
Homework 2: Lighting, Shading, and GLSL
EE267 Virtual Reality 2024

Due: 04/18/2024, 11:59pm

Instruction

Students should use JavaScript for this assignment, building on top of the provided starter code found on the course
webpage. We recommend using the Chrome browser for debugging purposes (using the console and built-in debug-
ger). Make sure hardware acceleration is turned on in the advanced settings in Chrome. Other browsers might work
too, but will not be supported by the teaching staff in labs, piazza, and office hours.

Each homework will have a theoretical and programming part. The theoretical part of the homework is to be done
individually, while the programming part can be worked on in groups of up to two. If you work in a group, make sure
to acknowledge your team member when submitting on Gradescope. You can change your teams from assignment
to assignment. Teams will share handed-out hardware (later on in the course).

Homeworks are to be submitted on Gradescope (sign-up code: RKJZDW). You will be asked to submit both a PDF
containing all of your answers, plots, and insights in a single PDF as well as a zip of your code (more on this later).
The code can be submitted as a group on Gradescope, but each student must submit their own PDF. Submit the PDF
to the Gradescope submission titled Homework 2: Lighting, Shading, and GLSL and the zip of the code to Homework
2: Code Submission. For grading purposes, we include placeholders for the coding questions in the PDF submission;
select any page of the submission for these.

You can find starter code for the homework on our github repository (see course website for the link). Please down-
load and use this starter before starting to work on the programming part of this assignment.

When zipping your code, make sure to zip up the directory for the current homework. For example, if zipping up
your code for Homework 1, find render.html, go up one directory level, and then zip up the entire homework1
directory. Your submission should only have the files that were provided to you. Do not modify the names or
locations of the files in the directory in any way.

Please complete this week’s lab and watch the video before you start to work on the programming part of this
homework.

https://stanford.edu/class/ee267/
https://stanford.edu/class/ee267/


1 Theoretical Part

1.1 Simple Scanline Interpolation (5pts)

Given the polygon shown in the first figure below with vertices 𝐯𝟏, 𝐯𝟐, 𝐯𝟑 with coordinates (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, 2, 3 and
intensities at each vertex 𝐼1, 𝐼2, 𝐼3, calculate the intensity at point 𝐩 at (𝑥, 𝑦). Assume the coordinates of 𝐦 and 𝐧 are
(𝑥𝑚, 𝑦𝑚) and (𝑥𝑛, 𝑦𝑛), respectively.

𝒚

𝒙

𝒗𝟏

nm p

𝒗𝟐

𝒗𝟑

1.2 Phong Lighting (30pts)

In this problem, we are going to “reverse transform” vertices from window space to view space where lighting
calculations actually happen, and assign colors to each vertex based on the Phong Lighting model. As illustrated
in the figure below, suppose we have a screen window with resolution of 6 × 6 pixels, both 𝑥 and 𝑦 components of
pixel coordinates range from 0 to 5. The red points 𝐯𝟏, 𝐯𝟐 and 𝐯𝟑 are vertices in window space while the blue points
represent the set of fragments that were determined by the rasterizer to lie within the primitive (i.e. the triangle)
spanned by the three vertices. You can think of fragments as a regular grid of pixels, each associated with a number of
attributes such as 2D position, RGB color, normal, depth, alpha value etc. The rasterizer determines which fragments
are inside a primitive and it interpolates vertex attributes such that each fragment inside the primitive receives a set
of interpolated attributes. Refer to the lecture slides or Marschner’s textbook if you are still confused. It is important
to understand the concept of the rasterizer before moving on.

Given parameters of the three vertices:

• vertex coordinates in window space: 𝐯𝟏 = (1.5, 4), 𝐯𝟐 = (0.5, 1), 𝐯𝟑 = (4.5, 0.5)

• depth values in window space with range [0, 1]: 𝑧1 = 0.7, 𝑧2 = 0.5, 𝑧3 = 0.3

• normals in view space: 𝐧1 = (−
2

3
,

2

3
,

1

3
)
𝑇 , 𝐧2 = (−

2

3
, −

2

3
,

1

3
)
𝑇 , 𝐧3 = (

2

3
, −

2

3
,

1

3
)
𝑇

(i) Compute 3D coordinates of all three vertices in view space, given the following parameters: (15pts)

• aspect = width
height = 1

• fovy = 90
◦

• zNear = 2, zFar = 22



𝒗𝟏

𝒗𝟐
𝒗𝟑

0 1 2 3 4 5

0

1

2

3

4

5

𝒙

𝒚

the projection matrix can be constructed as

𝑀𝑝𝑟𝑜𝑗 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 −
6

5
−

22

5

0 0 −1 0

⎞

⎟

⎟

⎟

⎟

⎠

and you may use this matrix in your calculation.

Hint: If you have a vector in NDC coordinates, you need to transform it into clip space by multiplying 𝐯𝑛𝑑𝑐 by
𝑤𝑐𝑙𝑖𝑝 and plugging in 𝑤𝑐𝑙𝑖𝑝 as the fourth element. The problem is that we do not know 𝑤𝑐𝑙𝑖𝑝 directly. We can
compute it however, from 𝑧𝑛𝑑𝑐 and certain portions of the projection matrix. If we assume that the projection
matrix has the following structure,

𝑀𝑝𝑟𝑜𝑗 =

⎛

⎜

⎜

⎜

⎜

⎝

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 𝑇1 𝑇2

0 0 𝐸1 0

⎞

⎟

⎟

⎟

⎟

⎠

where ⋆ denotes trivial elements that are not being used. Since we know

𝑧𝑐𝑙𝑖𝑝 = 𝑇1 × 𝑧𝑣𝑖𝑒𝑤 + 𝑇2

𝑤𝑐𝑙𝑖𝑝 = 𝐸1 × 𝑧𝑣𝑖𝑒𝑤

𝑧𝑛𝑑𝑐 = 𝑧𝑐𝑙𝑖𝑝/𝑤𝑐𝑙𝑖𝑝

Then we can find 𝑤𝑐𝑙𝑖𝑝 as follows

𝑤𝑐𝑙𝑖𝑝 =

𝑇2

𝑧𝑛𝑑𝑐 −
𝑇1

𝐸1

The derivation is not covered here but you are encouraged to derive it by yourself; this will not be graded.



(ii) Compute the color of each vertex using the Phong lighting model given the following conditions: (10pts)

• point light source located at 𝐥 = (5, 5, 5) in view space with RGB color 𝐈 = (10, 10, 10)
𝑇

• diffuse material properties: 𝐦𝟏 = (1, 0, 0)
𝑇 , 𝐦𝟐 = (0, 1, 0)

𝑇 , 𝐦𝟑 = (0, 0, 1)
𝑇

• neglect specular and ambient components of lighting

• consider square distance falloff (𝑘𝑐 = 𝑘𝑙 = 0, 𝑘𝑞 = 1)

Note: In the Gouraud shading model (i.e., per-vertex lighting), the lighting calculations are done for each
vertex similar to what you just calculated. Afterward, the rasterizer will interpolate the color values of the
three vertices over the entire triangle (similar in spirit to what you just did). Remember that the Phong shading
model (i.e., per-fragment lighting) uses the rasterizer to interpolate the vertex positions and also the normals
over the triangle and then performs the lighting calculations per fragment.

In this particular case, Gouraud shading includes lighting calculations for the three vertices whereas Phong
shading would require lighting calculations for all eight fragments that are inside this triangle. This would
make per-fragment lighting significantly slower.

(iii) Oftentimes, per-fragment lighting involves more calculations than per-vertex lighting. Are there cases when
this is not true? When specifically would Phong shading (i.e., per-fragment lighting) be faster than Gouraud
shading (i.e., per-vertex lighting)? (5pts)

Programming Part PDF Deliverables

The following questions in the programming part ask you to provide written responses:

• 2.1.1.3 Attenuation Factor Observations

• 2.2.2.1 Gouraud vs Phong Shading Comparison

Make sure to append your responses to the end of the PDF submission.



2 Programming Part

When you first load up the starter code for this week’s homework, you will see 5 dimly lit teapots (see Figure 1.
The color would be different from the starter code.). They seem pretty bland and unrealistic. Well, that’s because
we haven’t modeled the lighting yet, which is the point of this homework! Accurately modeling light interactions
with materials can be complicated, but we also want to do it fast. Remember that a key part of VR/AR is keeping
latency to a minimum. Therefore, we approximate the lighting calculation in ways to make them computationally
efficient while still looking plausible. For this purpose, we use the Phong lighting model. You will be implementing
this lighting model in various ways using GLSL shaders. By the end of the assignment you will have created a scene
that looks like Figure 2. The color may not match because the figures use our old screenshots.

(You may see some warnings in the console. They are expected and should disappear after implementing all ques-
tions.)

Figure 1: teapots with only ambient light Figure 2: teapots with lighting models

We first need to approximate the light source itself. We typically want to approximate the color spectrum as three
separate color channels RGB and we neglect global illumination. In this homework, we will model light as either a
set of point sources (e.g., small light bulbs) or directional light sources (e.g., the sun or distant light sources), which
will be defined by their position or direction, respectively, and color.

In the starter code, a point light is set up in the initial scene. A new point source is added with each click of the Add
Point Light button and will appear as a new element in the pointLights struct array uniform variable in the
shaders. You will need to access these structs when doing your computations. You can also move the light sources
by clicking the Point Light Control button and dragging your mouse.

Remember that the color we perceive depends on both the light and the material the light bounces off. Therefore, we
must also define the material properties. These material properties are model dependent, and you may have many
different materials in a single scene. Material properties are passed to the shaders as uniform variables: ambient,
diffuse, specular, and shininess parameters as a struct for each color channel. These uniform variables
are defined in standardRenderer.js.

Another type of variable that you’ll be using in the shaders is an attribute, which is a variable associated with
each individual vertex. At a minimum the attributes must include vertex positions to be able to place a vertex, but
can include things like normals, colors, texture coordinates, etc. In Three.js, the attribute variables such as vertex
positions and normals are stored as properties of the THREE.Geometry class. If you are interested, you can view
all of the teapot’s attributes parsed to the shader program by typing teapots[0].geometry.attributes in



console. These are the attributes you will be operating on in the shaders.

GLSL supports many built-in functions that you might find useful for this assignment like dot(), to compute a dot
product, and reflect(), which computes the reflection of an incident ray off a surface with a normal. You can find
all of the GLSL functions with short explanations here. Even though the shader files are JavaScript files, the GLSL
code is embedded as string. Therefore, we encourage you to change the language setting to GLSL in your editor when
you edit the shader JavaScript files for syntax highlighting. Before you begin, please update the screenDiagonal
global variable in render.js with your physical screen’s diagonal in inches.

Tip: You’ll be implementing several shaders in GLSL, which can be difficult to debug. You can’t use print state-
ments, but you can instead usegl_FragColor to serve a similar purpose. For example, you can setgl_FragColor.r
(via vColor if you’re in the vertex shader) to the distance to the light source to see if it makes sense. Remember
that any values will be clamped to the [0,1] range, so rescale the distance first; e.g., divide by 2000 to make “red”
mean ≥2 m away.

After implementing the shader, you might see (warning X3557: loop only executes for 1 iteration(s), forcing loop to
unroll) in the Chrome’s console (you may not see it if you are on OSX). Even if you see it, you can ignore this
warning. You may keep seeing it in the following homework too.

2.1 Gouraud Shading Model (30pts)

You will first implement Gouraud shading, which implements per-vertex lighting (in the vertex shader) and then lets
the rasterizer interpolate the resulting colors to each fragment inside the primitives (i.e., triangles).

2.1.1 Diffuse Term (15pts)

2.1.1.1 Your first taskwill be to extend ambient lighting by the diffuse term invShaderGouraudDiffuse.js
and fShaderGouraudDiffuse.js. Your changes to these shaders will appear on the second teapot from the
left. The light sources in the scene appear in the pointLights array of structs. For this task, assume only a single
light source exists. Therefore, use the light source at the 0th index of the array.

In the shaders, extend the ambient lighting calculation by the diffuse term. Note that you will need the surface
normal (given in object space) at the current vertex to do this calculation, which corresponds to the corresponding
uniform variable in the provided vertex shader.

All lighting computations should be performed in the view coordinate system, such that the camera is in the origin
looking into the negative 𝑧 direction. That means, you need to transform the normal into the view coordinate system
by multiplying it by the 3×3 normal matrix. You will find the matrices necessary for this already defined as uniforms
in vShaderGouraudDiffuse.js. Also, assume that the light source position is given in world space. (10pts)

2.1.1.2 Attenuation Factor Add user-defined distance attenuation factors. Specifically, implement and compare
the distance falloff (𝑘𝑐 = 2, 𝑘𝑙 = 0, 𝑘𝑞 = 0.001) with the constant attenuation (𝑘𝑐 = 2, 𝑘𝑙 = 0, 𝑘𝑞 = 0). For this purpose,
you need to compute the distance between a light source and a vertex and calculate the appropriate distance falloff
term. In stateController.js, the attenuation factors are defined as THREE.Vector3(kc = 2, kl =
0, kq = 0). This gets mapped to the attenuation uniform variable in your shader files. (3pts)

Use the parameters (𝑘𝑐 = 2, 𝑘𝑙 = 0, 𝑘𝑞 = 0.001) for the rest of the implementations (Gouraud and Phong
shading with point light sources, but NOT for directional light sources).

https://www.khronos.org/files/webgl/webgl-reference-card-1_0.pdf


2.1.1.3 Attenuation Factor Observations Does enabling attenuation have a major impact on the appearance
of the scene? If so, how so? Include your responses in the PDF submission. (2pts)

2.1.2 Specular Term (5pts)

Diffuse lighting is a step in the right direction, but it does not support any view-dependent lighting effects. In this
task, extend the diffuse lighting model from the previous task to include specularities, following the Phong lighting
model described in class. Copy your diffuse lighting code into vShaderGourad.js first and then add the
specular term. This will show the specular highlights on the 3rd teapot, so that you can compare how diffuse-only
and diffuse+specular lighting work. Extend your diffuse vertex shader from part A by the specular term. For this
calculation you will need to compute the view vector from a 3D vertex position to the camera. Because you are
operating in view coordinates, the camera will be in the origin, but you need to make sure to transform your vertex
into the view coordinate system first. You might find the GLSL function reflect() to be useful for calculating
the perfect reflector. Pay close attention to the direction to which the reflection is expected.

2.1.3 Multiple Light Sources (10pts)

Expecting there to only be one light source in a scene is a little unrealistic, right? In this task you’ll extend the
Gouraud shading model to an arbitrary number of light sources.

Clicking the Add Point Light in the browser will add additional point light sources to the scene. These additional
light sources are represented in the pointLights array of PointLight structs in your shaders. Each element
represents a separate light source. Remember that only a single color vector represents what is displayed on the
screen at each pixel. This color, as per lecture slides, is the sum of the contributions from each light source interacting
with each vertex (in Gouraud shading).

Extend all of the vertex shaders you have implemented so far by supporting multiple point light sources. Once
complete, you should be able to add an arbitrary number of light sources and see the contribution of each light
source on the rendering. There is no need to submit anything in the PDF. Just submit your code, and we will check
its functionality.

2.2 Phong Shading Model (20pts)

Now that you’ve implemented Gouraud shading (i.e., per-vertex lighting), you’ll next work on implementing Phong
shading (i.e., per-fragment lighting) in the files vShaderPhong.js and fShaderPhong.js. For this purpose,
you need to write a simple GLSL vertex shader that does all the 3D transformations and a separate fragment shader
that does all the lighting calculations. As before, we will use the Phong lighting model and support multiple light
sources.

2.2.1 Vertex Shader (7pts)

Write the vertex shader. There should be no lighting calculations in the vertex shader, only transformations. Trans-
form the vertex and normal into the view coordinate system and write the results into the corresponding varying
variables (fragPosCam and normalCam) as the output of the vertex shader. Attributes stored as varying variables
will then automatically be interpolated by the rasterizer over the primitives and will be accessible for each fragment
in the fragment shader.

2.2.2 Fragment Shader (10pts)

Write the fragment shader. The attributes defined as outputs of the vertex shader will now be accessible as inputs to
the fragment shader. Note that the rasterizer did all the work for you and already interpolated these values to each



fragment. Thus, in the fragment shaderwe have access to the interpolated 3D position and normal, both given in view
space. It is possible that the interpolation process results in normals not being of unit length in the fragment shader,
even though the per-vertex normals were normalized. Thus, make sure to re-normalize them in the fragment shader
before doing the lighting calculations! You will perform the same lighting calculations that you already implemented
in the vertex shader in Section 2.1 for each fragment here. Remember to support multiple light sources, just like in
the Gouraud shading. The results of your Phong shading will appear on the second to right teapot.

2.2.2.1 Gouraud vs Phong Shading Comparison Compare Gouraud shading to Phong shading. How are they
different? What are the benefits and downsides of each shading method? Specifically, comment on both quality of
shading and computational load. You don’t need to actually measure any runtimes here, just briefly discuss them
theoretically. Report this comparison in your PDF submission. (3pts)

2.3 Directional Light Sources (10pts)

Until now we have been working with point light sources, which are sources with a given position in the world that
radiate isotropically in all directions and where light rays attenuate with distance (via the attenuation factor). These
are good light sources to model a light bulb or torch. When a light source is far away, however, the light rays hitting
an object are close to being parallel. It looks like the rays come from the same direction regardless of the position
of object and/or viewer. When a light source is modeled as being infinitely far away, all of its rays have the same
direction and it is called a directional light source. A directional light source is independent of position, and you
only need a direction vector to define the light source. This type of light source can be used to model, for example,
the sun.

Figure 3: point light source Figure 4: directional light source

Add support for an arbitrary amount of directional light sources in the vShaderMultiPhong.js and
fShaderMultiPhong.js files. Copy your code from vShaderPhong.js and fShaderPhong.js to start.
As with the point light sources, the initial scene has one directional light source, and clicking the Add Dir. Light
button will generate additional directional light sources in the scene. The calculation is very similar to the point light
source calculations from the previous task. Assume the provided direction of this light source is in world coordinates.
If you see uncharacteristic lighting conditions with the directional light source, think about the direction of the
directional light source vector and how it relates to the 𝐿 vector in the Phong shading model we defined in class.
Also, we typically do not assume that the intensity of light falls off for a directional light source, and therefore we
do not apply an attenuation factor to the directional light source.

Once again we will check functionality of the implementation, and there is no need to submit anything in the PDF.



Questions?

First, Google it! It is a good habit to use the Internet to answer your question. For 99% of all your questions, the
answer is easier found online than asking us. If you cannot figure it out this way, post on piazza or come to office
hours.

https://www.google.com/

