
Homework 3: Foveated Rendering, Depth of Field,
Anaglyph Stereo Rendering

EE267 Virtual Reality 2024

Due: 04/25/2024, 11:59pm

Instruction

Students should use JavaScript for this assignment, building on top of the provided starter code found on the course
webpage. We recommend using the Chrome browser for debugging purposes (using the console and built-in debug-
ger). Make sure hardware acceleration is turned on in the advanced settings in Chrome. Other browsers might work
too, but will not be supported by the teaching staff in labs, piazza, and office hours.

The theoretical part of this homework is to be done individually, while the programming part can be worked on in
groups of up to two. If you work in a group, make sure to acknowledge your team member when submitting on
Gradescope. You can change your teams from assignment to assignment. Teams will share handed-out hardware
(later on in the course).

Homeworks are to be submitted on Gradescope (sign-up code: RKJZDW). You will be asked to submit both a PDF
containing all of your answers, plots, and insights in a single PDF as well as a zip of your code (more on this later).
The code can be submitted as a group on Gradescope, but each student must submit their own PDF. Submit the PDF
to the Gradescope submission titled Homework 3: Foveated Rendering, Depth of Field, Anaglyph Stereo Rendering and
the zip of the code to Homework 3: Code Submission. For grading purposes, we include placeholders for the coding
questions in the PDF submission; select any page of the submission for these.

When zipping your code, make sure to zip up the directory for the current homework. For example, if zipping up
your code for Homework 1, find render.html, go up one directory level, and then zip up the entire homework1
directory. Your submission should only have the files that were provided to you. Do not modify the names or
locations of the files in the directory in any way.

Please complete this week’s lab and watch the video before you start to work on the programming part of this
homework.

https://stanford.edu/class/ee267/
https://stanford.edu/class/ee267/

1 Theoretical Part

(i) (Vergence) Vergence refers to an oculomotor process in the human visual system where the eyeballs rotate
in their sockets as we fixate on objects at different depths. The purpose of vergence is to keep the fixated on
object on the foveas of both eyes. To achieve this, the eyes will be almost parallel when we fixate on an object
that is far away, and they rotate inwards when we fixate on an object close by.

In Figure 1, the eyes fixate on 𝐩𝟏 but there is also another point 𝐩𝟐 in the scene that the eyes could alternatively
fixate.

𝑥

𝑧

𝑖𝑝𝑑 = 64𝑚𝑚

𝑝*

𝑝+

𝜃+

𝜃*

𝑜
𝑒* 𝑒+

Figure 1: An illustration of the eyes fixating on point 𝑝1,2, resulting in vergence angle 𝜃1,2. The origin, 𝑜, is placed at the
midpoint of the two eyes.

(a) Given 𝐩𝟏 = (200,−500)mm, 𝐩𝟐 = (−200,−250)mm, and an interpupillary distance of 𝑖𝑝𝑑 = 64mm, compute
the vergence angles 𝜃1 and 𝜃2, which correspond to the eyes fixating on 𝐩𝟏 and 𝐩𝟐, respectively. For this
question, we neglect the finite diameter of the eyeballs and only consider their centers. (5pts)

(b) Derive a parametric representation (i.e., a formula) that models the set of points 𝐩𝐢 = (𝑥𝑖, 𝑧𝑖) with the same
vergence angle as 𝑝1. Express the relation as a function of 𝑥𝑖 (i.e., 𝑧𝑖 = 𝑓 (𝑥𝑖)). Plot this curve and label
the coordinates of: the location of the eyes, the points on the curve that are farthest to the left and right,
and the point farthest from the eyes in the 𝑧 direction. (5pts)

Hint: This is called the horopter, look it up online for more information. You might find the following
trigonometric identity useful: tan−1(𝑥) + tan−1(𝑦) = tan−1(

𝑥+𝑦

1−𝑥𝑦
). You may need to re-derive part (a) to

get your expression in this form.

(ii) (Retinal Blur) Accommodation is another oculomotor process. Here, the eye changes its focal power by
deforming the crystalline lens via the ciliarymuscles. Thismechanism ensures that the fixated object is focused
on the retina. Inevitably, this means that objects at other distances appear blurred. The accommodation state
of both eyes is usually linked. Given an eye accommodated at point 𝐩𝟑 and given the following parameters:

• diameter of the eye 𝐷𝑒 = 24 mm

• pupil size 𝑆𝑒 = 5mm

• distance from 𝐩𝟑 to lens 𝑑3 = 1000 mm

• distance from 𝐩𝟒 to lens 𝑑4 = 500 mm

𝒑𝟑𝒑𝟒𝒑𝟑$

𝑑&

𝑑'
𝐷)

𝑆)

Figure 2: The eye is accommodated at a distance 𝑑3 focusing on point 𝑝3. Points that are closer or farther away will be
blurred on the retina. The diameter of the blur circle on the retina is called circle of confusion.

(a) Compute the focal length of the lens using the Gaussian thin lens equation. (5pts)

(b) Assuming the eye is accommodating at point 𝐩𝟑, compute the diameter of the blurred point 𝐩𝟒′ on the
retina (i.e., the circle of confusion) in mm. (5pts)

(iii) (Visual Acuity) In vision science, the size of the retinal projection of an object is usually defined as the visual
angle it subtends (see Fig. 3). An object’s visual angle, measured in degrees, can be calculated via the equation
listed in Figure 3.

Figure 3: To model the size of the retinal image of an object, we usually use degrees of visual angle as a metric.

Visual acuity, or sharpness of vision, can be defined as the number of “cycles” from bright to dark that are
perceivable within one degree of visual angle; this is called cycles per degree or cpd. You can think of this as
the number of line pairs (pairs of black and white lines) one can distinguish clearly in one degree of visual
angle. A related concept to visual acuity is the minimum angle of resolution, or MAR, which is the smallest
angle between two points that can be resolved. The MAR, given in degrees (per cycle), is the reciprocal of
acuity. On average, humans resolve around 30 cpd (i.e., 20/20 vision), although some can distinguish as many
as 40–50 cpd. For reference, most VR displays today only support an acuity of around 5 cpd.

Apple claims that its retina displays have a pixel density higher than what a human can perceive. Is that true?
Let’s take a look at the screen in a 3rd generation 13.3” MacBook Pro. It has a resolution of 2560 × 1600 pixels.
Assuming square pixels and a viewing distance of 50 cm, what is the visual angle of one pixel? What is the
maximum acuity (in cpd) that the display can support at this distance? Is it higher or lower than the 30 cpd
that humans can perceive? (5pts)

(iv) (Eccentricity and Visual Acuity) As discussed in class, the distribution of photoreceptors on the retina is
not uniform. The density of the cones is much higher in the fovea than in the periphery of the visual field,
which results in visual acuity decreasing rapidly away from the fovea. It turns out that a simple linear model
is quite accurate in modeling this falloff. The linear model matches both anatomical data (e.g., photoreceptor
density) as well as performance on low-level vision tasks. This model is defined as

𝜔 = 𝑚𝜃𝑒 + 𝜔0

where 𝜔 is the MAR in degrees (per cycle), 𝜃𝑒 is the eccentricity angle in degrees, 𝜔0 is the smallest resolvable
angle in degrees (per cycle), and 𝑚 is the MAR slope. For this question, you may assume 𝑚 = 0.0275, 𝜔0 = 1

48
°.

𝒑𝟓

𝒙

𝒚

fovea
𝜃&

Figure 4: The distance of a point’s retinal projection to the fovea is called eccentricity, here denoted as 𝜃𝑒 , and measured
in degrees.

(a) Given a point 𝐩𝟓 at the location 𝑥 = 400 mm and 𝑦 = 300 mm, what is the eccentricity of this point on
the retina when the eye looks down the 𝑥 axis? (5pts)

(b) What is the highest frequency (in cpd) that one would be able to resolve at that eccentricity? (5pts)

Programming Part PDF Deliverables

The following questions in the programming part ask you to provide written responses:

• 2.4.4 Anaglyph Perceptual Question (5pts)

Make sure to append your responses to the end of the PDF submission.

2 Programming Part

In this week’s homework we will render our first 3D teapot via anaglyph stereo! Before that we will implement and
experiment with a few other important concepts of VR: foveated rendering and depth-of-field rendering.

The purpose of foveated rendering is to save rendering time by taking advantage of the non-uniform distribution
of photoreceptors on the retina. Gaze tracking is required to estimate where the user fixates on the screen. With
the known gaze position on the screen, we render the region around this position at the highest possible display
resolution, but then gradually decrease the resolution at farther distances without the user noticing.

Depth-of-field rendering will try to make a rendered image look more realistic by simulating the limited depth of
field of the eye. For this technique, we need to know at what distance the eye is accommodated; we simply use the
distance of the fixated object as the accommodation distance. Further, we need to blur every object in the image
in a depth-dependent manner, such that the size of the blur kernel depends on the distance of that object to the
accommodation distance of the user. Unfortunately, this technique does not save computation, it actually adds to it,
but it may create a more realistic and immersive experience.

Finally, stereo rendering allows you to see a 3D image with the use of anaglyph glasses.

Note that in the starter code, you can flip between these renderingmodes by pressing the button at the top left corner,
or by pressing the 1–4 buttons on your keyboard. It will make it easier to see the difference between the modes.

Tip: You’ll be implementing several shaders in GLSL, which can be difficult to debug. You can’t use print state-
ments, but you can instead usegl_FragColor to serve a similar purpose. For example, you can setgl_FragColor
= vec4(1.0, 0.0, 0.0, 1.0) (red) to check if an if statement evaluated to true. You can also set
gl_FragColor.r to the output of distToFrag() to see if the distances make sense. Remember that any values
will be clamped to the [0,1] range, so rescale the distance first; e.g., divide by 2000 to make “red” mean ≥2 m away.

2.1 Setting up your display parameters

Each of the rendering methods we will implement depend on your specific monitor. Therefore, you need to update
screenDiagonal in render.js to the value of the monitor that you are using for this homework. You need
to use a ruler or a measuring tape to determine the exact dimensions of your monitor (or better: look up the specs
listed by the manufacturer)!

2.2 Foveated Rendering

As mentioned above, the primary goal of foveated rendering is to save computation time by taking advantage of the
non-uniform distribution of photoreceptors on our retina. The falloff of visual acuity with eccentricity is shown in
Figure 5. At a given eccentricity, the minimum angle of resolution is given by the green line (see equation above).
Therefore, one would not be able to resolve objects that subtend a smaller visual angle than this MAR at a particular
eccentricity. Similarly, for a given visual angle or MAR, we can calculate the eccentricity angle at and after which
this angle is smaller than or equal to the smallest resolvable feature size. You can see that the farther from the fovea
we are, the lower the image resolution can be without the user noticing.

Tominimize computational cost, wewould like to follow the green line as best as possiblewith our rendering strategy.
Rendering features with visual angles far below this line means that we are rendering extra resolution that users will
not be able to perceive. In current graphics accelerators (GPUs), it is not straightforward how to implement this

Figure 5: The minimum angle of resolution (MAR) 𝜔 increases linearly with increasing eccentricity, i.e., distance from
the fovea.

continuously varying resolution efficiently. Thus, we follow the foveated rendering scheme proposed by Guenter et
al. and divide the visual field into three discrete layers: the foveal layer that has the highest resolution supported by
the screen, themiddle layer which is rendered at a slightly lower resolution, and the outer layer which is rendered at
the lowest resolution. At each layer, we support a minimum feature size that is equal to or smaller than what we can
perceive. If implemented correctly, we should not see a difference between the foveated image and a full-resolution
image.

We will implement a somewhat inefficient variant of foveated rendering in the GLSL fragment shader
fShaderFoveated.js. Our variant is mostly educational in that it teaches you the basic idea of foveated ren-
dering without actually reducing computational cost. In fact, our implementation actually increases it but that is
okay for now.

For our foveated rendering implementation, we will use a computer graphics technique called multi-pass rendering.
In the first rendering pass, we render an image not on the screen but directly into a chunk of memory on the GPU
that can later be accessed as a texture. This chunk of memory is called framebuffer object (FBO) and in Three.js
the FBO is wrapped in WebGLRenderTarget. In this first rendering pass, we use the Phong shaders from HW2
defined in fShaderMultiPhong.js and vShaderMultiPhong.js. The foveation is implemented in the
second rendering pass, where we blur the sharp image produced in the first rendering pass according to our MAR
calculations. We will use separate vertex and fragment shaders for this rendering pass, which implements a spatially
varying blur of the image.

The shader for the second rendering pass is defined in fShaderFoveated.js and vShaderFoveated.js.
Your starter code and this shader already implement the double-pass rendering; the FBO generated in the first ren-
dering pass is passed into the second pass as a texture by rendering a rectangle that fills the entire screen (vertex
coordinates [–1,1,0], [1,1,0], [–1,–1,0], [1,-1,0]) and texture coordinates [0,0], [1,0], [1,1], [0,1]). The shader then
copies the texture from the first rendering pass to the output with:

https://www.microsoft.com/en-us/research/wp-content/uploads/2012/11/foveated_final15.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/11/foveated_final15.pdf

gl_FragColor = texture2D(textureMap, textureCoords);

The image from the first rendering pass is stored in textureMap, which can be indexed using the texture2D()
function and the interpolated texture coordinates from the rectangle stored in textureCoords. Remember that
texture the coordinates 𝑢, 𝑣 are normalized to the range [0, 1], with the origin in the bottom left corner. To index into
pixel (500, 600) of a texture whose initial size was 800 × 1000 pixels, you would need to use the texture coordinate
(500/800, 600/1000) = (0.625, 0.6). It is important for you to understand this seemingly simple pass-through shader
before moving onto foveation. Try and play around with it a bit to get some more intuition before moving on.

Remember that the second rendering pass implements a spatially varying image blur based on the user’s fixation
point on the screen and the distance of a pixel to that point. Ideally, the fixation point would be determined by an eye
tracker, but for the purpose of this homework we will use the mouse pointer to control the gaze position represented
by a black dot in a browser. You can move the gaze position by dragging the mouse while pressing the shift key on
the keyboard.

2.2.1 Visual Angle of a Pixel (5pts)

Youwill first have to determine the visual angle that one pixel on yourmonitor covers. Implement thecomputePixelVA()
function in foveatedRender.js (should be 1 line of code). The output, i.e. visual angle per pixel in degrees, is
stored in the pixelVA member variable. We will test that this was implemented correctly with our unit checker
code.

2.2.2 Eccentricity for some MAR (5pts)

We can now determine the regions of the foveated blur, defined by eccentricity angles 𝑒1 and 𝑒2 (see Fig. 5). Implement
the computeEcc() function in foveatedRenderer.js, which takes in the MAR you would like support and
returns the eccentricity (in degrees) at which that resolution becomes imperceptible. The equation to compute the
MAR is provided in the lecture slides (use 𝑚 = 0.0275 and 𝑤0 = 1

48
). This function will be checked for correct

implementation in our unit checker code.

2.2.3 Foveation Zones (5pts)

We can choose theMAR values to be whatever wewish. In general, wewould choose them such that the pixel savings
would be greatest, but for this task we will choose them such that the middle layer will have 1/4 the resolution
of the foveal layer, and the outer layer will have 1/8 the resolution of the foveal layer. Fill in the arguments to
computeEcc() in the foveatedRenderer.js, which assigns e1 and e2 based on the above description.
Remember that the MAR at 0 degrees eccentricity is two times the visual angle of one pixel, which is the
inverse of the maximum cycles per degree of the display.

2.2.4 Fragment Shader Foveation Blur (10pts)

Now that all of the high-level parameters are set, you will need to implement the blurring itself. Apply a 2D Gaussian
blur to the middle and outer regions with the 1D blur kernels provided in the shader (middleBlurKernel and
outerBlurKernel). Remember, that a 2D Gaussian filter is separable and you can construct a 2D blur kernel by
taking the outer product of a 1D Gaussian blur kernel with itself. These Gaussian kernels correspond to roughly
reducing the maximum frequency by a factor of 1/4 and 1/8 respectively. When figuring out the foveation regions
in the shader you can use the small angle approximation to determine how far a given fragment is from the gaze
position (i.e., assume that the total visual angle is linearly proportional to the number of pixels). The distance to the
screen is not needed with this approach.

You can implement the blur at each fragment with nested for loops. When doing so, you want to index into pixels
of the FBO/texture of the first pass around the current fragment position by varying the texture coordinate at each
step of the for loops. Doing a lookup into the next fragment over to the left, for example, would correspond to
subtracting by 1/(window width or height in pixels).

Figure 6: Foveated rendering. Here is something you might see when you implement the foveated rendering. Please note
that this is exaggerated, and the actual blurs you will implement will be much more subtle. This is just so you can see
the effect of the of the different regions in this document.

2.3 Depth-of-Field Rendering

The next task is depth-of-field rendering, where instead of trying to save computation we attempt to make things
more realistic. Wewill again use amulti-pass rendering approachwhere the first pass saves the image and depthmaps
into an FBO and the second pass blurs that image. This time, the blur depends on the depth of the fragment and the
accommodation state of the user’s eye. You can find this new shader in fShaderDof.js and vShaderDof.js.

2.3.1 Distance to Fragment (5pts)

Your first task will be to determine the depth of each fragment (i.e., the Euclidean distance to camera position in view
space). Remember that the depth map is normalized (between 0 and 1) and does not correspond to distances. Thus,
we have to invert the projection transform (similar to Q1 of HW2). For this, you will need the projection matrix,
the inverse projection matrix, and the fragment’s (normalized) depth buffer value. You can access the depth buffer
value of a fragment by indexing into the depthMap in the fragment shader the same way we can access the color
information from textureMap; use the first index of the texture (i.e., [0] or .x) because not all hardware returns
anything in the other indices. Refer to Q1 of HW2 for how to perform this computation. Implement this conversion
in the distToFrag() function in fShaderDof.js. The argument, p, to the function is the texture coordinate
of the fragment in question.

2.3.2 Computing the Circle of Confusion (5pts)

Knowing the accommodation distance given by the depth value of the fragment below the gaze position and the depth
of the other fragments, we can now estimate the amount of blur each fragment would exhibit. Update the function
computeCoC() to calculate the circle of confusion (diameter of blur circle) exhibited at the accommodation distance,
not the retina (i.e., pretend the screen is at the accommodation distance and compute the circle of confusion for each
fragment relative to that distance)! You need the fragment depth, accommodation distance, and pupil diameter. All
of these values are in mm. Hint: use similar triangles to compute the circle of confusion.

2.3.3 Retinal Blur (10pts)

Now you have everything you need to implement the blur itself. Implement it with a double for loop in the
computeBlur() function. The loop will average all the neighboring pixels that fall into the circle of confusion of
that particular fragment. Loop over amaximum search radius of 11 pixels. In that search, average only over the pixels
that fall within the circle of confusion in pixels. Remember that the 𝑢 and 𝑣 texture coordinates are normalized to [0,
1]. To move one pixel to the left from the current texture coordinate, you will have to move by 1/(window width or
height in pixels) in texture coordinate units. Return the color value of the blurred fragment from computeBlur()
and assign it to gl_FragColor. This will be the value displayed on the screen.

2.4 Anaglyph Rendering (25pts)

Rendering a 2D teapot can get a little boring, especially if that’s all you have been seeing for these last 2 weeks. So
let’s make it pop out of the screen with anaglyph stereo rendering! You will see your first 3D teapot after completing
this task.

This time, you will need three rendering passes to get the right image displayed on the screen. You can find these
passes in the animate() function in render.js. The first pass will render the scene from the viewpoint of the
left eye into an FBO (using the Phong shader). The second pass will render the scene from the viewpoint of the right
eye into a different FBO (using the Phong shader). The third rendering pass will access the textures from these two
FBOs, convert the respective color values to grayscale, and assign the images to the color channels of the anaglyph
glasses. We have already implemented all of the nitty gritty stuff to make the multiple rendering passes work but
will require you to implement key elements – the view and projection matrices for the left and right eyes, and the
fragment shader that will combine the two views in the third rendering pass.

When you first run the starter code in the anaglyph mode you won’t see anything interesting happening. That’s
because we render the same image to each FBO and just did a simple pass-through of one of the viewpoints to the
screen. Your first tasks will be to generate the correct view and projection matrices in the update() function in
transform.js. These matrices are the ones that will be used to compute the renderings from the left and right
viewpoints of the scene that will be saved in the FBOs.

2.4.1 View Matrix Computation (5pts)

Modify the computeViewTransform() function in transform.js, which you implemented in HW1, to cor-
rectly compute the viewmatrices for the left and right eyes for anaglyph rendering. In addition toStateController.state,
the input of this function has halfIpdShift, whose absolute value is the half of the interpupillary distance
(default value: 64 mm). halfIpdShift is positive for a left eye and negative for a right eye.

2.4.2 Projection Matrix Computation (5pts)

Compute the projectionmatrices for the left and right eyes inupdate() and assign them to theanaglyphProjectionMat
member variable. In the starter code, computePerspectiveTransform() is implemented for you by using
THREE.Matrix4().makePerspective(), which is equivalent to the one you implemented in HW1. Feel
free to use this function to compute the projection matrices. Essentially, you need to compute left, right,
top, bottom for each eye based on the physical screen parameters (pixel pitch, window resolution, distance
from the viewer to the screen). These parameters are stored in dispParams, which is an instance of the class
DisplayParameters.

2.4.3 Color-Channel Multiplexing (10pts)

Once the stereo images are rendered, you will need to combine them in such a way that each eye sees a different
image when viewing the screen through anaglyph glasses. You will do this in the fragment shader defined in the
fShaderAnaglyph.js file. There are different ways of combining the color channels, as discussed in class, but
for this homework you will use the method of converting each RGB image to grayscale first, and then assigning the
grayscale left image to the red color channel of the output and the grayscale right image to the green and blue color
channels of the output. For the conversion to grayscale, you can use the formula: gray = 0.2989 × red + 0.5870 ×

green + 0.1140 × blue. Welcome to your first 3D teapot experience!

2.4.4 Anaglyph PerceptualQuestion (5pts)

A different way of doing anaglyph rendering is by assigning the red color channel of the left image directly to the
red color channel of the output, and the green and blue color channels of the right image directly to the green and
blue color channels of the output. One advantage of this method is potentially gaining back some color lost by
converting the images to grayscale. However, there is a drawback to such a method. What is it? Think of some
scenes, specifically how the colors might impact the output. Provide your responses in the PDF with your solutions
to the theoretical part.

Questions?

First, Google it! It is a good habit to use the Internet to answer your question. For 99% of all your questions, the
answer is easier found online than asking us. If you cannot figure it out this way, post on piazza or come to office
hours.

https://www.google.com/

