
Problem 2 - Representation Learning

We will be using the Fashion MNIST dataset to 
showcase how self-supervised representation learning 
can be utilized for more efficient training in 
downstream tasks. 

1. Train a classifier from scratch on the Fashion 
MNIST dataset and observe how fast and well it 
learns.

2. Train useful representations via predicting 
image rotations, rather than classifying clothing 
types.

3. Transfer our rotation pretraining features to 
solve the classification task with much less data 
than in step 1.

https://github.com/zalandoresearch/fashion-mnist


Data Preparation

Creating a Dataset in PyTorch

● Implement these 3 functions at the minimum
● __len__: directly return the size
● __getitem__:

○ Randomly choose an angle from the list to rotate
○ Rotate the image according to the chosen angle, 

using Image.rotate

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.rotate


Creating a Model

● __init__: define the model structure
● forward: pass the input through the model
● Using

○ nn.Conv2d
○ nn.MaxPool2d
○ nn.ReLU
○ nn.Linear
○ nn.Flatten
○ model.parameters() gives you a list of parameters of model

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html


Training

● Define model, loss, and optimizer
● In a loop, do

○ Pass input through model
○ Compute loss using output and label
○ Zero out gradients in the optimizer
○ Do a backward pass
○ Update the weights by stepping the optimizer



Problem 3 - Supervised Monocular Depth Estimation

● Encoder pretrained on ImageNet1k, train decoder for depth 
prediction, supervised by ground truth depth

● Same as before, implement in model.py, training.py, losses.py, and 
report the results in your submission.



Problem 4 - Unsupervised Monocular Depth Estimation

● Both images from a stereo pair during 
training

● Model takes in left image, predicts left and 
right disparity

● Use predicted disparity to synthesize left 
and right images

● Also synthesize disparity using prediction 
to encourage cycle consistency

● Goal is to reconstruct right image



Disparity Recap



Synthesize Images and Disparity

● Image Reconstruction loss
○ L1 + SSIM between synthesized and ground 

truth
● Disparity Loss

○ Cycle consistency between synthesized 
disparity maps

○ Smoothness term as regularization



Data Augmentation

● Perform reasonable transformations on the data to generate more data for 
training

○ Flipping the input gives us 2x the amount of data
○ In some cases, flipping doesn’t make sense (training to classify letters, AO, but E?)

● torchvision.transforms.RandomHorizontalFlip
○ p=1: either flip both of them, or don’t flip.
○ Apply self.transform to left_image and right_image, and return appropriately
○ We have a stereo pair, are there any details to take care of before returning? 

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomHorizontalFlip.html


Bilinear Sampling

● Shift input image horizontally according to disparity
● Use torch.linspace and torch.meshgrid to generate a grid, each location 

storing the location of the pixel we want (between 0-1)
● Shift the meshgrid using disparity in the x-dimension
● Scale the range of the meshgrid to [-1, 1]
● Perform bilinear sampling (built-in interpolation method in 

nn.functional.grid_sample)
○ Generate output image by sampling the corresponding pixel from input image based on the 

mesh grid

https://pytorch.org/docs/stable/generated/torch.linspace.html
https://pytorch.org/docs/stable/generated/torch.meshgrid.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html


Image Generator

● Given predicted disparity, synthesize left and right images using the 
bilinear_sampler from part b

● Note that the disparity values from the model are between [0, 1], whereas our 
bilinear_sampler implementation expects [-1, 1]

○ Need to flip the sign in one of them to get the correct result


