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EE102B Spring 2018-19 Pauly
Signal Processing and Linear Systems II

Homework 6

Due May 17, 2019

This week there are more problems than usual this week, there is no lab.

1. Feedback Stabilization

We have a system we would like to control

G(s)
X(s) Y (s)

The impulse response of the plant we are trying to control is

g(t) = et sin(2t).

This is unstable. To stabilize this system we add a controller to the forward system, and
unity feedback,

G(s)
X(s) Y (s)

+
+

−
H(s)

Our goal is to produce a closed loop transfer function that is critically damped with poles
at s = −2.

a) Find the transfer function of the plant G(s) from the impulse response g(t) given
above.

b) Find the closed loop transfer function T (s) in terms of H(s).

c) Choose H(s) to produce a critically damped closed loop transfer function, with poles
at s = −2.

d) Find the impulse response of the closed loop system (call it τ(t) to avoid confusion).

2. Balancing an Inverted Pendulum

We want to balance a stick with a mass at the end, mounted on a cart. We can control the
acceleration of the cart a(t). The stick is attached to the cart with a hinge that pivots in the
direction of cart motion. The angle θ(t) is measured from vertical, as illustrated below
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a(t)

θ(t)L

mass, m

cart

g

If we assume the stick to be massless, and equate forces perpendicular to the axis of the
stick, we get

mLθ′′(t) = mg sin θ(t)−ma(t) cos θ(t).

If we assume that θ(t) is small, sin θ(t) ≈ θ(t) and cos θ(t) ≈ 1. Making these approxima-
tions, and dividing through by m,

Lθ′′(t) = gθ(t)− a(t).

If θ(0) 6= 0or θ′(0) 6= 0, and we do nothing the stick falls over. We want to find a method
to automatically determine the cart acceleration a(t) so that the stick is balanced, and θ(t)

goes to zero. We will do this by using an input a(t) that is a function of the output θ(t) that
we are trying to control. Let L = 1 m (the length of the stick) and assume the gravitational
constant g is 10 m/s2 for convenience.

Let the initial conditions be θ(0) = 0, and θ′(0) = 1. This means that the stick is vertical,
but rotating.

(a) Proportional Control

For the first attempt, we let
a(t) = k0θ(t).

The acceleration is proportional to the angle we are trying to control.

i. Find a differential equation for θ(t).

ii. Let k0 = 9, and solve for θ(t). Is this system stable? (does θ(t) go to zero?)

iii. Let k0 = 11 solve for θ(t). Is this system stable?

(b) Proportional Plus Derivative Control

For the next attempt, we let

a(t) = k1θ
′(t) + k0θ(t).

i. Find a differential equation for θ(t).

ii. Find values of k0 and k1 so the system is critically damped, with a time constant
of 1 s.
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iii. Solve for θ(t). Is this system stable?

3. Feedback to Improve System Response

The response to a remote manipulator can be modeled by this system

x(t) y(t)1
s+1

x(t) is the position we request, and y(t) is the position of the manipulator. This has an
impulse response that has a time constant of 1 s (i.e. the impulse response of the system is
e−t/T where T = 1 s). This is too slow to be practically usable. In order for a manipulator
to feel immediate and interactive, we would like the response time to be no more than 100
ms.

(a) Find the step response of the system, and plot it.

(b) To speed up the response, we add a feedback loop around the system, along with a
gain stage

x(t) y(t)
+ a 1

s+1
+

−

Find the transfer function of this system.

(c) Choose a such that the time constant is 100 ms. Solve for the step response, and plot
it on the same graph as part (a).

(d) What is the steady state error between the position you request and the manipulator
position?

4. Feedback and System Dynamics

In this problem we have two amplifiers we are going to connect in series. Each amplifier
has a transfer function of

H(s) =
100

s+ 1

We are going to use feedback for the reasons described in class (linearization, insensitivity
to the actual gain of the amplifiers).

With two amplifiers, we can use a global feedback loop around both of them, or use local
feedback around each individually.

a) The case where we use a single global feedback loop is shown here:
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Y (s)X(s)
H(s) H(s)+

−

+

ag

Find the constant gain ag so that the DC gain (the transfer function at zero frequency)
of the system is 100.

b) Find the transfer function Tg(s) of this system.

c) Find the impulse response τg(t) of this system.

d) The case where we use two local feedback loops is shown here:

Y (s)X(s)
H(s) H(s)+

−

+
+

−
+

al al

Assume both feedback gains are the same, and find al so that the DC gain of the
system is again 100.

e) Find the transfer function Tl(s) of this system.

f) Find the impulse response τl(t) of this system.

g) Describe the solutions for the global feedback and local feedback cases. Some pos-
sible answers are of the type “critically damped”, “oscillatory”, “lightly damped”,
“overdamped”, or “unstable.”

h) Briefly describe which system you would recommend, and why.
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5. Identifiing poles from an impulse response

For each of theses signals, estimate what the poles of the Laplace transform must be.
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6. Pole-Zero Identification from a Bode Plot

Find the poles, zeros, and DC gain for this Bode plot.
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