
CS231A FINAL PROJECT, JUNE 2016 1

Solving Large Jigsaw Puzzles
L. Dery and C. Fufa

Abstract—This project attempts to reproduce the genetic algorithm in a paper entitled ”A Genetic Algorithm-Based
Solver for Very Large Puzzles” by D. Sholomon, O. David, and N. Netanyahu. [3] There are two main challenges in
solving jigsaw puzzles. The first is finding the right fitness function to judge the compatibility of two pieces. This has
thoroughly been studied and as a result, there are many fitness functions available. This paper explores the second part
that is crucial to solving jigsaw puzzles: finding an efficient and accurate way to place the pieces. The genetic algorithm
attempts to do just that. The crucial part of the algorithm is in generating a new ordering of pieces called ’child’ from
two possible orderings of pieces, called ’parents’. Each generation learns from good traits in the parents. After going
through a hundred generations, the ordering will reflect the original image to a high accuracy. This paper also makes
use of CNN to start with reasonable orderings of ’parents’. This cuts down on the number of generations required to
reach the correct ordering of the pieces.

Index Terms—CS231A, Jigsaw Puzzles Algorithms

F

1 INTRODUCTION

THE problem of automating the solving of
jigsaw puzzles is one that has been around

since at least the 1950s. Jigsaw puzzles are im-
age reconstruction problems where the image
provided has been cut into non overlapping
boxes and shuffled around. The problem is
then to reconstruct the original image from the
shuffled pieces. For the problem to be tractable,
the puzzle pieces are assumed to be of identical
dimensions and that no piece has been rotated.

The
problem has multiple applications, both in and
outside of image reconstruction. Puzzle solu-
tion techniques can be applied to broken tiles
to simulate the reconstruction of archaeological
artifacts. In fall, 2011, DARPA held a compe-
tition, with a fifty thousand dollar prize, to
automatically reconstruct a collection of shred-
ded documents.Other applications include the
molecular docking problem for drug design,

DNA/RNA modeling, image base CAPTCHA
construction, and speech descrambling.

2 REVIEW OF PREVIOUS WORK

2.1 Previous Work
In 1964, Freeman and Garder[1] proposed a
solution for a 9 piece problem. The shapes were
allowed to be of different dimensions. After
Freeman and Garder, most of the work has
been based on color-based solvers, with the
assumption that all pieces are rectangles of the
same dimension. Recently, probabilistic puzzle
solvers have been developed[2]. These algo-
rithms were solving 432 pieces. These solvers
however require apriori knowledge of the puz-
zle. There are also particle filter-based solvers
which are improvements over the probabilistic
puzzle solvers.

In 2013 Sholomon et Al[3] introduced a ge-
netic algorithm based technique for solving
large jigsaw puzzles. It is our goal in this paper
to replicate the results of this paper and also
suggest areas where it could be improved.

2.2 This paper’s contribution
This paper uses the genetic algorithm as a
strategy for piece placement. It uses a stan-
dard estimation function. While this is not the



CS231A FINAL PROJECT, JUNE 2016 2

first time that the genetic algorithm has been
used to solve the jigsaw puzzle problem, it has
only been used to solve puzzles of a limited
size. This paper attempts to solve puzzles with
larger pieces. In addition to the genetic algo-
rithm, this paper also attempts to use CNN to
arrive at the correct reconstruction of the image
in less iterations.

3 TECHNICAL DETAILS

3.1 Genetic Algorithm
The genetic algorithm as implemented for solv-
ing the jigsaw puzzle problems starts out with
a thousand different ways to order the pieces.
Each way of ordering a piece is called a chro-
mosome. The entire set of a thousand chro-
mosomes is called a population. At each stage
of the process, called a generation, we have a
population of a thousand chromosomes. Now,
the goal is that with each passing generation,
i.e. with the next thousand chromosomes or
a population, the orderings of the pieces will
begin to look more and more like the original
or correct image. During each population, the
best chromosome will be determined by the
estimation function.

Above is the higher level pseudo code for the
Genetic Algorithm framework. The four best
scorers according to the estimation or fitness
function will automatically be placed into the
next generation. The rest of the chromosomes
for the next generation are going to be hy-
brids of chromosomes from the current one.

Two chromosomes from the current population
are selected, and a function called crossover
generates a child chromosome that learns from
the parents, and has a better reordering of the
pieces, and hence, a better fitness score. It is
via this mechanism that each generation gets
a better fitness score than the previous genera-
tion. The selection process of which parents to
choose to give birth to a new child chromosome
discriminates towards parents with a better
fitness score. The selection process is called
a roulette selection. The likelihood of being
selected is directly proportional to how good
the fitness score is. This way, the algorithm
makes sure that selected parent chromosomes
have good traits (as evidenced by their fitness
scores) to be passed on to the children.

Fitness Function
The estimation function utilizes the fact that
adjacent pieces in the original image will most
likely share similar colors along their edges.
Hence, computing the sum of the squared color
differences along pixels that are adjacent to
each other (between two different pieces) will
give us an indication of whether the two pieces
belong adjacently in the direction they shared
the pixels. Hence, the less the specific sum is ,
the more likely they are to be adjacent to each
other. From the image below for example, we
can expect the fitness function to give us a high
score for piece 5 and 6 as the color difference in
the edges seem to be high, while piece 8 and
9 will have a very low fitness score. We can
further assume that piece 5 and 8 will have a
high fitness score while 6 and 9 will have a
lower one in comparison.

The fitness function for a given chromosome
will compute the sum of the score for every
edge in the chromosome. Below are examples
of functions which compute the compatibility



CS231A FINAL PROJECT, JUNE 2016 3

score of two pieces in a left-right adjacency
relationship, and a function which computes
the fitness score of a given chromosome (i.e.
computes the score for all edges and direc-
tions.)

K is the number of pixels in each piece in the
vertical direction.

This way, it covers all the available edges
in a chromosome. Note that D is the fitness
score for the compatibility of piece xj to the
direction (left, right, down, or up) of xi. In
the selection process of the algorithm (roulette
selection) make sure that a lower fitness score
is treated as more likely to be chosen.

Crossover
Crossover can be considered the heart of the
algorithm. Crossover receives two parent chro-
mosomes and creates a child chromosome. It
allows ”good traits” to be transmitted from
the parents to the child. The goal is to have
the child with a better fitness score than both
parents. The fitness function does a good job
of discriminating between adjacent pieces, but
does not give any indication of whether the
pieces are placed at the correct absolute po-
sition in the image. The implementation of
crossover then must allow for independence
in the placement of pieces. (It should be a
dynamic process. Just because a piece was at
some point assigned to say, (2,3) of the the
image, it must not remain there, it should be
able to transition into a different place based
on how the pieces build up around it.)

The implementation of crossover suggested
starts out with a single piece and then grad-
ually joins other pieces at available bound-
aries.The image is always contiguous since
new pieces are only added adjacent to existing
ones. Keeping track of the pieces used and
the dimensions of the child being formed is
important so that the dimensions of the child

are similar to that of the parents. The process
of growing the kernel will go on until all the
pieces have been used.

The final absolute location of a given piece
is only determined after all the pieces have
been used. This is because as recommended
earlier, the kernel growing process must allow
for independence or flexibility in the placement
as the algorithm plays out. To begin, crossover
selects a random piece from either parent and
places it in the kernel. After that, it keeps
track of all the available boundaries for a new
piece to be added to the kernel. An available
boundary can be thought of as a piece and the
direction in which a new piece can be placed
adjacent to it. There are three main phases
involved in crossover.

Phase One
It goes through the boundary pieces in the
kernel. Let’s say that piece xi in the direction
d, for example is selected. Phase one checks to
see if both parents have the same piece xj in
the direction of d of xi. If it so, xi is added
to the kernel. If xi has been already added,
it will of course be skipped. The only pieces
under consideration should be unused pieces
(pieces not in the kernel). This phase keeps on
going until there is no boundary on which both
parents agree.

Phase Two
Assume (xi,R) is available on the kernel. Check
if one of the parents contains a piece xj in
spatial relation R of xj , which is also a best-
buddy of xi in that relation. Two pieces xi and
xj are considered best-buddies if D(xi,xj ,R) is
the lowest fitness score they can achieve.I.e.
there is no better piece xk, that will give a
lower fitness score D(xk,xj,R) as well as no xk

available, that can give D(xi,xk, R) lower than
D(xi,xj ,R). The piece considered xj must be
adjacent to xi in one of the parents.

If such a piece is found, go back to phase
one, if not, proceed to three

Phase Three
Pick random (xi,R) from the kernel and assign
it xj from available pieces such that D(xi,xj ,R)



CS231A FINAL PROJECT, JUNE 2016 4

is lowest. Go to Phase One. The three phases
keep on going until all the pieces are used
up. Mutation is introduced in phases one and
three. With a 5 percent probability, a random
available piece is assigned as opposed to one
that both parents agree on in phase one and
the most compatible on e in phase three.

3.2 Convolutional Neural Network Augmen-
tation

The Algorithm proposed as is, always re-
quires 1000 randomly initiating chromosomes.
As an extension to the Algorithm proposed by
Sholomon et al[1], we decided to try to influ-
ence the starting state of the Genetic Algorithm.
The rationale is that if the the genetic algorithm
starts out with chromosomes that are already
quite good, then convergence would be faster
and the number of generations required for
the algorithm could be reduced. We decided to
train a convolutional Neural Network to solve
the Jigsaw task and then use its output as input
to the Genetic Algorithm.

Problem Formulation

The input to the neural network is an image
whose color channel are made up the jigsaw
pieces stacked side by side. The task of the
network was to predict the order in which the
pieces were stacked together, thus assigning
each piece its right position in the original
image. To clarify, say we have a 3x3 puzzle. The
pieces are numbered 1 to 9 according to their
position in the original image. They are then
stacked in a random configuration along the
color channel. It is then the task of the network
to predict the configuration in which they were
stacked. We cast the problem as a classification
problem. Since the configurations space is re-
ally large, 9 pieces produce 9! = 362990 possi-
bilities, it would be near impossible, given the
computing resources at our disposal, to have
9! classes. As such, we decided to reduce the
problem to the following. We keep track of 100
classes representing 100 randomly generated
configurations. The objective of the network is
now to predict the configuration (1 - 100) that
has the closest Hamming Distance to the actual
configuration of the given image. This work
around made the solution space of the problem
tractable.

Network Architecture and Implementation
Details

The diagram below shows the network
structure. Our implementation of the
network was done in TensorFlow. We used
a softmax cross entropy loss function. A
hyper parameter search lead us to Adam
Optimizer with a learning rate of 10−3 and
a batch size of 128. We had to normalize
the image channels to 1 by dividing by 255.



CS231A FINAL PROJECT, JUNE 2016 5

3.3 Evaluation Metric

There are two major metrics used to evaluate a
jigsaw reconstruction. There is the direct com-
parison which measures the fraction of pieces
located in their correct absolute location, and
there is neighbor comparison, which measures
the fraction of correct neighbors. The direct
method has been shown [1] to be less accurate
and less meaningful since it cannot handle
slightly shifted cases. We thus used the neigh-
bor comparison as our evaluation metric.

4 EXPERIMENTS

4.1 Convolutional Neural Network

Given that we cast our solution space for the
network into 100 classes, we set our baseline to
be a validation accuracy of 0.01 corresponding
to random guessing out of the 100 classes.
Our convolutional neural network, was
able to achieve validation accuracy of 0.022
which is more than twice our baseline. This
performance is quite impressive considering
that what the network is actually trying to
achieve is predicting a configuration space of
9! that is being represented by 100 classes. The
more puzzles provided to the network to solve,
the better it got as the plot below suggests.

4.2 Solving Jigsaws via Genetic Algorithm
The table below shows the run time and ac-
curacy results for difference puzzle piece sizes
averaged over 10 runs. As can be seen from the
table, we were able to achieve results compa-
rable to those of the original paper in terms of
the accuracy of rearrangement of jigsaw pieces
and the fitness score of the result returned.
Our reconstructions, though not always as ac-
curate as the original by the neighbor accuracy
metric described, produced a reconstructions
whose fitness score were equal to the fitness
score of the original image.This suggests that
the algorithm sometimes gets stuck in a local
minimum whose fitness score is the same as
the un-jumbled image’s score.

Figure 1. Algorithm Performances on Different
Piece Numbers



CS231A FINAL PROJECT, JUNE 2016 6

In the domain of run time however, we were
unable to match the original paper’s results.
The paper describes solving a 432 piece puzzle
in 43.63 seconds, however our implementation
takes around 2 hours to run on a puzzle of
the same size. We believe this huge difference
is due to differences in the specifics of the
implementation of the crossover function.

Figure 2. 96 PIECES:GENERATION 1

Left: Best Reconstruction so far. Right: Sec-
ond Best

Figure 3. 96 PIECES:GENERATION 100

Left: Actual Image. Right: Reconstructed Im-
age.

4.3 Genetic Algorithm + Convolutional
Neural Network (CNN)

As an augmentation to the original algorithm,
we fed the reconstruction output of the CNN
as the starting population of the Genetic
Algorithm. We were mainly interested in two
effects
1.Did the run time of the algorithm improve?
2.How did the accuracy of the reconstruction
change?

The table above contrasts the performance of
the CNN augmentation in different regimes
of training data size with the pure Genetic
Algorithm performance on the 3x3 Jigsaw. In
general, the augmented algorithm has a better
run time. Though the difference is 1 second
for this regime of 3x3 puzzles, it is easy to
see how this gain could be more significant
as the puzzle size increases. In general, the
reconstructed puzzle from the augmented
model are not as accurate as the pure Genetic
Algorithm. However, the reconstructions
always had the same minimal fitness score
as the original, meaning that it is finding a
good minimum, even if this is not the original
reconstruction.

5 CONCLUSION
The Jigsaw puzzle problem is an interesting
problem with applications in many domains.
Looking forward, one extension we plan to
explore is to solve the jigsaw problem using
only a neural network. We envision embed-
ding convolutional layers in a Long Short Term
Memory or Recurrent Neural Network which
would directly predict the right configurations
instead of using our current trick of having 100
representative configurations. We would also
like to investigate more avenues for improving
the run time of our current model.

REFERENCES
[1] H. Freeman and L. Garder. Apictorial jigsaw puzzles:

The computer solution of a problem in pattern recog-
nition. IEEE Transactions on Electronic Computers, EC-
13(2):118127, 196



CS231A FINAL PROJECT, JUNE 2016 7

[2] T. Cho, S. Avidan, and W. Freeman. A probabilistic image
jigsaw puzzle solver. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 183190, 2010.

[3] D. Sholomon, O. E. David, and N. S. Netanyahu. A genetic
algorithm-based solver for very large jigsaw puzzles. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 17671774, 2013.

[4] D. Pomeranz, M. Shemesh, and O. Ben-Shahar. A fully
automated greedy square jigsaw puzzle solver. In IEEE
Con- ference on Computer Vision and Pattern Recognition,
pages 916, 2011


