Homework 8

Due May 31

1. Find the inverse z-transform for each of the following. Assume the signals are right-sided.
(a) $X(z)=\frac{\left(1-4 z^{-1}\right)}{1-5 z^{-1}+6 z^{-2}}$
(b) $X(z)=\frac{z^{-1}\left(1-4 z^{-1}\right)}{1-5 z^{-1}+6 z^{-2}}$
(c) $X(z)=\frac{z^{-1}\left(-5+22 z^{-1}\right)}{\left(1+z^{-1}\right)\left(1-2 z^{-1}\right)^{2}}$
2. A causal LTI system is described by the following difference equation:

$$
y[n]-\frac{1}{2} y[n-1]+\frac{1}{4} y[n-2]=x[n]
$$

(a) Find the z transform of the impulse response.
(b) Determine $y[n]$ when $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$. Assume $y[-1]=0$ and $y[-2]=0$.
3. Adam borrowed $\$ 20,000$ from a loan shark. He must pay this back over a $15-y$ year term at 18% interest per year (1.5% per month), with equal monthly payments of m dollars.
(a) Write down the difference equation relating $p[n+1]$ to $p[n]$, where $p[n]$ is the outstanding principal on the loan after the $n^{t h}$ month. Note that $p[0]=20,000$, and $p[180]=0$.
(b) Use the unilateral z-transform to determine m, Adam's monthly payment.
(c) What profit (i.e, the amount above $\$ 20,000$) has the loan shark made?
4. A system with the difference equation

$$
y[n]-\frac{1}{9} y[n-2]=x[n-1]
$$

has initial conditions $y[-1]=1$, and $y[-2]=0$. If this system has an input

$$
x[n]=2 u[n]
$$

find the
a) Zero state response $y_{z s}[n]$,
b) Zero input response $y_{z i}[n]$, and the
c) Total response of the system, $y[n]=y_{z s}[n]+y_{z i}[n]$.
5. Match the pole-zero plots (a)-(e) with the corresponding magnitude responses (1)-(5).

6. IIR vs FIR Filters

An Infinite Impulse Response (IIR) filter can be described by this difference equation

$$
y[n]-\alpha y[n-1]=x[n]-\frac{3}{4} x[n-1]+\frac{1}{8} x[n-2]
$$

In general the impulse response of this system goes on forever (IIR), but in a few special cases it terminates, and we get an FIR filter. Your job is to find those solutions, and compute the impulse responses.
(a) Find the transfer function $H(z)$ for this difference equation.
(b) What values of α would result in an FIR filter.

Hint: This is would be a filter with no poles. There are three solutions
(c) Find the impulse response of these FIR filters.

7. Discrete Time Systems

A discrete-time system with input $x[n]$ and output $y[n]$ has a transfer function

$$
H(z)=\frac{1}{1-z^{-7}-z^{-8}}
$$

while the input is

$$
x[n]=n^{2} u[n]
$$

Assume $y[n]=0$ for $n<0$. Find $y[5]$.
Hint: The difference equation is the place to start. Convolution and/or the z-transform won't help.

