
Head pose Estimation Using Convolutional Neural Networks

Xingyu Liu
June 6, 2016

xyl@stanford.edu

Abstract

Head pose estimation is a fundamental problem in com-
puter vision. Several methods has been proposed to solve
this problem. Most existing methods use traditional com-
puter vision methods and existing method of using neural
networks works on depth bitmaps.

In this project, we explore using convolutional neural
networks (CNNs) that take RGB image as input to estimate
the head pose. We use regression as the estimation ap-
proach. We explored the effect of different regularization
strength and face alignment in our estimation. By using
a CNN whose architecture is similar to VGG-nagadomi to
train on IHDB head pose dataset, we can get a test regres-
sion euclidean loss of less than 0.0113, equivalent to aver-
age error of 20◦ of spherical distance, 4 times smaller than
not using face alignment. We also proved that proper regu-
larization strength could prevent overfitting thus reduce test
loss.

1. Introduction

The estimation for head pose has been a fundamental and
promising problem in computer vision. It is an important
problem of understanding 3D scene from the 2D image. It
can also be used in various situations that needs analysis of
human behavior. Precise estimation of head pose could re-
sult in revolutionary change in human-computer interaction
applications and virtual reality. For example, there has al-
ready been mobile games that uses head pose information as
a way of control [12]. We expect the industry of HCI could
utilize the result from precisely estimating the head pose as
a way to provide better service. Since extremely deep con-
volutional neural network has been pushing the recognition
task to way better results than people originally imagine,
we expect using deep convolutional neural network could

also result in better head pose estimation result and could
potentially have great impact on the computer vision, HCI
industry and other related fields.

2. Related Works

2.1. Previous Works

Several previous research works on estimating head pose
has been published. Breitenstein et al. [2] introduced an al-
gorithm for real-time face pose estimation of the 3D pose of
a previously unseen face from a single range image. They
uses novel shape signature to identify noses in range im-
ages. Their method include generating and evaluating many
pose hypotheses using GPU. They also developed a novel
error function that compares the input range image to pre-
computed pose images of an average face model. Their al-
gorithm was evaluated on a database of range images with
large pose variations developed by a method for automatic
ground truth annotation.

Brown et al. [3] proposed a method of image-based
learning, estimation of a wide range of pose, and is capa-
ble of real-time performance for lowresolution imagery.

Murphy et al. [8] summarized the existing approaches
and works in head pose estimation before 2009. The works
discussed are all traditional applied machine learning meth-
ods.

Fanelli et al. [4] used an approach based on discrimina-
tive random regression forests: ensembles of random trees
trained by splitting each node so as to simultaneously re-
duce the entropy of the class labels distribution and the vari-
ance of the head position and orientation. They evaluated
three different approaches to jointly take classification and
regression performance into account during training.

Li et al. [7] propose a deep convolutional neural net-
work for 3D human pose estimation from monocular im-
ages. Their neural network is trained using two strategies:



1) a multi-task framework that jointly trains pose regression
and body part detectors; 2) a pre-training strategy where the
pose regressor is initialized using a network trained for body
part detection.

2.2. Our Approach

As we can see, previous work on head pose estima-
tion has been using traditional computer vision and applied
machine learning approaches. Recent years, convolutional
neural network (CNN) has been successful in recognition
and classification tasks. Applying CNN in head pose esti-
mation may beat traditional algorithms.

A recent work [13] uses CNN that takes depth informa-
tion collected from depth sensors as input to estimate the
head pose. However, using depth information might limit
the application scenario, since high-quality depth sensors is
still not ubiquitous.

We propose to use RGB images collected from cameras
directly as the source of input. It could be a much more
economic approach compared to depth sensor. Moreover,
working on RGB images itself is a more interesting problem
of computer vision.

3. Methodologies

3.1. Overview

We used IHDB Head Pose dataset [10] to train and test
my CNN. The CNN has an architecture similar to VGG-
nagadomi [1]. We tried both training with and without face
alignment and obtained both results. Different training hy-
perparameters such as regularization strength and learning
rate etc are also explored.

3.2. Details

3.2.1 Training and Testing Dataset Preprocessing

The IDIAP Head Pose dataset [10] consists of 21,152 75×
75 images from 18 people. The faces are flipped left-right
together with the labels so that the effective number of face
is doubled. The faces are pretty much located near the cen-
ter of the image. However, the face detection and alignment
may still be needed.

Since some of the faces are in profile position to the cam-
era, we used both the Haar Cascade Classifier for front face
and the Haar Cascade Classifier for profile face to first de-
tect the face. For most images in the dataset, at least and at
most one face will be detected and a square will be given

specifying the position of the face. The Haar Cascade Clas-
sifier cannot detect faces in a small portion of images due
to occlusion. Those images are discarded. After detection
of face-containing square subimages, the subimages are re-
sized to a fixed constant size to feed into the CNN.

The head pose is described in three angles: pan, tilt and
roll, where pan and tilt discribe the direction of looking and
roll discribes the rotation around the neck. This result in
each image in the dataset contains three labels. The three
labels are normalized to the value within [−1, 1]. We plotted
the distribution of the three angles in 3D space in figure 1.
As we expected, the labels are symetric with respect to pan
axis. That’s because the training dataset is augmented by
flip left and right. The example of the training image is
shown in figure 2.

Some of the images in the training and testing dataset is
occluded, so we should treat them as irrelevant data point.
Figure 3 shows the example of occlusion. The images that
doesn’t contain faces or the Haar Cascade Classifier cannot
detect faces from will be deleted from training and testing
set. Figure 4 shows examples of successfully detected by
Haar Cascase Classifier and the aligned faces in the exam-
ples in Figure 2

Figure 1. Angle distribution

3.2.2 CNN Architecture

We plan to use a similar CNN architecture as VGG-11 Na-
gadomi [1]. VGG-11 Nagadomi contains three groups of
convolution layers, each consisting of three convolution lay-
ers with the same kernel size of 3 but different channel depth
among groups. The convolution layers are followed by sev-



Figure 2. Example training data

Figure 3. Bad Example of face detection because of occlusion
training data

Figure 4. Good Example of face detection and face alignment

eral fully-connected layers. The reason we chose VGG-
11 Nagadomi is that, unlike ImageNet networks, VGG-11
Nagadomi works on CIFAR dataset [6], which means it’s
large enough for small classification problems and should
be enough for head pose estimation.

One fundamental problem is whether to use classifica-
tion or regression as the estimation method. In the first ap-
proach, i.e. classification, the output score of the CNN is
the probability of rotation angles in each bin. In the sec-
ond approach, i.e. regression, the output score of the CNN
is the three angles. The difference is that, in classification,
the relation between bins are all independent and the same,
while actually it shouldn’t. The angle values that are closer
should have closer relations. Distinguishing the relation of
different bin pairs can also improve learning, since the mod-
els that give bad prediction can learn to adjust itself faster
because of larger gradient. So we chose to use regression,
where the loss could be obtained from the Euclidean dis-
tance between the predicted scores and the groundtruth la-
bels. The final CNN architecture we use is as follows:

2×(64Conv3+ReLU)→MP2→ 2×(128Conv3+ReLU)

→MP2→ 4× (256Conv3 +ReLU)→MP2

→ 2× (FC1024 +ReLU)→ FC3

3.2.3 CNN training

Since we’re using regression instead of classification, the
metrics we used to measure how good my model is no
longer the training loss and testing accuracy as in the class-
fication case. The Euclidean distance can be used to mea-
sure how close the prediction to the groundtruth and at the
same time, it’s also used in training as the loss function. So
we used the Euclidean distance as loss in the training and
testing measurement in the testing.

Besides the pre-processing of training and testing im-
ages, the selection of training hyperparameter of CNN is
crucial for getting good performace on estimation accuracy.
In this project, we used the default VGG11 Nagadomi train-
ing parameters like learning rate, learning type (Step) and
tuned the hyperparameter of regularization strength. we
used the regularization strength in the equal logarithmic in-
terval and see how good the testing loss each model can get
a test regression euclidean loss of less than 0.0113, equiv-
alent to average error of 20◦ of spherical distance. This is
conservative estimation, since the loss contains regulariza-
tion terms and should be deducted.



4. Experiment

4.1. Experiment Setup

We used Caffe [5] as my CNN training framework. Since
each of the images contains three labels instead of just one,
We can only use HDF5 data type for training input in-
stead of the default IMDB type. We used a base learn-
ing rate of 0.0005, learning type of ”step”, a step size of
step size = 10, 000 and a step factor of γ = 0.7. The
step factor means the factor that times the learning rate after
step size iterations of training. For weight update, we use
Nesterov’s accelerated gradient [9]. As we have discussed
earlier, the training and testing loss itself is the measurement
of how good our model is.

For image preprocessing, we prepared trainng and test-
ing data and implemented the face detection using the
python interface of OpenCV v2 and Haar Cascade Clas-
sifier [11].

4.2. Experiment Result

When using unaligned face with regularization strength
of 0.0005, the training and testing loss are shown in Figure
5. When using unaligned face with regularization strength
of 0.005, the training and testing loss are shown in Figure
6. When using aligned face with regularization strength
of 0.005, the training and testing loss are shown in Figure
7. When using aligned face with regularization strength of
0.0005, the training and testing loss are shown in Figure
8. When using aligned face with no regularization strength,
the training and testing loss are shown in Figure 9. As we
can see, when using aligned face to train and test and using
a regularization of 0.0005, we can get a regularization

From the above results, we can see that aligning of face
faces plays extremely important role in improving test per-
formance of head pose estimation. Comparing Figure 5 and
6 with Figure 7, 8 and 9, we can find that the testing loss can
be reduced to a quarter of the original testing loss if the face
is aligned. The reason behind this result is pretty straight-
forward. If we didn’t align the images to the faces, we are
taking the background into account and that will distract
the CNN from learning the essential information which is
the face area in the image.

We can also compare the learning curve of the testing
loss to the learning curve of the training loss in Figure 7, 8
and 9. As we can see, with proper regularization strength,
the testing loss is closer to the the training loss, which
means there’re less overfitting and higher testing perfor-

Figure 5. Unaligned face, with regularization strength of 0.0005

Figure 6. Unaligned face, with regularization strength of 0.005

mance. Comparing the absolute value of loss is meaning-
less, since with different regularization values, the loss has
different regularization loss terms.

Here we show some results of pose estimatin. The good
prediction results are illustrated in Figure 10. The bad pre-
diction results are illustrated in Figure ??. It shows that
good prediction can be more easily obtained from heads
facing near front direction. The extreme profile faces and
down faces are most easily get bad result. The reason is also
straightforward: the profile faces and down faces contain
less facial feature and information comparing to the front
faces. Thus the CNN is more inclined to give erroneous
results.



Figure 7. Aligned face, with regularization strength of 0.005

Figure 8. Aligned face, with regularization strength of 0.0005

5. Conclusion

In this project, we explore using a convolutional neural
networks similar to VGG-11 nagadomi to estimate the head
pose. We use regression as the estimation approach. We
explored the effect of different regularization strength and
face alignment in our estimation. When using face align-
ment, we can get a test regression euclidean loss of less than
0.0113, equivalent to average error of 20◦ of spherical dis-
tance, 4 times smaller than not using face alignment. We
also proved that proper regularization strength could pre-
vent overfitting thus reduce test loss.

Figure 9. Aligned face, with regularization strength of 0.0000

Figure 10. Good Result of Head pose estimation

Figure 11. Bad Result of Head pose estimation

References

[1] Code for kaggle-cifar10 competition. 5th
place. https://github.com/nagadomi/

kaggle-cifar10-torch7.

[2] Michael D Breitenstein, Daniel Kuettel, Thibaut
Weise, Luc Van Gool, and Hanspeter Pfister. Real-
time face pose estimation from single range images.
In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.



[3] Lisa M Brown and Ying-Li Tian. Comparative study
of coarse head pose estimation. In Motion and Video
Computing, 2002. Proceedings. Workshop on, pages
125–130. IEEE, 2002.

[4] Gabriele Fanelli, Thibaut Weise, Juergen Gall, and
Luc Van Gool. Real time head pose estimation from
consumer depth cameras. In Pattern Recognition,
pages 101–110. Springer, 2011.

[5] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[6] Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images, 2009.

[7] Sijin Li and Antoni B Chan. 3d human pose estimation
from monocular images with deep convolutional neu-
ral network. In Computer Vision–ACCV 2014, pages
332–347. Springer, 2014.

[8] Erik Murphy-Chutorian and Mohan Manubhai
Trivedi. Head pose estimation in computer vision: A
survey. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(4):607–626, 2009.

[9] Yurii Nesterov et al. Gradient methods for minimizing
composite objective function. Technical report, UCL,
2007.

[10] Diego Tosato, Mauro Spera, Matteo Cristani, and Vit-
torio Murino. Characterizing humans on riemannian
manifolds. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1972–1984, 2013.

[11] Paul Viola and Michael Jones. Rapid object detection
using a boosted cascade of simple features. In Com-
puter Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer So-
ciety Conference on, volume 1, pages I–511. IEEE,
2001.

[12] Wenbin Tang et al. Crows Coming.
https://itunes.apple.com/us/app/

crows-coming/id452523144?mt=8.

[13] Zhiang Hu. Real-Time Head Pose Estima-
tion with Convolutional Neural Networks.
http://cs231n.stanford.edu/reports/

zhianghu_report.pdf.


