Reconstructing Roller Coasters

Tyler J. Sellmayer
Stanford University
tsellmay@stanford.edu

Abstract

In this paper, we describe a method of three-dimensional
reconstruction whose input is a series of two-dimensional
images recorded by a passenger on a roller coaster (a
“first-person ride video”), and whose output is a three-
dimensional model which approximates the path of the
roller coaster’s track. We also describe a method for de-
termining the approximate color of the roller coaster track
from the same video. We conclude that our methods are ir-
revocably flawed and cannot be used to achieve our goal of
printing scale 3D models of roller coasters.

This builds on previous work in the structure from motion
problem, wherein an entire three-dimensional scene is re-
constructed from a series of images. We modify this problem
by attempting to only reconstruct one element of the scene,
the roller coaster’s track. We also implement a method of
choosing a subset of input frames from a video. Previous
SFM work has largely focused on either individually-taken
photographs [6, 12] or complete video sequences [2], tak-
ing every frame as input.

Our approach relies on a fundamental assumption about
first-person ride videos: the camera’s path through the
world is an approximation of the roller coaster track. In
other words, the rider keeps all hands and feet, and his
camera, inside the ride at all times. This allows us to use
the camera pose location as an approximation of the track
location.

1. Introduction

The motivation of this paper is to enable the author to
create 3D-printable models of roller coasters automatically.
The problem is a modification of the structure-from-motion
(SFM) problem as described in [6], simplified because we
only need to recover the camera poses for our final output.
We do not attempt to recover the 3D world points compris-
ing the roller coaster track itself. To accomplish the cam-
era pose estimation, we rely on MATLAB’s structure-from-
motion toolkit as described in [12].

We begin by breaking apart a video into individual

frames at 30 frames per second of video, using the avconv
tool [13]]. This gives us a collection of frames stored as in-
dividual PNG images. Our MATLAB code then reads these
images from disk.

We author our own MATLAB code for automated
calculation of the color of the track. This color,
track_color_centroid, is later used to paint the fi-
nal rendering of points, and in the future could be used to
choose an appropriate color for a 3D-printed model of the
track.

We extend MATLAB?’s tutorial code [[12]] to make use of
the high framerate of our input video [3|]. Instead of tak-
ing each and every frame of video as input, we choose a
start point s and desired number of frames n, and intro-
duce a frameskip parameter which controls how many
video frames we ignore between SFM input frames. We call
these ignored frames inbetweens. The unignored frames are
called keyframes.

The SFM pipeline takes these keyframes as input. For
each keyframe, it corrects for image distortion (using a
manually-tuned set of camera parameters), detects SURF
features [1]], finds feature correspondences with the previ-
ous frame, and uses these correspondences to estimate the
fundamental matrix [6, p. 284] between the previous frame
and current frame.

This estimated fundamental matrix is then used to com-
pute the relative camera pose adjustment between frames,
which is used to update a list of world-coordinate camera
poses. After each new frame is successfully processed in
this manner, we perform bundle adjustment [[15]] to increase
the quality of our camera poses. Once we have processed n
frames, we report the list of camera pose locations in world
coordinates and plot them. The plot points are colored with
the RGB value from track_color_centroid and dis-
played.

To enhance our results, we enable our algorithm to sub-
stitute a keyframe with a nearby inbetween frame when this
fundamental matrix estimation fails for any reason, trying
up to frameskip inbetweens.

In our experimental results, we report plot of camera
poses generated under a variety of SURF parameters and

Figure 1. Frame number 3070 from a first-person ride video [3],
unedited.

Figure 2. Frame number 2784 from a first-person ride video [3],
unedited. Here, the rider is inside a dark tunnel.

frameskip values. We then draw conclusions from these
results.

2. Problem Statement

Our problem has two independent pieces: estimating
the roller coaster track’s color, and estimating a three-
dimensional model of the roller coaster track’s path. We
examine these problems separately.

2.1. Estimating Track Color

This problem can be concisely stated as “Given a first-
person ride video of a roller coaster, return the RGB value
which most closely approximates the paint color of the
roller coaster’s track.”

First-person ride videos have the property that the image
of the track always touches the bottom of the frame near
the center, as shown in[I] This property is only untrue in
cases where the camera is not pointing forward along the
track (we found no examples of this) or when the track is
not fully visible. For example, the track is not visible at
the bottom of the frame when the camera’s automatic white
balance adjustment causes it to be blacked out (or whited
out) in response to changing environment light, as seen in
figure[2}

Using this mostly-true property, we can conclude that
ideally, the track color will be approximately that color
which appears most often in the bottom-center area of our

video frames. But our images are noisy, and the light-
ing changes throughout the video, so this ideal scenario
doesn’t quite work if we use the pixel colors directly from
the recorded images. Instead we bucket these pixel colors
into a color palette using nearest-neighbor search [[11]], then
find the palette color whose member pixels occur most of-
ten in the bottom-center of the frame. This color we call our
track color. The full explanation of this algorithm is in the
Technical Content section[3l

2.2. Estimating Track Structure

As stated above, we use the locations in world space of
our camera as an approximation of the track position. This
lets us use the camera pose estimation stage of structure-
from-motion [12]] as the basis of our algorithm. We mark
every frameskipth frame as a keyframe with the frames
between them called inbetweens.

Before processing any frame, we first undistort it using
manually-tuned camera parameters for correcting fisheye
distortion and a calculated intrinsic camera matrix K. To
obtain the approximate focal length of our camera, we com-
pute the average width-at-widest-point of the roller coaster
track’s image in pixels across a random subset of frames,
and use this average width to obtain a ratio between a width
in world-space (the real width of the track, which we as-
sume to be 48 inches) and a width in the image plane in
pixels. We use this ratio to convert the known focal length
of our camera (14mm, according to [5]) to pixels. We as-
sume square pixels and zero skew, so this focal length is all
we need to compute our intrinsic camera matrix K.

For each keyframe, we attempt to compute the camera
pose relative to that of the previous frame. MATLAB’s pose
estimation toolkit assumes that the camera poses are exactly
1 unit distance apart, an assumption which is corrected by
performing bundle adjustment [[15] after each frame’s pose
is added.

During the computation of the relative camera pose,
MATLAB’s helperEstimateRelativePose func-
tion [12] attempts to estimate the fundamental matrix F [0,
p. 284]. This estimation can throw an exception when there
are not enough matching correspondence points to complete
the eight-point algorithm, or when there is no fundamen-
tal matrix found which creates enough epipolar inliers to
meet the requirement set by our MetricThreshold pa-
rameter. When an exception occurs, we do not want to
simply stop calculating. Instead, we make use of the in-
between frames, retrying the relative camera pose computa-
tion with each inbetween frame after our second keyframe
until we find one that succeeds, or until we run into the
next keyframe, whichever comes first. If we run out of in-
betweens without successfully computing a relative cam-
era pose, we terminate our SFM computations immediately
and return a partial result. In our full results (see section [6])

we report the mean and maximum numbers of unsuccessful
fundamental matrix computations per keyframe for each of
our experimental runs.

SFM requires feature correspondences for the funda-
mental matrix calculation [6], which requires features. We
choose to use SURF [l]] as our feature detection algorithm
because it provides scale- and rotation-invariant features.
This is necessary because roller coasters often rotate the
rider relative to the environment (which rotates the pro-
jected images of features in our scene between frames), and
because the camera moves forward along the z-axis between
frames which changes the scale of the projected images of
features in our scene. In our results we report experiments
with controlling the SURF parameters NumOctaves,
NumScaleLevels,and MetricThreshold as defined
in [[7].

To avoid needless reimplementation of past work, we use
MATLAB?’s built-in toolkit [12] for computing correspon-
dences between features, estimating camera poses, tracking
views, triangulating 3D world points, and performing bun-
dle adjustment [15]]. Together, these produce a final set of
camera poses, including camera location and orientation in
world-space. We then plot the camera locations and color
our plot using the RGB value of the calculated track color.

3. Technical Content
3.1. Splitting Video Into Individual Frames

Our video is downloaded from YouTube [3]]. We run the
following command to split it into its individual PNG for-
mat images at a rate of 30 frames per second of video [13]]:

$ avconv -i video.mp4 -r 30 —-f image2 \
output_dir/%05d.png

We manually select the range of frames [f1, .. ., f.] from
the video which comprises the first-person ride video, ex-
cluding the copyright notice at the beginning and the credits
at the end.

3.2. Calculating Track Color
3.2.1 Determining The Color Palette

We first decide on a palette size. For our experiments, we
use palette size 10, meaning we will calculate 10 centroids
in the RGB space.

Our code examines a random subset of ¢
frames [s1,..., 8 C [fi,...,fe), and takes
a random subset of ¢ pixels in each frame
[pl,lw-~7pq,17p1,27--~7pq,27~-~apq,t]7 where each
pixel p; ; is represented as a triplet of values between 0 and
255, indicating the red, green, and blue values comprising
the color of that pixel, respectively. This is a standard
representation of colors in RGB space.

Figure 3. Ten color centroids calculated from a random subset of
pixels in [3]]. Notice that these colors are similar to those found in

figure[T]

We take this set of several thousand pixels, and run k-
means clustering [[10] on it. This gives us k centroids in
RGB space, and we use the colors those centroids represent
as our color palette. Because of the randomness in this al-
gorithm, we do not get the exact same palette every time.
One example of a & = 10 color palette is seen in seen in

figure[3]

3.2.2 Finding The Track

Once we have established our color palette, we need to de-
termine which of the colors in the palette most closely ap-
proximates the color of our track. To accomplish this, we
must rely on our knowledge that in first-person ride videos,
the roller coaster track usually touches the bottom of the im-
age frame, near the center, and almost never touches the left
or right sides of the frame.

We first select a new random subset of ¢ frames
[r1,...,7¢] C [f1,--., fe]. In each frame, we examine only
the bottom 10 rows of pixels. We split this 10-pixel-high
strip horizontally into g 10-pixel-high segments. For an im-
age of width W, this gives us g regions [y1,...,7,] each
of size 10 x W Our ultimate goal with these regions is to
find which palette color is least often present in the left- and
right-most regions.

Rather than just counting every pixel, we choose to count
only those pixels which lie on either side of an edge. This
increases the number of pixels we count that represent track
(which is made of hard-edged steel parts, in focus, and rel-
atively large in the frame, giving it more sharp edges) com-
pared to the number of pixels we count in noisy background
regions (which tend to be out of focus, motion-blurred, or
so far away that their edges are not distinguishable at the
camera’s resolution, giving them few sharp edges). We
count the pixels (e; — 1,¢e,), (e + 1, e,) which lie on ei-
ther side of the edge, rather than the pixel (e, e,) which
lies directly on the edge, because we want to capture the
colors inside the regions more than we want to capture the
colors of the edges themselves. We call the set of points
(€ix —1,€iy), (€0 + 1,6€;,) for all edge pixels e; our set
of half-edge pixels.

Furthermore, because we care about hue more than satu-
ration or value when determining which pixels to count, we
perform the edge-finding computation on the "hue’ layer of

Figure 4. Top: Frame number 3854 from a first-person ride video
[3], unedited. Bottom: the same image with each pixel’s color
replaced by its nearest RGB-space neighbor from the color palette

in figure[3]

Table 1. A histogram of half-edge pixel counts over 5 regions and
10 colors.

1612 163 15 14 244 117 72 O 59
471 47 276 18 253 112 41 5 0
683 0 70 55 32 285 142 124 O
182 0 168 1 281 104 O 26 45
312 141 74 0 94 183 18 O 14

our images after converting them to HSV (hue-saturation-
value) format. We use MATLAB’s edge function to ac-
complish this [8].

We use a nearest-neighbors search [11] to bucket our
half-edge pixels’ RGB values into our color palette. To il-
lustrate this concept, we provide figure @ where every pixel
in the image has been replaced with its bucketed color.

We then count the number of half-edge pixels in each
color palette bucket, in each segment [y1,...,7,]. This
gives us a two-dimensional histogram where each cell rep-
resents the total number of half-edge pixels of one particu-
lar color ¢; in one particular region ; across all the frames
in [r1,...,7]. Table|l|gives an example of one such his-
togram. From this histogram we can find a color column
which most closely matches the pattern we expect for our
track color. As stated above, we expect the track color to
appear almost-only in the center region(s), and almost-never
in the far left and far right regions. We get good results sim-
ply choosing the color whose far-left region and far-right
region counts have the minimum sum. In table[T] we see that

the column [0, 5,124, 26, 0] satisfies this condition, so our
track color is the one corresponding to that column. In this
example, that color happens to be the reddish-orange palette
color which covers the bulk of the track in figure[d]

3.3. Calculating Track Width

Now that we know the color palette and the track color,
we can examine yet another random subset of frames and
compute the average width (in pixels) of our image of the
track. This will allow us to scale our model appropriately
by adjusting the focal length parameter in our camera matrix
K. We again examine only the bottom 10 rows of pixels of
each frame. In each row of pixels, we find the leftmost and
rightmost pixel whose color lands in the track-color bucket,
and consider the distance between these two pixels to be the
track width at that row. We simply take the mean of these
track widths for each of the 10 bottom rows in each image
as our average track width.

3.4. Camera Pose Estimation

The camera pose estimation task is the first part of the
Structure-From-Motion problem as described in [12]. We
operate on grayscale version of our frames, color is not im-
portant for this part. We use a manually-tuned parameter for
correcting the radial distortion caused by the GoPro’s fish-

ggeve lens effect, giving us less distorted frames, like the one
4335een in figure 5]

We use SURF [1I]] to detect features as seen in

441 figure [0 We modify the parameters NumOctaves,
663NumScaleLevels,andMetricThresholdas defined

in [[7] in our experiments. SURF provides rotation- and
scale-invariant features, which is useful to us because we
want to find feature correspondences between frames in
an environment where our camera is rotating and moving
through space (because it’s on a roller coaster!). As de-
scribed in the Problem Statement 2] section, we use MAT-
LAB’s toolkit to accomplish fundamental matrix estima-
tion, triangulation, and bundle adjustment. We extend the
tutorial code [12]] to make use of the relatively large num-
ber of frames available to us.

We begin our SFM camera pose update loop with
the intention of operating only on every frameskipth
frame [fla f1+frameskip7 fl+2*frameskip7]a called our
keyframes. At each step in the loop, we first find feature
correspondences between the next keyframe and the cur-
rent last-used frame. Figure [7] shows one such set of cor-
respondences. When these feature correspondences pro-
vide enough high-quality points for us to estimate the fun-
damental matrix and meet our threshold for epipolar in-
lier count, the calculation succeeds and our loop contin-
ues on to the next keyframe. When the feature corre-
spondences do not meet this requirement, or if MATLAB’s
estimateFundamentalMatrix function [9] fails for

Figure 5. Above: Frame number 839 in [3]], unedited. Below: The
undistorted frame.

Figure 6. SURF features in frame 91.

any other reason, we re-attempt the calculation with an
inbetween instead of the failed keyframe. We try subse-
quent inbetween frames in the same order they appear in
the video.

For example when frameskip = 20 the algorithm
will first attempt to compute the fundamental matrix be-
tween frames 1 and 21. If this computation fails, we try
the computation again between frames 1 and 22, then 1 and
23, and so on, until the computation succeeds, or until we
reach frame 41 (which is the next keyframe) and terminate.
Examples of feature correspondences which led to a failed
fundamental matrix calculation can be seen in figure|[§]

Figure 7. SURF feature correspondences between frames 192 (red)
and 212 (blue).

Figure 8. Top: SURF feature correspondences between frames 212
(red) and 232 (blue). Bottom: SURF feature correspondences
between frames 212 (red) and 241 (blue). Both of these sets
of features lead to a failed fundamental matrix estimate calcu-
lation. Notice the yellow lines which are much longer than the
distance between the image centers - these are incorrect corre-
spondences. Having so many of these creates the situation where
estimateFundamentalMatrix finds only fundamental ma-
trices that do not meet the threshold for number of epipolar inliers.

3.5. Output

Our output is a set of points, plotted in a 3D view, col-
ored to match our calculated track color. Each point repre-
sents the estimated camera pose location from one frame of
video. An example plot is given in figure[9]

Figure 9. Plot of 53 estimated camera pose locations,
generated with frameskip = 16,NumOctaves =
4, NumScalelevels = 3,MetricThreshold = 1100.0.

4. Experimental Setup and Results
4.1. Implementation And Setup

For all our experiments, we operate on the same set of
images from [3]]. This data set is roughly 14GB, and we’re
running our code on Stanford’s corn servers, so this uses
99% of our filesystem quota. We did not have a computer
with enough available storage to hold another data set.

All our code is implemented in MATLAB. We imple-
ment the following functions:

e main.m — This is the main function of our code. Re-
sponsible for generating figures[d] [5]and all of the cam-
era pose plots, as well as running all other functions
described below. Controls which image files are used
as input to the other functions. Defines the experiment
parameter TEST_FRAMESKIP, the desired number of
inbetween frames between keyframes (also referred to
as frameskip above.)

e random_subset_images.m—Usedbymain.mto
select random subsets of image paths, which are then
passed to cluster_colors, track_color, and
average_track_width.

e cluster_colors.m— Determines the color palette
of a set of images using k-means [10], as described
in section [3.2.1] Defines the experiment parameter
NUM_COLORS, the number of color centroids in the
palette. Returns a NUM_COLORS X 3 matrix of RGB
values, with each row representing one palette color.

e track_color.m- Determines which color centroid
from the output of cluster_colors best approxi-
mates the color of the roller coaster track, as described

in section [3.2.2] Defines the experiment parameter
BOTTOM_STRIP_SEGMENTS.

e average_track_width.m— Determines the width
of the track, as described in section[3.3]

e sfm.m - Computes camera poses using the
SFM pipeline as described in section [3.4 De-
fines the experiment parameters NUM_OCTAVES,
NUM_SCALE_LEVELS, and METRIC_THRESHOLD.

For our color experiments, we run our main MAT-
LAB function once per experiment, altering either the
NUM_.COLORS parameter in cluster_colors.m
or the BOTTOM_STRIP_SEGMENTS parameter in
track_color.m for each experiment. @ We record
the output of main, which includes the list of color cen-
troids, the histogram of pixels-per-centroid-per-segment,
and the final track color.

For our SFM experiments, we run the same MAT-
LAB function (main) once per experiment, changing
one parameter out of NumOctaves, NumScalelLevels,
MetricThreshold, and TEST_FRAMESKIP each time.
We conduct testing in an exploratory manner, altering only
one parameter at a time, searching for a configuration which
gives us the longest possible series of camera poses before
running into the failure condition of being unable to cal-
culate a fundamental matrix for a keyframe or any of its
subsequent inbetweens.

4.2. Results
4.2.1 Track Color Estimation

We experimented with computing the track color for various
values of NUM_COLORS and BOTTOM_STRIP_SEGMENTS.
These results are so uninteresting - the track color always
comes out as a shade of orange (as seen in figures and
M) or nearly white (the color of the sky in those same figures)
- that it is wholly unnecessary to present more than one full
example. We present this example in tables [2 and [3]

We also present a table of track color centroids as cal-
culated under different parameters in table d] Remember
that these color coordinates are on a scale of 0-255 with
(0,0,0) representing pure black and (255, 255, 255) repre-
senting pure white.

4.2.2 Camera Pose Plots

We present a representative subset of our camera pose esti-
mation results. Figures [0} [I0} [T} [T2} and[T3]show a variety
of camera pose location plots. Note that the long, straight
path of points in each plot corresponds to the long, straight
lift hill of the roller coaster. The jumbles of points are
badly-reconstructed camera locations on and after the peak
of the lift hill, or during the initial turn out of the ride shelter

Table 2. A histogram over 5 segments and 10 colors.

902 1 153 87 4 191 775 3 467 428
454 4 45 206 7 146 344 98 293 721
429 4 20 114 6 492 172 7 203 1084
375 6 60 233 0 333 0 0 103 1131
918 0O 148 338 0 334 O 0 97 730
Table 3. The color centroids for each of the 10 colors in[2]

Red Green Blue

81.1008 76.3207 57.9355

187.2241 | 128.2615 | 83.6437

72.8899 45.4787 24.6535

244.1506 | 242.3728 | 241.9210

171.5434 | 90.5595 36.1833

127.8087 | 105.3556 | 84.7148

36.8842 28.1582 19.3491

177.7524 | 181.0321 | 182.5577

184.3315 | 152.2799 | 126.4728

129.8242 | 55.6536 23.2184

Table 4. Estimated track colors.
#colors | #segments || Red Green Blue
3 3 161.7516 | 117.9050 | 85.0151
5 3 243.3168 | 241.6485 | 241.0941
7 3 243.2237 | 242.1020 | 242.0921
14 3 244.6650 | 243.3350 | 243.2677
3 5 161.7516 | 117.9050 | 85.0151
5 5 243.3168 | 241.6485 | 241.0941
7 5 142.3456 | 67.5242 28.2738
14 5 244.6650 | 243.3350 | 243.2677

area. Only figure[T3|represents our coaster somewhat accu-
rately - watch the video in [14] and observe the presence
of the roller coaster’s second hill. We were unable to find
any configuration of our code which could reconstruct past
frame 2689 of the video [3] without hitting the failure con-
dition of being unable to find an inbetween that allows for
successful fundamental matrix estimation. For full results,
see the link in section

5. Conclusions
5.1. Color Extraction

Our relatively low level of success in determining track
color (see table |4} often the track color is determined to be
white, which is actually the color of the sky in our video)
suggests that our goal was not achieved, and our method
was too reliant on manual tuning of the NUM_COLORS and
BOTTOM_STRIP_SEGMENTS parameters. We suggest that
future work on this topic should ignore our results and use
better, existing image segmentation algorithms like the ones
found in [4]. Should anyone choose to use our method, we
offer some suggestions and conclusions about our results.

In section[2.T] we introduced a method for extracting the

15.
ettt Mﬂr
ok
10 o
y
Ry
5 B
T
o
0 Lt
7
HH+
5
15 T~
10\\\ — s
~__ %
<
> \ e -5

Figure 10. Plot of 62 estimated camera pose locations
(between frames 91 and 249) in [3]], generated with
frameskip = 4,NumOctaves = 4,NumScalelevels =
3,MetricThreshold = 900.0.

cCo B N W A2 U O N ®
;4
£

Figure 11. Plot of 19 estimated camera pose locations
(between frames 91 and 153) in [3]], generated with
frameskip = §,NumOctaves = 4,NumScalelevels =
3,MetricThreshold = 900.0.

color of a roller coaster track from a first-person ride video.
This method is extensible to other color extraction prob-
lems, where the general region that contains an object is
known across multiple views. For instance, one might ex-
tract a person’s eye color by overlaying a grid on the image,
then creating a 2D histogram similar to table [T] with each
row referring to a single cell in the grid. An existing face-
detection algorithm would be used to determine the general
location of the eye in each frame. After doing the nearest-
neighbors color palette bucketing and counting half-edge
pixels to create the histogram, whichever color was present
near the center of the eye, but not present at all in the bound-

Figure 12. Plot of 52 estimated camera pose locations
(between frames 91 and 833) in [3]], generated with
frameskip = 16,NumOctaves = 4,NumScalelLevels =
3,MetricThreshold = 900.0.

15

10.-
A
b PE 3
> R s VM ¥
1
1t
0 57
T+
5 f
-10
0
S .
S0 O~ _—— 20
> — 10
20 T~ <~
> — o

Figure 13. Plot of 165 estimated camera pose locations
(between frames 91 and 2641) in [3], generated with
frameskip = 16,NumOctaves = 4,NumScalelLevels =
3,MetricThreshold = 2000.0. A video of these points is
available in [[14]].

ary regions around the eye, would most likely represent the
closest approximation of the person’s eye color. Further re-
finements could be made by detecting circles to more accu-
rately locate the iris and pupil.

For our specific roller coaster problem, our goal was to
find a close approximation to our track color. Here we de-
fine “close approximation” in the context of our original
goal, which was to create 3D-printed models of roller coast-
ers, so we only need to approximate up to the color res-
olution of available 3D-printing filaments. In general this
means we only need to be able to accurately distinguish or-

ange from red or brown or any other primary or secondary
color, and we have achieved this level of accuracy in this
paper, but only by manually tuning the NUM_COLORS and
BOTTOM_STRIP_SEGMENTS parameters until we got the
desired result. This is less useful than simply picking the
color manually.

5.2. Camera Pose Estimation

In section we describe our approach to reconstruct-
ing camera poses for a series of frames taken from a video.
Our experimentation with modifying the frameskip pa-
rameter reveals that frameskip = 18 gives the longest
reconstructable sequences, but the resulting plot looks far
less smooth than with frameskip = 16. For our ultimate
goal of creating 3D-printed models of the track, we want a
smooth-looking plot, so we chose frameskip = 16 and
explored the behavior when other parameters are modified.

Increasing SURF’s NumOctaves parameter allows
SURF to find larger blob features [7]. This is useful
when our roller coaster moves past objects that are large
in the frame, such as the tree seen in figure Mod-
ifying this did not affect our results very much. Run-
ning with NumOctaves = 5,NumScalelevels =
3,MetricThreshold = 2000.0, frameskip = 16
allowed our algorithm to reconstruct 168 total frames,
whereas the same configuration with NumOctaves €
[3,4, 6] only allowed our algorithm to reconstruct 165 to-
tal frames. This is only a 1.8% increase.

Increasing SURF’s NumScalelLevels parameter al-
lows SURF to find a greater quantity of small blobs [7].
It cannot be less than 3, but increasing it above 3 did
not improve our results. Running with NumOctaves =
5,NumScaleLevels = 4,MetricThreshold =
2000.0, frameskip = 16 allowed our algorithm to recon-
struct 40 total frames, and running with NumOctaves =
5, NumScalelLevels = J,MetricThreshold =
2000.0, frameskip = 16 allowed our algorithm to re-
construct 167 total frames.

Increasing SURF’s Met ricThreshold parameter in-
creases the minimum threshold for feature ’strength’ [7].
This gives us a greater quantity of high-quality fea-
tures which are more likely to find strong correspon-
dences in subsequent keyframes. This also makes us
less likely to find correspondences in general, because
it may be that the same feature has ’strength’ higher
than MetricThreshold in one image but not in the
other. The higher we set this threshold the more likely
it becomes that we will fail to find the same feature
in two consecutive images, thus the less likely we are
to find a correspondence. When the threshold is much
higher than 2000 (we tested with MetricThreshold =
4000), we will reach a failure state earlier, because
we will be unable to calculate a fundamental matrix

due to too few features. When the threshold is much
lower than 2000 (we tested with MetricThreshold €
[800, 850, 900, 1000, 1100]) we will reach a failure state
earlier. With low thresholds we obtain so many erroneous
feature correspondences that they will cause MATLAB’s
estimateFundamentalMatrix function to fail with
an exception because there are never enough epipolar in-
liers for any of the sampled fundamental matrices [9)]. Un-
fortunately, we cannot provide a specific suggestion for a
good MetricThreshold parameter, because the effects
of this value are entirely dependent on the quality and struc-
ture of the input images. We can suggest that future work
start by doubling Met ricThreshold until the quality of
their output degrades, then doing binary search to find a
good-enough MetricThreshold between the two best
values.

Choosing a high MetricThreshold also increases
the (totally subjective) smoothness of our point plot. This is
because the high quality features are less likely to be incor-
rectly corresponded with the wrong feature in an adjacent
frame. This is especially important because the scene in and
around a roller coaster is full of repetitive elements, like the
repeating structure of the track, the similar pieces of support
steel, and repeating patterns in the nearby rides and build-
ings. These elements are often incorrectly matched as corre-
spondences, as seen in figure[§] Modifying NumOctaves
and NumScaleLevels also helps with this by narrow-
ing the range of feature scales we detect, reducing the oc-
currence where a nearby feature in one frame is incorrectly
corresponded with a far-away feature in another frame.

5.3. Final Word

Overall, we consider these experiments a failure. Our
camera pose estimation is not robust enough to create
smooth models of the entire track. There are large portions
of first-person ride videos which are totally inscrutable to
our methods, including frames like the ones seen in figure
[2] and [T4] which have been nearly destroyed by the cam-
era’s auto white-balance feature. We were unable to find a
configuration of SURF parameters and frameskip value
which reduced the reconstruction error sufficiently to make
a smooth-looking track model, so none of our results are
worthy of being 3D printed. Also, the processing takes so
long (on the order of 1 hour per 150 frames successfully
processed, though we did not take explicit notes of our tim-
ing), and needs to be manually re-calibrated for each video
(because the scale and quality of features in different videos
varies widely depending on video quality and camera reso-
lution), that this is not faster or better than simply construct-
ing the model manually in some 3D modeling software.

¥

MAGIC MOUNTAIN

Figure 14. Frame number 2814 from a first-person ride video [3],
unedited.

6. Code And Full Results

MATLAB code and the full experimental results of this
paper are available at https://github.com/tsell/
reconstructing-roller—-coasters.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Surf: Speeded
up robust features. Computer Vision and Image Understand-
ing, 110(3):346-359, 2008.

P. Beardsley, P. Torr, and A. Zisserman. 3d model acquisition
from extended image sequences. Computer Vision, pages
683-695, 1996.

FrontSeatCoasters. Six flags magic mountain goliath pov hd
roller coaster on ride front seat gopro steel 2013. Web, 2014.
https://www.youtube.com/watch?v=N_uV0Q2UH98.

M. Frucci and G. S. di Baja. From segmentation to binariza-
tion of gray-level images. Journal of Pattern Recognition
Research, 1:1-13, 2008.

GoPro. Hero3 field of view (fov) information. Web,
2016. https://gopro.com/support/articles/hero3-field-of-
view-fov-information.

R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

MathWorks. detectsurffeatures: ~ Detect surf fea-
tures and return surfpoints object. Web, 2016.
http://www.mathworks.com/help/vision/ref/detectsurffeatures.html.
MathWorks. edge: Find edges

in intensity image. Web, 2016.
http://www.mathworks.com/help/images/ref/edge.html.
MathWorks. estimatefundamentalmatrix: Es-
timate fundamental matrix from correspond-

ing points in stereo images. Web, 2016.

http://www.mathworks.com/help/vision/ref/estimatefundamentalmatrix.html.
MathWorks. kmeans: K-means clustering. Web, 2016.
http://www.mathworks.com/help/stats/kmeans.html.

MathWorks. knnsearch: Find
neighbors using data. Web,
http://www.mathworks.com/help/stats/knnsearch.html.

k-nearest
2016.

https://github.com/tsell/reconstructing-roller-coasters
https://github.com/tsell/reconstructing-roller-coasters

[12]

[13]

[14]

[15]

MathWorks. Structure from motion
from multiple views. Web, 2016.
http://www.mathworks.com/help/vision/examples/structure-
from-motion-from-multiple-views.html.

J. Nielsen. How to extract images from a video with av-
conv on linux. Web, 2015. http://www.dototot.com/how-to-
extract-images-from-a-video-with-avconv-on-linux/.

T. Sellmayer. Rotate camera points fig. 13. Web, 2016.
https://www.youtube.com/watch?v=N_uV0Q2UH98.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment: A modern synthesis. Proceedings of the
International Workshop on Vision Algorithms, pages 298—
372, 1999.

10

