
 

 

Abstract—With recent rise of technology such as 

augmented reality and autonomous vehicles, there 

comes a necessity for speedy and accurate depth 

estimation to allow these products to effectively interact 

with their environments. Previous work using local 

methods to produce depth maps has generally been fast 

but inaccurate and work using global methods has been 

accurate but too slow. A new technique referred to as 

semi-global matching combines local and global 

methodologies to balance speed and accuracy, 

producing particularly useful results. This project 

focuses on the implementation of slight variations on the 

original algorithm set forth by Hirschmuller [2] to 

increase accuracy and using CUDA to accelerate the 

runtime. Results show sufficiently low error, though 

runtime was found to be imperfectly optimized.  

 

1. Introduction 

Acquiring depth information from sets of images is 

incredibly important in many emerging fields such as 

augmented reality, robotics, autonomous vehicles, etc. 

However, these applications rely on the produced depth 

information to be both accurate and generated in a short 

amount of time—ideally close to real-time—to ensure 

safety of the system and users, as well as for reliable pose 

tracking. 

 

Many algorithms for computing this information have 

been previously explored, either looking at localized 

information or global information throughout the entire 

image. Local techniques such as Winner-Takes-All (WTA) 

or scanline optimization (SO) [7] compute results for pixels 

independently and require minimal computation, but due to 

lack of consideration for global trends typically result in 

inaccurate conclusions. The dynamic programming [5] 

approach is also computationally efficient, but because the 

algorithm only looks at a single row per iteration, it also 

lacks consideration for global trends and commonly causes 

streaking patterns to show up in the output. On the other 

hand, while global techniques such as a Graph Cuts [1] and 

Belief Propagation [9] produce more accurate results and 

better avoid the errors encountered in the local methods, 

these techniques are significantly more memory intensive 

and end up being much slower.  

 

To obtain both reasonable accuracy as well as real-time 

performance, we instead move to what can be referred to as 

a semi-global matching technique [2], which makes some 

use of both local and global methods. Additionally, 

offloading data calculation onto the GPU, which is ideal for 

handling SIMD (single instruction multiple data) 

computation, allows us to exploit the parallelizable nature 

of our image-based calculations and significantly reduce 

computation time for estimating the optimal disparity map. 

 

2. Problem Statement 

In order to tackle this problem, we make the assumption 

that the input images are a rectified stereo pair. This is 

inherently the case when two cameras are orthogonal to 

the baseline, and point in the same direction. Mpopular 

stereo vision datasets, such as the Middlebury dataset, 

which is used in this paper [3][6][8], provide stereo pairs 

that have been rectified. The benefit to having rectified 

images is that the epipolar lines are horizontal and 

corresponding lines are at the same height in each image. 

This simplifies the problem because corresponding points 

will lie on the same epipolar line, and so we only have to 

search in horizontal directions. 

Local methods are more prone to noise in their disparity 

maps due to the fact that there may be several local 

minima in their cost function. Because of this the semi 

global approach uses a model which penalizes changes in 

disparity values in local neighborhoods. This causes the 

resulting disparity map to be smoother by attenuating high 

frequency noise, which provides a clearer estimate of the 

true relative depth of the objects in the scene.   

 

3. Technical Content 

The implementation of the semi-global matching method 

comes down to minimizing an energy function describing 

the quality of a potential disparity image. This is 

represented by the expression below: 

 

Real-Time Semi-Global Matching Using CUDA Implementation 
 

Robert Mahieu 

Stanford University 

Department of Electrical Engineering 
rmahieu@stanford.edu 

 

Michael Lowney 

Stanford University  

Department of Electrical Engineering 
mlowney@stanford.edu 

 

 



 

 

 

𝐸(𝐷) = ∑ (𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝟏{|𝐷𝑝 − 𝐷𝑞| = 1}

𝑞∈𝑁𝑝𝑝

+ ∑ 𝑃2𝟏{|𝐷𝑝 − 𝐷𝑞| > 1}

𝑞∈𝑁𝑝

) 

 

Where 𝐷 is the disparity map, 𝑝 is a pixel location on the 

map, 𝐷𝑝 is the disparity value at pixel 𝑝, 𝑁𝑝 is the 

neighborhood of pixels around 𝑝, 𝟏{? } is an indicator 

function that is equal to one if the argument within the 

braces is true and zero if false, and 𝑃1 and 𝑃2 represent 

penalty value given to various changes in disparity within 

the local neighborhood. 𝐶(𝑝, 𝑑) represents an initial cost 

function which is based on the absolute difference between 

gray levels at a pixel 𝑝 in the base reference image and pixel 

𝑝 shifted by 𝑑 along the epipolar line in the matching image 

(assumed to be the right image in the stereo pair): 

 

𝐶(𝑝, 𝑑) = |𝐼𝑏(𝑝𝑥, 𝑝𝑦) − 𝐼𝑚(𝑝𝑥 − 𝑑, 𝑝𝑦)| 
 

Note also as stated in section 2 that the images are 

assumed to be rectified. The energy function thus penalizes 

heavily (with 𝑃2) large jumps in the disparity map and less 

heavily (with 𝑃1) small changes that may represent sloped 

surfaces. Note that 𝑃1 < 𝑃2. This allows us to reduce high 

frequency noise in the resulting disparity image. 

 

Optimizing this energy function using global 

minimization in 2-dimensions is NP-complete, and requires 

too much computation to solve for many practical 

applications. On the other side of the spectrum, minimizing 

in 1-dimension over image rows, such as in the dynamic 

programming approach, is light on computation, but suffers 

from accuracy issues as discussed above. To handle this 

problem, semi-global matching leverages several                   

1-dimensional minimization functions to more efficiently 

construct an adequate estimate of the solution.  

 

The first step in the actual implementation of the 

algorithm is to calculate initial costs for all pixels in the 

image pair at disparities ranging from 0 to some selected 

𝑑𝑚𝑎𝑥 . We found that using a 𝑑𝑚𝑎𝑥  value of 64 was more 

than enough for all images we tested. This computation can 

be efficiently carried out on the GPU with a kernel that 

gives each thread a computation for one pixel and one 

disparity value. The system takes an RGB stereo pair as an 

input and then converts the image to grayscale. The cost 

function uses the difference in grayscale intensity values as 

a metric to determine how good or bad a potential match is. 

Once the images are converted to grayscale they are store 

in texture memory on the GPU to increase speed. Texture 

memory is cached on the chip and allows for much faster 

reads than global memory.  

 

To carry out the next step denoted “cost aggregation”, we 

iterate and compute the energy function locally over 8 

directions (two horizontal, two vertical, two for each 

diagonal). An example for the recursive expression is 

shown below for the horizontal direction, going from left to 

right across the image: 

 

 

𝐸(𝑝𝑥, 𝑝𝑦 , 𝑑) = 𝐶(𝑝, 𝑑) 

 + min(𝐸(𝑝𝑥 − 1, 𝑝𝑦 , 𝑑), 

 𝐸(𝑝𝑥 − 1, 𝑝𝑦 , 𝑑 − 1) + 𝑃1, 

𝐸(𝑝𝑥 − 1, 𝑝𝑦 , 𝑑 + 1) + 𝑃1 , 

𝑚𝑖𝑛
𝑖

(𝐸(𝑝𝑥 − 1, 𝑝𝑦 , 𝑖) + 𝑃2)) 

 

 

This step can be parallelized by having a different block 

for each direction, and within each block having each thread 

handle one iteration for one disparity. Note that after each 

step along the direction, the threads must be synchronized. 

This can be done by utilizing the CUDA command 

__syncthreads(). 

 

Once all paths have been traversed, results are compiled 

into a single value: 

 

𝑆(𝑝, 𝑑) = ∑ 𝑤𝑟 ∗ 𝐸𝑟(𝑝, 𝑑)

𝑟

 

 

Where 𝑟 represents a given direction and 𝑤𝑟 represents a 

weight value for that particular direction. By introducing 

this weighting term, we account for the fact that results 

obtained from a certain path orientation may still lead to 

better estimates than the results from the other orientations. 

Therefore, we are able to weight each direction accordingly 

based on the scene type.  

 

The final step is to, for each pixel, iterate over the 

calculated energy values and determine which disparity 

value corresponds to the minimum energy. This is 

represented by the following function: 

 

𝐷(𝑝) = argmin
𝑑

𝑆(𝑝, 𝑑) 

 
 This can be parallelized on the GPU by having each 

thread handle all disparities for a given pixel. The 

disparities returned from this step represent the optimal 

disparity map that minimizes the energy function. 

 

Once we have a reasonable disparity map, the next step 



 

 

is to determine areas of occlusion in the image, meaning 

areas that are visible in the base image, but blocked in the 

matching image. This can be done by running a slightly 

modified version of the algorithm as defined above again to 

generate a disparity map for the match image. The only 

modification is in the initial cost function which becomes: 

 

𝐶(𝑝, 𝑑) = |𝐼𝑚(𝑝𝑥, 𝑝𝑦) − 𝐼𝑏(𝑝𝑥 + 𝑑, 𝑝𝑦)| 
 

Once we have disparity maps for both the base and match 

image we can compare the results to identify occluded 

regions. For each pixel in the base disparity map we sample 

the disparity value. We then compare this to the value in the 

match disparity map at the same pixel location shifted by 

the base disparity value we just sampled. If these two values 

are the same (within some small tolerance), we judge them 

to be true correspondences, otherwise we make them as 

occluded pixel and set them to zero in the base disparity 

map. This technique outputs a refined base disparity map.  

 

Finally, to eliminate residual noise in the output we filter 

the disparity map using a median filter. Good results were 

observed while using a small kernel of 3x3. This allows us 

to keep the major edges and details in the map while 

removing the unwanted high frequency components.  

 

A consideration worth noting is the memory 

requirements of this algorithm. The amount of memory 

used scales like 𝑂(𝑚𝑛𝑑𝑚𝑎𝑥), where 𝑚 it the number of 

rows in the image, 𝑛 is the number of columns in the image, 

and 𝑑𝑚𝑎𝑥  is the number is the maximum number of 

disparity values. Storing the initial cost matrix and the 

matrices for the 8 search directions may exceed the total 

amount of memory on the GPU.  For this paper the 

algorithm was run on a laptop with a NVIDIA GeForce 

940M GPU with 2GB of memory. In order to stay below 

this 2GB threshold the input images must be down sampled. 

Unless otherwise specified the images will be down 

sampled so that the number of columns will be 450, and the 

number of rows will be scaled accordingly.  

 

4. Results 

The quality of our algorithm was tested using the 

Middleburry dataset. Figure 1 shows the results of our 

algorithm compared to the ground truth of the depth 

map for various image pairs. For these trials we used 

the values suggested in [4] for 𝑃1 , 𝑃2. All 𝑤𝑟  were set 

to the same value to ensure equal weighting.  Table 1 

shows the values of  𝑃1 and 𝑃2 used for our results.  

 

Table 1: Penalty Values 

 ↔ ↕ ↖↘  ↙↗ 
 

𝑃1 22.02 17.75 14.93 10.67 

𝑃2 82.79 80.87 23.30 28.80 

 

Figure 1- First row shows the left input image of the stereo pair, second row is the depth 

map using semi-global matching, third row is ground truth  

 



 

 

Qualitatively the results appear to be quite a close 

match to the ground truth. The regions towards the left 

border of the image are consistently unlabeled. This is 

due to the fact that they represent pixels that are only 

seen in the base image. Only pixels that are in the field 

of view of both cameras will result in accurate disparity 

values.   

 

Table 2: MSE and runtime for images in Midlleburry 

dataset 

IMAGE PAIR MSE Runtime 

aloe 0.0296 3715ms 

books 0.0687 3394ms 

dolls 0.0712 3385ms 

laundry 0.0935 3517ms 

pots 0.1053 3607ms 

baby 0.0385 3759ms 

bowling 0.1083 3692ms 

art 0.0949 3385ms 

cones 0.0409 3152ms 

wood 0.0671 3403ms 

 

 

Table 2 shows the mean-squared error (MSE) between 

our experimental depth maps and their respective ground 

truths. Note that the error values are generally quite low, 

never reaching any higher than around 10% for any of the 

images we tested. Although differences in scaling of depth 

to grayscale may be present between the experimental 

results and the ground truth, this appears to be minimal and 

therefore the MSE should still provide a good metric for 

analyzing the success of the algorithm.  

 

While the performance of the algorithm seems to 

decrease in highly cluttered scenes such as the Art image 

pair or scenes with many strong gradients such as the Pots 

image pair, in general, variation in the scene structure 

appears to affect the quality of the produced depth map very 

little, both qualitatively and quantitatively. 

 

These results also appear to indicate that our decision to 

weight the results from all path directions equally, as well 

as our decision to keep constant the penalty values 

throughout all tests, had relatively small impact on the 

quality of our depth maps. The results from Michael et al. 

[4] report that training these values for specific scenes does 

increase quality noticeably, however our results seem to 

show that it is still possible to get reasonably good results 

without worrying about changing these parameters for 

every scene.  

Unfortunately, due to time constraints on the project, we 

were unable to spend much time optimizing the CUDA 

implementation, so tests on runtimes have returned sub-

optimal results. In the current somewhat naïve 

implementation, we are still able to get runtime down to 

around one frame/sec for images with sizes below about 

250x217 (54250 pixels). The relationship between runtime 

and input image size is illustrated in Figure 2. As shown in 

the figure, the Semi-Global Matching algorithm has a 

runtime that scales linearly with the number of pixels in the 

input images.  It is also worth noting that the graphics cards 

used in modern stereo research are much more powerful 

than the ones used in this paper (consumer grade laptop 

GPUs). This difference in hardware is a main contributor to 

the longer runtimes found in this project.  

 

 It is important to note that one of the most significant 

factors in the runtime, however, is actually the resizing of 

images that occurs at the start of the program after being 

read in by the CPU. This is necessary to ensure that we do 

not overload the GPU memory, however the time cost is 

very high. When images do not need to be resized on-the-

fly, total speeds are greatly increased (about 2x speedup). 

In future implementations, intelligent use of shared 

memory and memory access within warps should be able to 

dramatically increase performance. Some of these 

techniques are outlined by Michael et al. [4].  

 

For posterity, to demonstrate the robustness of our 

algorithm we also selected an arbitrary stereo image pair 

from reddit (https://www.reddit.com/r/crossview) of a 

Batman figurine. The results are displayed in Figure 3. 

While some poorly defined occlusion areas create a good 

bit of distracting noise in the depth map image, the large 

non-occluded areas actually show quite a high amount of 

detail. Looking closely, we can even make out definition at 

Figure 2- Runtime vs Image Size 

https://www.reddit.com/r/crossview


 

 

the level of the muscles on the figurine.  

 

 

 
Figure 3- Batman robustness test 

 

5. Conclusions 

In this paper we demonstrate the effectiveness of the 

Semi-Global Matching technique for depth estimation from 

a set of stereo images. Leveraging a combination of global 

and local techniques our results exhibited low error when 

compared to ground truths.  With more powerful hardware 

and optimized CUDA implementation, our initial results 

imply that this would be possible to run in real time. This 

has been shown to be the case in [2][4].  

 

The error could be further reduced in the future by 

changing how we handle occlusions. Currently we are able 

to detect occlusions by comparing the depth map for both 

the base and match image. Once occlusions are found they 

are set to zero, which can cause an increase in the measured 

MSE. By adapting an interpolation technique as suggest by 

[2] we can increase clarity of the depth map and increase 

the accuracy.  

 

Implementing a mutual information based initial cost 

function can also further increase the accuracy of the depth 

maps. We experimented with a basic mutual information 

approach, but were unable to produce reasonable outputs. 

We believe this is due to the need of multiple iterations for 

the depth map to converge. Future work would also 

explorer further the concept of mutual information, and 

finding a way to incorporate it into stereo matching with as 

little iterations as possible.  

 

The results from this project further indicate that Semi-

Global Matching is a robust approach to estimating depth 

information from a scene. Semi-Global Matching well 

balances the tradeoffs of both speed and accuracy, making 

it a strong contender for use in new technologies.  

 

 

Link to code: 

https://github.com/rmahieu/SemiGlobalMatching 

References 

 

[1] Y. Boykov, O. Veksler, and R. Zabih. Efficient 

approximate energy minimization via graph cuts. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 23(11):1222–1239, 2001. 

 

[2] H. Hirschmuller, "Accurate and efficient stereo 

processing by semi-global matching and mutual 

information," 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern 

Recognition (CVPR'05), 2005, pp. 807-814 vol. 2. 

 

[3] H. Hirschmüller and D. Scharstein. Evaluation of cost 

functions for stereo matching. In IEEE Computer 

Society Conference on Computer Vision and Pattern 

Recognition (CVPR 2007), Minneapolis, MN, June 

2007. 
 

[4] Michael, M., Salmen, J., Stallkamp, J., & Schlipsing, 

M. (2013, June). Real-time stereo vision: Optimizing 

semi-global matching. In Intelligent Vehicles 

Symposium (IV), 2013 IEEE (pp. 1197-1202). IEEE. 

 

https://github.com/rmahieu/SemiGlobalMatching
http://www.cs.middlebury.edu/~schar/papers/evalCosts_cvpr07.pdf
http://www.cs.middlebury.edu/~schar/papers/evalCosts_cvpr07.pdf


 

 

[5] G. Van Meerbergen, M. Vergauwen, M. Pollefeys, and 

L. Van Gool. A hierarchical symmetric stereo 

algorithm using dynamic programming. International 

Journal of Computer Vision, 47(1/2/3):275–285, 

April-June 2002. 

 

 

[6] D. Scharstein and R. Szeliski. High-accuracy stereo 

depth maps using structured light. In IEEE Computer 

Society Conference on Computer Vision and Pattern 

Recognition (CVPR 2003), volume 1, pages 195-202, 

Madison, WI, June 2003. 

 

[7] D. Scharstein and R. Szeliski, “A taxonomy and 

evaluation of dense two-frame stereo correspondence 

algorithms,” International Journal of Computer 

Vision, vol. 47, pp. 7–42, 2002. 

 

[8] D. Scharstein and C. Pal. Learning conditional random 

fields for stereo. In IEEE Computer Society 

Conference on Computer Vision and Pattern 

Recognition (CVPR 2007), Minneapolis, MN, June 

2007. 

 

[9] J. Sun, H. Y. Shum, and N. N. Zheng. Stereo matching 

using belief propagation. IEEE  Transactions on 

Pattern Analysis and Machine Intelligence, 

25(7):787–800, July 2003 

 

  

http://www.cs.middlebury.edu/~schar/papers/structlight/
http://www.cs.middlebury.edu/~schar/papers/structlight/
http://www.cs.middlebury.edu/~schar/papers/LearnCRFstereo_cvpr07.pdf
http://www.cs.middlebury.edu/~schar/papers/LearnCRFstereo_cvpr07.pdf


 

 

Appendix:  

 

  

  

  

  



 

 

  

  

  

  



 

 

  

  

  

  
 


