
Stanford University
Spr 2018-2019

Signal Processing and Linear Systems II

Lab 4: Touch-Tone Dialing (DTMF)

April 25, 2019

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 1

Todays Topics

• How does touch-tone (DTMF) dialing work

• Task 1: Generating the DTMF signals

• Task 2: Analyzing a single tone with the FFT

• Task 3: Processing the DTMF signal with a filter bank

• Task 4: Decoding the DTMF signal

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 2

Touch-Tone Dialing

• Touch tone signals are a combination of two sinusoids at different
frequencies (Dual Tone Multi-Frequency or DTMF for short)

– Lower frequency encodes the row of the key
– Higher frequency encodes the column

fc
1209 1336 1477 1633

697 1 2 3 A
fr, 770 4 5 6 B

852 7 8 9 C
941 * 0 # D

• Example: Key 6 produces the signal

y[nT] = cos(2π770nT) + cos(2π1477nT).

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 3

• Time between keys is at least 40 ms

• Key must be pressed for at least 40 ms

– Note that the frequency separation is as small as 73 Hz!
– This is only three cycles at 40 ms

• The duration and starting time of each key and space is unknown

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 4

Task 1: Generate a DTMF signal for given phone number

• Assume

– Each key is pressed for 0.5 s (a long time)
– Keys are spaced by 0.125 s
– The sampling rate is 8192 Hz

• Write a matlab m-file that takes a number

>> phone_number = [1 6 5 0 5 5 5 1 2 3 4];

and returns the signal

>> ttsignal = ttdial(phone_number)

• Encode your phone number, and play it back with sound(). Compare
it to the sound the phone makes when you dial. If you play it into the
mouthpiece of a phone, it should make the call! You can now make your
own robo-caller.

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 5

Task 2: Check the spectrum for a Signal Key

To check whether we are generating the right signals, we’ll use the FFT to
compute the spectrum of the signal from one key.

• The FFT of an N-point input computes the N frequencies from 0 Hz to
(N − 1)fs/N Hz in steps of fs/N Hz.

• For example, if we encode a single key

>> d5 = ttdial([5])

this will give 0.5 s, or 4096 samples of the signal for key 5. We would plot
the spectrum with

>> f = [0:4095]*fs/4096;

>> plot(f,abs(fft(d5)/length(d5)))

>> axis([500 1500 0 1]);

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 6

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, Hz

M
ag

ni
tu

de

DTMF Signal for Key 5

• Check digits 0, 3, 5 and 7 (one per row and column) to make sure your
are generating the right frequencies.

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 7

Task 3: Narrowband Filter Bank to Decode DTMF

• The FFT allows us to identify any frequency in the input.

• Since there are only seven frequencies, an easier solution is to use a bank
of narrowband filters, one per frequency.

BP1

BP2

BP5

BP3

BP4

BP6

BP7

Row
Index

Column
Index

y[nT]

Narrowband
Filters

697 Hz

1209 Hz

941 Hz

852 Hz

770 Hz

1336 Hz

1477 Hz

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 8

• Since a key press is as short as 40 ms, the filter should be less than
0.04 ∗ 8192 = 328 samples long.

• Subtask 3.1: Show that a 256 point Hamming window is sufficiently
selective. First note that the direct approach

>> h = hamming(256)’;

>> f = [0:255]*8192/256;

>> plot(f, abs(fft(h))/256);

>> axis([0 200 0 1]);

is hard to interpret. We need more spectral resolution.

• The spectral resolution is fs/N . Since fs is fixed, we need to increase N .
We do this by adding zeros

>> hp = zeros(1,1024);

>> hp(1:256) = h;

>> fp = [0:1023]*8192/1024;

>> plot(fp, abs(fft(hp))/1024);

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 9

>> axis([0 200 0 1]);

This simply interpolates, and doesn’t add any new information. However,
it does give a much more interpretable representation of the frequency
response.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Frequency, Hz

M
ag

ni
tu

de

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Frequency, Hz

M
ag

ni
tu

de

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 10

• Subtask 3.2: Generate narrowband bandpass filters by modulating the
Hamming window

>> tf = [0:255]/8192;

>> h1 = h.*cos(2*pi*f1*tf);

• This passes both sidebands of a sinusoid,

− fs/2 0 f1 f2− f2 − f1 fs/2

Bandpass Filter

A cosine input gives a cosine out (plus a phase shift).

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 11

• Filter the signal for your phone number. For example, if we filter the signal
for 1-650-555-1234 for the frequency 770 Hz, we get

0 1 2 3 4 5 6 7
−100

−50

0

50

100

Time, s

Am
pl

itu
de

since 770 Hz is the frequency for key row 2, which includes keys 4, 5, and
6.

• After we filter the signal, we need to detect whether a key was pressed in
a given interval.

• The key press we can consider a baseband signal, and the key frequency
we can consider a carrier.

• We could use an approach like AM demodulation.

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 12

• A simpler approach is to use a filter that only passes one of the two
sidebands of the cosine signal

>> h1e = h.*exp(i*2*pi*f1*tf);

• This passes the upper sideband of a sinusoid,

− fs/2 0 f1 f2− f2 − f1 fs/2

Single Sideband Filter

A cosine input gives a complex exponential out.

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 13

The envelope is just the magnitude of the filter output. This looks much
more like a logic signal.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

Time, s

M
ag

ni
tu

de

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 14

Task 4: Decode the touch-tone waveform

Assume that the digits and the quiet period are at least 0.125 s, but could
be longer. Write an m-file that takes the touch-tone signal as an input and

1. Finds the quiet separators,

2. Finds the intervals with key presses,

3. Identifies the two largest frequencies in each interval,

4. Looks up the digits these corresponds to, and

5. Returns the decoded phone number.

Several test cases are provided on the EE102B web site, in the
tt_test_cases.mat file. Try your decoder on these waveforms, and report
the results.

These aren’t particularly interesting numbers, but if you are curious, you can
look them up with Google.

EE102B:Signal Processing and Linear Systems II; Spring 18–19; Pauly 15

