel

a trip down the rabbit hole
VR at Stanford’s Medical School

- Lucile Packard Children’s Hospital: used to alleviate pain, anxiety for pediatric patients

- VR Technology Clinic: applications in psychotherapy, mental health, for people with phantom pain, …

- help train residents, assist surgeons planning operations, …
National Academy of Engineering

“Enhance Virtual Reality” is 1 of 14 NAE grand challenges for engineering in the 21st century

image from NAE
Exciting Engineering Aspects of VR/AR

- cloud computing
- shared experiences
- compression, streaming
- VR cameras
- sensors & imaging
- computer vision
- scene understanding
- photonics / waveguides
- human perception
- displays: visual, auditory, vestibular, haptic, ...
- CPU, GPU
- IPU, DPU?
- HCI
- applications

Images by microsoft, facebook
Where We Want It To Be
Personal Computer
e.g. Commodore PET 1983

Laptop
e.g. Apple MacBook

Smartphone
e.g. Google Pixel

AR/VR/MR
e.g., Apple Vision Pro
A Brief History of Virtual Reality

Stereoscopes
Wheatstone, Brewster, ...

VR & AR
Ivan Sutherland

Nintendo
Virtual Boy

VR explosion
Oculus, Sony, Apple, ...

1838

1968

1995

2012-2024

???
Ivan Sutherland’s HMD

- optical see-through AR, including:
 - displays (2x 1” CRTs)
 - rendering
 - head tracking
 - interaction
 - model generation

- computer graphics
- human-computer interaction

I. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968
Nintendo Virtual Boy

- computer graphics & GPUs were not ready yet!

Game: Red Alarm
Where we are now
electronic / digital
1968
HCI / haptics
1980s
low cost, high-res, low-latency!
2000s
Virtual Image

Problems:
- fixed focal plane
- no focus cues 😞
- cannot drive accommodation with rendering!

\[
\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}
\]
Stereopsis (Binocular)

Oculomotor Cue

Vergence

Focus Cues (Monocular)

Visual Cue

Binocular Disparity

Accommodation

Retinal Blur
Stereopsis (Binocular)

- Oculomotor Cue
 - Vergence

Focus Cues (Monocular)

- Accommodation

Visual Cue

- Binocular Disparity
 - Retinal Blur
Mixed Reality or Pass-through VR

(not really covered in this class, but closely related)
Apple Vision Pro (supposedly) has 14 cameras!

- 4x front- and side-facing for SLAM.
- **2x for pass through.**
- 4x for eye & face tracking.
- 2x for torso tracking.
- 1x for gesture tracking.
- 1x time-of-flight sensor.
What’s Pass-through VR?

- How you see the physical environment (room, people, your body parts)
- Pass-through = video camera(s) record the scene, typically do some 3D reconstruction, then re-render on digital display for stereo vision
- Issues:
 - Resolution
 - Latency
 - Image quality (color, noise, reconstruction fidelity, …)
 - Dynamic range / contrast
 - …
(Optical See-through) Augmented Reality

(not really covered in this class, but closely related)
Pepper’s Ghost 1862
Microsoft HoloLens

- diffraction grating
- small FOV (30x17), but very good image quality
Microsoft HoloLens 2

- laser-scanned waveguide display
- claimed 2K resolution per eye (2560x1440), probably via "interlaced" scanning
- field of view: 52° diagonally (3:2 aspect, 47 pixels per visual degree)
Video-based AR: ARCore, ARKit, ARToolKit, …
Your first (unofficial = we won’t check) homework:

Book a demo session with the Apple Vision Pro at the Apple Store (e.g., in the Stanford Mall)
EE267 Instructors

Gordon Wetzstein
Associate Professor of EE/CS

Suyeon Choi
Research Assistants and EE267 – VR experts!

Manu Gopakumar
About EE 267

• experimental class, only taught at Stanford

• lectures + assignments = one big project – **build your own VR HMD**

• all hardware provided, but must return at the end

• enrollment limited, because it’s a lab-based class and we only have limted hardware kits – **share kits to let more students take the class!**

• 1 or a few guest lectures by leaders toward the end of the quarter
About EE 267 - Goals

• again, primary goal: build your own HMD!

• learn what is necessary to get there along the way:
 • computer graphics / real-time rendering
 • human visual system
 • magnifying optics
 • orientation (i.e. “3 DoF”) and pose (i.e. “6 DoF”) tracking

• very technical course! lots of math and programming!!
About EE 267 – Learning Goals

• understand fundamental concepts of VR and Computer Graphics

• implement software + hardware of a head mounted display

• learn basic WebGL/JavaScript and Arduino programming
What EE 267 is not!

• **not a** “build VR application in Unity” course, although you can do that in your project

• **not a** “here is a high-level overview of VR” course – you need to implement everything discussed in the lectures in your weekly assignments

• **not a** super hard course, but requires consistent work effort and time commitment throughout the quarter
HMD Housing & Lenses

VRduino

IMU & Teensy

Vibration Motors

Flex Sensors

6” or 5.5” LCD & HDMI Driver Board

HDMI Cable

2x USB Cable
HMD Housing and Lenses

- View-Master VR Starter Kit ($15-20) or Deluxe VR Viewer ($23)
 - implements Google Cardboard 1.0/2.0
 - very durable – protect flimsy LCDs
Display

- Small LCDs, either 6” or 5.5”
- HDMI driver boards included
- super easy to use as external monitor on desktop or laptop
VRduino

- Arduino-based open source platform for:
 - orientation tracking
 - positional tracking
 - interfacing with other IO devices
- custom-design for EE 267 by Keenan Molner
- all HW-related files on course website
VRduino

- Teensy 3.2 microcontroller (48 MHz, $20) for all processing & IO
- InvenSense 9250 IMU (9-DOF, $6) for orientation tracking
- Triad photodiodes & precondition circuit ($1) for position tracking with HTC Lighthouse
Some Student Projects - Input Devices

- data gloves with flex sensors
- different types of controllers with tactile feedback via vibration motors
- all connected to VRduino GPIO pins

(images from Adafruit.com)
About EE 267

- all important info here: http://stanford.edu/class/ee267/
- plenty of (zoom) office hours and Ed Discussion: see website
- contact: ee267-spr2324-staff@lists.stanford.edu
About EE 267 - Prerequisites

• strong programming skills required (ideally JavaScript) do NOT take this course if you have not programmed!

• basic linear algebra required – we will start dreaming about 4x4 matrices (must know what a matrix, matrix-vector product, etc. is)

• introduction to computer graphics or vision helpful
About EE 267 – Lectures & Labs

• 2 lectures per week: Tue/Thu 12-1:50 pm
 • Video recordings:
 1. No videos (default options)
 2. May record lectures on zoom and upload on canvas (don’t rely on it!)

• 1 lab per week starting in week 1 (do at home, will release writeups and videos with links to online tutorials and other important things)

• you will need the skills of the lab to complete the homework, so do the lab first and then start working on the homework!
About EE 267 – Labs & Assignments

• labs and homeworks released every Friday

• do all of these at home by yourself or in small teams

• we will hand out all required hardware (details later)
About EE 267 – Office Hours

- Gordon (instructor): Mondays 1-2 pm, Packard 236
talk about projects, VR, course logistics, etc.

- Suyeon (TA): Tue, 11am-12pm, Packard 104

- Manu (TA): Thu, 1:30-2:30pm, Packard 104
talk about labs, assignments, …

No zoom by default!
EE 267 – 3/4 unit version

Both versions:

• 6 assignments covering all aspects of VR tech: 2x basic computer graphics, 2x perception+graphics+optics, 2x tracking

• Final project (hardware, software, or perceptual experiments) worth ~ 2x regular homework

3 Unit version:

• 1-2 page project report

4 Unit version:

• 6–8 page project report required (more details on website)
EE 267W – 5 unit WIM version

• satisfies writing in the major requirement

• only available for undergraduates already enrolled in the 4 unit version

• will get extra weekly writing and peer-reviewing assignments + 2 writing / presentation workshops

• talk to instructors if you want to do this in first week of class!
Requirements and Grading

- **6 assignments** (teams of ≤ 2): 60%
- 80 minute in-person midterm: 20%

- **project** (teams of ≤ 3): 20%
 - discuss project ideas with TA & instructor!
 - final presentation (poster/demo session) on 5/30/2024
 - reports & code due (gradescope): 5/31/2024, 11:59pm
Course Project Deliverables

- **May 30, 11am – 1:30pm:** In-person poster/demo session
 - By default: show demo on your own HMD or some commercial HMD
 - Generally, we do not provide commercial HMDs for your project
 - A few items can be lent out for the project – limited quantity!
 - Show a poster for non-demoable projects (see template on website)
Course Project Deliverables

- **May 31 (11:59pm):** report + source code

- report (3 unit course version) = 1-2 page summary with the same topics listed below, just shorter (think “extended conference abstract”)

- report (4/5 unit course version) = conference paper format 6-8 pages with
 - abstract
 - introduction and motivation
 - related work
 - your thing
 - results, qualitative and quantitative evaluation
 - discussion, future work, and conclusion
 - references (scientific papers, not websites)
 - see latex template on website (will be there)
Possible Course Projects

• be experimental!

• for example:
 • Default: build an elaborate virtual environment, e.g. with unity
 • psycho-physical experiments (e.g. test stereo rendering with color/gray, low-res/high-res, …)
 • hardware projects: IMU, positional tracking, eye tracking, haptics, …
Relevant Scientific Venues

- ACM SIGGRAPH / SIGGRAPH Asia conferences (general computer graphics)
- IEEE VR, ISMAR, VRST conferences (focused on VR/AR)
- HCI conferences: ACM SIGCHI, UIST, …
- Optics journals: OSA Optics Express, Optics Letters, Applied Optics, …
Tentative Schedule

http://stanford.edu/class/ee267/
Questions?