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Abstract

Technology revolution has brought great convenience of
daily life recording using cellphones and wearable devices
nowadays. However, hand shake and human body move-
ment is likely to happen during the capture period, which
significantly degrades the video quality. In this work, we
study and implement an algorithm that automatically stabi-
lizes the shaky videos. We first calculate the video motion
path using feature matching and then smooth out high fre-
quency undesired jitters with L1 optimization. The method
ensures that the smoothed paths only compose of constant,
linear and parabolic segments, mimicking the camera mo-
tions employed by professional cinematographers. Since
the human face are of broad interest and appear in large
amount of videos, we further incorporated face feature de-
tection module for video retargeting purposes. The detected
faces in the video also enables many potential applications,
and we add decoration features in this work, e.g., glasses
and hats on the faces.

1. Introduction

Nowadays nearly 2 billion people own smartphones
worldwide, and an increasing number of videos are cap-
tured by mobile devices. However, videos captured by hand
handled devices are always shaky and undirected due to the
lack of stabilization equipment on the handhold devices.
Even though there are commercial hardware components
that could stabilize the device when we record, they are rel-
atively redundant and not handy for daily use. Moreover,
most hardware stabilization systems only removes high fre-
quencies jitters but are unable to remove low frequency mo-
tions arise from panning shots or walking movements. Such
slow motion is particular problematic in shots that intend to
track prominent foreground object or person.

To overcome the above difficulties, we implement a
post-processing video stabilization pipeline aiming to re-
move undesirable high and low frequency motions from
casually captured videos. Similar to most post-processing
video stabilization algorithms, our implementation involves
three main steps: (1) estimate original shaky camera path

from feature tracking in the video; (2) calculate a smoothed
path, which is cast as an constraint optimization problem;
(3) Synthesizing the stabilized video using the calculated
smooth camera path. To reduce high frequency noise, we
use the Ly path optimization method described in [1] to
produce purely constant, linear or parabolic segments of
smoothed motion, which follows cinematographic rules. To
reduce low frequency swanning in videos containing a per-
son as the central object, we apply further restraint to the
motion of the facial features. In order to make the solution
approachable, our method uses automatic feature detection
and do not require user interaction.

Our video stabilization method is a purely software ap-
proach, and can be applied to videos from any camera de-
vices and sources. Another popular class of mobile video
stabilization methods use the phone’s build-in gyroscope to
measure the camera path. Our method has the advantage of
being applicable to any video from any sources, for example
online video, without any prior knowledge of the capturing
device or other physical parameters of the scene. Our ap-
proach also enables facial retargeting, which can be extent
to other kinds of salient features.

2. Previous Work
2.1. Literatures

Video stabilization methods can be categorized into three
major directions: 2D method, 3D method and motion esti-
mation method.

2D methods estimate frame-to-frame 2D transforma-
tions, and smooth the transformations to create a more sta-
ble camera path. Early work by Matsushita et al. [5] applied
low-path filters to smooth the camera trajectories. Gleicher
and Liu [4] proposed to create a smooth camera path by
inserting linearly interpolated frames. Liu et al.[6] later in-
corporated subspace constraints in smoothing camera tra-
jectories, but it required longer feature tracks.

3D methods rely on feature tracking to stabilize shaky
videos. Beuhler et al. [8] utilized projective 3D reconstruc-
tion to stabilize videos from uncalibrated cameras. Liu et
al. [9] were the first to introduce content-preserving warp-
ing in video stabilization. However, 3D reconstruction is
difficult and unrobust. Liu et al. [6] reduced the problem
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to smoothing long feature trajectories, and achieved com-
parable results to 3D reconstruction based methods. Gold-
stein and Fattal[10] proposed an epipolar transfer method
to avoid direct 3D reconstruction. Obtaining long feature
tracks is often fragile in consumer videos due to occlusion,
rapid camera motion and motion blur. Lee et al. [11] incor-
porated feature pruning to select more robust feature trajec-
tories to resolve the occlusion issue.

Motion estimation methods calculate transitions between
consecutive frames with view-overlap. To reduce the align-
ment error due to parallax, Shum and Szeliski[12] im-
posed local alignment, and Gao et al.[7] introduced a dual-
homography model. Liu et al[13] proposed a mesh-based,
spatially-variant homography model to represent the motion
between video frames, but the smoothing strategy did not
follow cinematographic rules.

Our implementation, based on [1], apply L;-norm op-
timization to generate a camera path that consists of only
constant, linear and parabolic segments, which follow cine-
matographic principles in producing professional videos.

2.2. Our Contribution

In this work, we re-implement the L;-norm optimization
algorithm [1] to automatically stabilize the videos captured,
with a smoothed feature path containing only constant, lin-
ear and parabolic segments. Additionally, in order to en-
able the video to retarget on human faces, we use the facial
landmark detection algorithm from OpenFace toolkit [3] to
set facial saliency constraints for the path smoothing; the
strength of the constraint could be tuned from 0 (no facial
retargeting) to 1 (video fixing on facial features), and in this
way we are able to combine both video path smoothing and
facial retargeting according to specific user needs.

Beyond that, in order to make our work more fun, we
also manage to attach interesting decorations such as hat,
glasses, and tie above, on, or below the human faces de-
tected, and their transformations are based on the movement
of human face in the video.

3. Proposed Method
3.1. L;-Norm Optimized Video Stablization

In this section, we describe the method of video stabliza-
tion in this work.

3.1.1 Norms of smoothing

When applying path smoothing algorithm, we should al-
ways be careful to choose which regularization method we
use, since different regularization methods works differ-
ently for different error distribution. [2]

For error distributions with sharply defined edge or ex-
tremes (typified by the uniform distribution) one should

use Tchebycheff (L.,) smoothing. For error distributions
at the other end of the spectrum, which is with long tails,
one should use L; smoothing. In between these extremes,
which are short-tail spectra such as normal distribution,
least squares or L, smoothing appears to be best.

3.1.2 [L;-Norm Optimization

In the perspective of a single feature point, the video mo-
tion can be viewed as a path of its coordinates (z, y) move-
ment with respect to the frame number. Since it is diffi-
cult to avoid jitters with hand-held devices, we will observe
that the path the is wiggling. Video stablization is to ob-
tain the new coordinates (x,y) at each frame and thus a
new path with enhanced smoothness. In the perspective of
the frames, the task is to smooth the transformations be-
tween frames so that the feature points movement would
be minimal. The frame transformation is generalized as
affine transform, including translational and rotational mo-
tion, and scaling caused by object/camera distance change.

We estimate the camera path by first matching features
between consecutive frames C; and Cyyq, and then cal-
culate the affine transformation F};; based on the match-
ing. That is, the process can be formatted as Cyy1 =
F;1C;. Then we estimate the affine transformation Fj 4
using these two set of feature coordinates, C; and Cy4 1. In
this work, we extract features of each frame (opencv func-
tion cv::goodFeaturesToTrack), and find the matching in the
next frame using iterative Lucas-Kanade method with pyra-
mids (cv::calcOpticalFlowPyrLK).

We denote the smoothed features as P;, then we have a
correlation between the original features in frame ¢ and the
smoothed ones, as P, = B;(C}, where B; is is the stabiliza-
tion/retargeting matrix, transforming the original features to
the smoothed ones. Since we only want the smoothed path
to contain constant, linear, and parabolic segments, we min-
imize the first, second, and third derivatives of the smoothed

path with weights ¢ = (c!, ¢2, )T

O(P) = ¢'|D(P)|y + |D*(P)|y + | D*(P)]1, (1)
where
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Here the residual is Ry = B;+1F+1 — By.
For each affine transform:
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in 6 DOF we vectorize it as

(b11,b12, b21, bz, ta, ty) T,
tion of By; correspondingly

|R¢(p)1 = |ptT+1M(Ft+1) —pil1- 4)

We make use of Linear Programming (LP) technique
to solve this L;-norm optimization problem. To minimize
|R:(p)|1 in LP, we introduce slack variables e! > 0, so
that —e! < Ry(p) < e'; similarly there are e? and e for
[Ri41(p) — Re(p)|1 and |Ryy2(p) — 2Ry41(p) + Ru(p)l1,

respectively. For e = (e!,e?,e*)T, the objective function

of the problem is to minimize c”e.

In addition, we want to limit how much B; (or p;) could
deviate from the original path, i.e. the actual shift should
within the cropping window. Thus, we can add constraints
on the parameters in LP, such as: [b < Up; < ub, where U
is the linear combination coefficient of p;. The complete L
minimization LP for smoothed video path with constraints
is summarized below:

bt =
which is the parametriza-

Algorithm 1 Summarized LP for the smoothed video path
Input: Frame pair transform F, ¢t =1,2,....n
Output: Update transform By
> B; could be transformed to p;

Minimize: ¢’ e

W.rtp = (p1,02, -, Pn)

where e = (el,e?,e®)T, et = (el e, ....el), c =
(e, e, )T

subject to:

1. —e} < Ry(p) < e}

2. =€} < Riya(p) — Ru(p) < €f

3. —¢} < Riya(p) — 2Riy1(p) + Ri(p) < €}
4.e;>0

constraints:

Ib<Up: <ub

We use Ipsolve library for modeling and solving our LP
system.

3.2. Facial Features Detection and Retargeting

In many videos, a particular subject, usually a person, is
featured. In this case it is not only important to remove fast,
jittering camera motions, but also unintended slow panning
or swanning that momentarily move the subject off-center
and lead to distraction for the viewer. This can be posed
as a constraint on the path optimization as requiring that
salient features of the subject to be closed to the center re-
gion throughout the video.

The first step towards salient-point-preserving video sta-
bilization is salient feature detection and tracking. In par-
ticular, it is desirable to have the algorithm automatically
recognize and detect these salient features without user in-
put. There are many face detectors available for such task.

We use Constrained Local Neural Fields (CLNF) for fa-
cial landmark detection available on OpenFace. Detail of
the algorithm can be found in [3]. The CLNF algorithm
works robustly under varied illumination and are stabilized
for video. It outputs a fixed number of facial landmarks,
including the face silhouette, the lips, nose tip and eyes, as
shown in Fig. 2c. These multiple landmarks allow a more
stable and accurate estimate of the facial position. In con-
trary, other face detector, for example the opencv built-in
ones, were observed to produce inaccurate bounding box
and are not stable over video frames during our experiment.
The detailed facial landmarks from CLNF also enable us to
perform other post-processing on the video, for example the
face decoration described in Section 3.4.

After detecting the facial landmarks in each frame ¢, we
estimate the center of face C'y ¢ by averaging all the land-
marks. Let Cy be the desired position of the center of face,
for example the center of frame. Let P; and S; be the orig-
inal and smoothed camera trajectory, then the saliency con-
straint can be posed as a additional term to the loss function

Lt = (1 —U)s)(St —Pt)2+ws(5’t _Pt+0f,t —00)2 (5)

where P, is average over a window of frames, and w; is a
parameter to adjust how much weight the saliecy constraint
have on the optimization. Minimizing L; then produce the
desired smoothed trajectory S.

3.3. Metrics & Characterization

3.3.1 Evaluation of Smoothed Path

For the stabilizing problem we are concerning about, it
would be inappropriate to simply regard the undesired shak-
ing as short-tail normal distribution, so using the L; norm
between each frame pair during minimization is more suit-
able. In addition, L; optimization has the property that the
resulting solution is sparse, i.e. the computed path there-
fore has derivatives which are exactly zero for most seg-
ments. On the other hand, L, minimization (in a least-
squared sense), tend to result in small but non-zero gradi-
ents. Qualitatively, the Lo optimized camera path always
has some small non-zero motion (most likely in the direc-
tion of the camera shake), while the L; optimized we used
(|D(P)|1, |D?(P)|1, and|D3(P)|1) will create path is only
composed of segments resembling a static camera, (uni-
form) linear motion, and constant acceleration [1].

Therefore, we will compare the L; norm |D(P)|; be-
tween the original video feature path and the smoothed one,
and use this comparison as metrics of our experiments de-
scribed below. Specifically, we will calculate the average
absolute shift between adjacent points on the video feature
path, with respect to both x and y directions, and average
absolute rotation angle increment. The same calculations
will be done to the smoothed path



3.3.2 Evaluation of Facial Retargeting

As for the part of facial retargeting, in addition to the com-
parison between the Ly norm |D(P)|; of the original video
feature path and the new one, where we can extract the in-
formation about smoothing, we are also interested to see
how the facial features are targeted. So we will calculate
the average position of the face features with respect to the
center of frame, and simultaneously calculate the average
absolute position deviation.

3.4. Face Decoration

With per frame face features detected, we can add fun
face decorations to our videos, such as glasses, hat and mus-
tache. By incorporating feature locations, we are able to
translate, scale and rotate the decorations to place them ap-
propriately onto human faces. Since our videos are stabi-
lized and focus on faces, the transitions of the decorations
are smoother. Here is an example of how we utilize the fea-
ture points in adding decorations.

Adding glasses: we extract left eye, right eye, left brow
and right brow feature points to calculate a horizontal eye
axis, and use it to estimate the orientation of the glasses.
Scale is approximated from eye distance, and translation de-
pends on the locations of the eye points.

Since face silhouette feature points are usually less sta-
ble, we avoid using those points in adding face decorations.

Screenshots of adding hat and glasses are shown in Fig-
ure 4.

4. Experiments

Table 1 lists the algorithm run time on our laptop. The
second column lists time for path smoothing without facial
feature, and the third column lists time for path smooth-
ing with facial feature as salient constraint. In the lat-
ter case, the CNFL facial landmark detection takes up the
biggest chunk of time (~ 45ms per frame). [1] reported 20
fps on low-resolution video, and 10 fps with un-optimized
saliency.

Table 1. Timing per frame of the algorithm. Video resolution
640 x 360.

w.o. face | w. face
motion estimation (ms) 12.1 59.1
optimize camera path (us) 0.15 0.40
render final result (us) 2.7 2.7
face decoration (ms) - 5.7
total (ms) 15 68
speed (fps) 67 15

4.1. Video Stabilization

We apply our path smoothing algorithm to shaky videos
and observe significant reduction of jittering. An example
output can be found on Youtube.

To visualize the effect of stabilization, we plot the esti-
mated camera trajectory before and after our algorithm in
Fig. 1. We also provide a quantitative measurement of the
Ly norm |D(P)|; before and after smoothing in Table. 1.
As we can see the L; norm decreases a lot, which means
the abrupt jitters are significantly decreased.
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Figure 1. Path before and after (Left column) L2-norm smooth-
ing (Right column) Li-norm smoothing.  (Top)z-direction.
(Middle)y-direction. (Bottom)rotational angle.

Table 2. Ly norm | D(P)|; between the original video feature path
and the smoothed one, in both z and y directions and the rotational
angle.

path [ <[Az| > <[Ay[> <[Aal>
original 1569 857 1.12
smoothed 705 234 0.44

4.2. Facial Retargeting

Our experiment with video stabilization using facial fea-
tures are shown in Fig. 2. Fig. 2(a) is the original video,
which contains slow swanning motion of both the camera
and the subject person. Fig. 2(b) is the stabilized output us-
ing only camera path smoothing. The slow motion of the
subject is still prominent. Fig. 2(c) is the stabilized output
using camera path smoothing with a constraint of the mo-
tion of facial features. It leads to stabilization of the subject
at the center over frames. Both result videos can be found
on Youtube link 1 and link 2.

As expected, stabilization comes at a price of reduced
resolution. The original image are cropped by 20% in
Fig. 2(b) and (c) to remove black margins due to warpping.
There are still residue margins in Fig. 2(c).



We also quantify the smoothing effect and the facial tar-
geting, as we can see from Table. 2. With the increase of the
facial saliency constraint ratio w, both L; norm and the ab-
solute position shift drops, which means, the larger w is, the
smoothier the video gets, and the more centered the human
face is. The result is expected from our algorithm.

4.3. Comparison with State-of-the-art Systems

Due to no publicly available implementation of previous
works, we obtain the original and output videos reported in
Grundmann’s paper [1], and calculate the evaluation metrics
described in Section 3.3 on their output video and present
alongside with our results. As we can see from the compari-
son below, our implemented algorithm is comparable to the
state-of-the-art system.

4.4. Face Decoration

With per frame face features detected, we can add fun
face decorations to our videos, such as glasses, hat and mus-
tache. By incorporating feature locations, we are able to
translate, scale and rotate the decorations to place them ap-
propriately onto human faces. Since our videos are stabi-
lized and focus on faces, the transitions of the decorations
are smoother. Screenshots of adding hat and glasses are
shown in Fig. 4.

5. Conclusion & Perspectives

All in all, video feature path is significantly smoothed
using the L, optimization stabilization algorithm; the L,
norm | D(P)|;, which signifies the moving between frames,
greatly drops after applying the stabilization.

If the facial retargeting method is included, the video
would be more focused on human faces; the larger the
saliency constraint ratio w is, the more centered the human
faces are with respect to the cropped video frame.

Decoration addition such as glasses, hat, or tie could also
be attached to the faces in the video, with the same orien-
tation as the faces. More fun stuffs will be applied to make
this work fancier in the future.
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(c) Path Smoothing

(a) Original (b) Path Smoothing & Salient Consrtaint

Figure 2. Demonstration of facial retargeting in video stabilization. The green dot indicates the center of frame. Green lines show boarder
of frame. Red dots in (c) indicated detected facial landmarks from OpenFace [3]. They are intended as a guide to the eye. Both videos can
be found on Youtube (b) and (c).

Table 3. Ly norm |D(P)|, between the original video feature path and the smoothed one, in both z and y directions and the rotational
angle.

w ‘ < |Axt| > < |Ayt| > < |-T - wcenterl > < |y — ycenter| >
original 1392 496 32805 5882
0.2 1139 254 32583 4902
0.5 792 234 21568 3433
0.95 221 247 2695 1954




Figure 3. Path smoothing before and after with facial saliency con-
straints. (Left column) z-direction. (Right column) y-direction.
From top to bottom, the facial constraint ratios w are 0.2, 0.5, and
0.95, respectively.

Table 4. Comparison between our algorithm and the state-of-the-
art one from [1]

method | <|Azy| > <|Ay|> <[|Aa] >
state-of-the-art [1] 273 296 0.53693
our algorithm 705 234 0.44387

Figure 4. Face decoration with glasses and hat



