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Abstract

In this paper, we introduce a framework for classi-
fying images according to high-level sentiment. We
subdivide the task into three primary problems: emo-
tion classification on faces, human pose estimation,
and 3D estimation and clustering of groups of people.
We introduce novel algorithms for matching body
parts to a common individual and clustering people
in images based on physical location and orientation.
Our results outperform several baseline approaches.

1 Introduction

A key problem in computer vision is sentiment anal-
ysis. Uses include identifying sentiment for social
network enhancement and emotion understanding by
robotic systems. Identifying individual people and
faces has many uses but has been explored exten-
sively. Group sentiment analysis, on the other hand,
has been much less researched. Given an image of a
group of people, we may wish to describe the over-
all sentiment of the scene. For example, if we have
an image of students in a classroom, we may wish to
determine the level of human interaction, happiness
of the students, their degree of focus, and other soft
scene characteristics that together describe the over-
all sentiment. To tackle this problem, we propose a
multi-label classification system that outputs labels
for each of our scene characteristics. To perform this
classification, we localize dense features from faces
and poses of people as well as spatial relations of
people in the image.

2 Related Work

2.1 Summary of Previous Work

Individual sentiment analysis has been a long studied
problem. There exists a hosts of methods to extract
emotion features. Notable among them is the Half-
Octave Multi-Scale Gaussian derivative technique to
quickly extract . Employing this method, Jain and
Crowley were able to accurately detect over 90%
smiles accurately [8]

Discovering groups in images itself is a significant
problem. Detecting people around occlusions and
viewpoint changes, and then grouping according to
orientations and the poses of the people for multiple
groups of people is a highly complex problem that
has only recently been solved. Specifically, Choi et al.
describe a model that learns an ensemble of discrim-
inative interaction patterns to encode the relation-
ships between people in 3D [4]. Their model learns
a minimization potential function to efficiently map
out groups of people in images as well as their activ-
ity and pose (i.e. standing, facing each other). Prior
work has focused on the activity of a single person or
pairs of people [9] [6] [11] [10] as well as pose estima-
tion of groups, albeit operating under the assumption
that there is only one group in the image [7].

There has also been some work done analyzing the
sentiment of groups in images. Dhall et al., for ex-
ample, measure happiness intensity levels in groups
of people by utilizing a model that takes advantage
of the global and local attributes of the image [5].
Borth et al. take a more general approach to senti-
ment analysis by training several concept classifiers
on millions of images taken from Flickr. A prediction
for an arbitrary image is an adjective-noun pair that
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defines the scene as well as its sentiment [1].

Finally, work has been done analyzing crowds of
people by taking a more top-down approach. Using
behavior priors, Rodriguez et al. track the motion
of crowds. Other methods include taking a bottom-
up approach, where collective motion patterns are
learned and used to constrain the motion of individ-
uals within crowds in a certain test scene [12].

2.2 Improvements on Previous Work

We contribute a novel multi-label group sentiment
classification system that is built by using several
components from previous papers, including emotion
and pose classification as well as group structure and
orientation prediction. Our method of combining
these features to classify group sentiment is a new ap-
proach to sentiment analysis. Additionally, we pro-
pose a simple, novel clustering approach to predict
group structure and orientation. Specifically, we use
a heuristic for 3D estimation of the people in the
image and then use a variant of k-means to cluster
them.

3 Technical Approach

3.1 Summary

For each input image, I, we perform the following
feature extractions:

1. Emotion Extraction

2. Poselet Estimation

3. Group Structure and Orientation Estimation

Suppose that each feature extraction results in the
feature vectors, f1, f2, f3, respectively. Our extrac-
tion is done in such a way that for a fixed i = 1, 2, 3,
the number of entries in fi is the same for all im-
ages. This allows us to simply concatenate features
from each of the three approaches for use in an SVM
classification.

3.2 Technical Background and
Datasets

Our primary dataset consists of 597 images, each cor-
responding to one of six scenes which are ”bus stop,”
”cafeteria,” ”classroom,” ”conference,” ”library,” and
”park.” It is the same dataset used by [4]. We de-
fine four scene characteristics, namely level of hu-
man interaction, physical activity, happiness, and fo-
cus, that describe each image. In order to provide
a ground truth labeling for image characteristics, we
go through all of our images and manually annotate
them on a scale of 1 to 4, with 1 as the least and 4 as
the most. For instance, a classroom scene with stu-
dents working at their desks would most likely cor-
respond to a focus score of 4, whereas an image of
people staring off into space while waiting for a bus
would likely have a score of 1.

3.3 Technical Solution

To get a better sense for the problem, we begin with
several (naive) baseline approaches that we improve
upon with more advanced techniques. First, we cre-
ate a color histogram for each image that we use as
input features for an SVM. Each pixel consists of val-
ues for 3 color channels and we divide the possible
values for channel into 8 bins, so each pixel votes for
one of 8 × 8 × 8 = 512 bins according to the values
in its color channels. We then use this histogram of
512 values as input for an SVM. This model ends up
overfitting on our small dataset but performs slightly
better than random on a validation set.

As a second baseline, we incorporate features from
bounding boxes that define the locations of people
in the images. These bounding boxes come with
the dataset which was used in the paper by Choi et
al. discussed above. We use the coordinates of the
bounding boxes directly as features for input to an
SVM. We limit the number of bounding boxes per
image to 15 (since the number of bounding boxes in
most images were below this threshold) by randomly
selecting boxes if there are more present in the image
and padding our flattened vector of coordinates with
zeros if there are fewer boxes in the image. Similar
to the above approach, this technique only slightly
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outperforms a random selection process, with more
detailed results discussed below.

3.4 Emotion Classification

Our emotion classification pipeline involves several
stages.

3.4.1 Face Detection

First, we detect faces by leveraging the Poselet de-
tector [2] and the Haar Cascade classifier built into
OpenCV [3]. For a given image, we get all face-
related poselets (effectively bounding boxes within
the image) from the Poselet detector and then run the
Haar Cascade classifier to detect faces within these
bounding boxes. We remove duplicate faces by check-
ing for overlaps among the face bounding boxes.

Unfortunately, the dataset we use contains many
people who are far away from the camera and so their
faces are often small and therefore difficult to detect
with traditional face detection methods. To address
this issue, we take advantage of the fact that we have
bounding boxes from people from [4] and that we
can identify torsos of people using poselets. This ad-
ditional information makes it possible to adjust the
settings of the Haar classifier to be lenient and then
prune erroneous faces using a novel matching algo-
rithm that we describe below.

Suppose we have an image I. Suppose further that
we have sets of bounding boxes in the image for peo-
ple, faces, and torsos which we denote P , F , and T ,
respectively. First, we loop over F and assign to each
face f ∈ F a person p ∈ P such that f is contained
in p and p is the bounding box of the ones remaining
that minimizes the distance between the centers of
the top edges of the bounding boxes. This distance
is a useful heuristic because faces should be centered
and near the top within the bounding box to which
they belong.

Next, we loop over P from smallest to largest and
assign to each person p ∈ P a torso t ∈ T such
that t is contained in p and t is the largest such
torso from among the remaining unassigned torsos.
We proceed through P from smallest to largest be-
cause smaller bounding boxes are less likely to have

a large number of torso contained in them, so these
bounding boxes provide tighter restraints. We choose
the largest torso contained in P because we find that
there are often a large number of small erroneous tor-
sos while larger torso (that also fit within a bounding
box) are more likely to correspond to actual human
torsos.

Figure 1: Face extraction when done only with a Haar
Cascade face detector (top) vs. first looking for head
poselets and then detecting faces within them

At the end of the algorithm, each bounding box
corresponding to a person is assigned at most one
face and one torso. Any unassigned bounding box
for a person, face, or torso is discarded. This allows
us to concentrate on the most important people in
the image (i.e., people nearest to and likely facing
the camera). Torsos are potentially useful later on
for pose estimation using silhouettes. Faces are useful
both for emotion classification and for 3D estimation.
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3.4.2 Emotion Classification Method

Once the faces are detected, we classify them with
emotion labels. In order to do so, we generate fea-
tures for each face using a Multi-scale Gaussian pyra-
mid modeled after the approach found in [8]. Given a
face image as input, we convert the image to grayscale
and iteratively perform Gaussian convolutions on the
image at varying scales. At each iteration, we com-
pute first- and second-order image gradients at each
pixel, then aggregate the means and standard devi-
ations of these gradients in 4x4 windows across the
entire image. Each 4x4 window at a given scale pro-
duces 10 features, 5 from the means of the five dif-
ferent gradient types and 5 from the standard de-
viations. At each scale, we aggregate features three
times using the half-octave method, and we build our
pyramid to a depth of three scales. At scale i, we per-
form the following convolution pipeline to an input
image.

Given : I0(x, y, i)

I1(x, y, i) = I0(x, y, i) ∗ g(x, y;σ)

I2(x, y, i) = I1(x, y, i) ∗ g(x, y;
√

2σ)

I0(x, y, i+ 1) = I2(x, y, i)

We use the aggregate of I0, I1, I2 at each stage as
our features.

Though this technique is originally used strictly for
detecting smiles, we extend the technique to classify
other emotions since the same features should be rel-
evant. Using the feature vectors produced from the
Multi-scale Gaussian pyramid, we train an SVM on
these features to classify various emotions. We train
on a dataset that contains only faces and is annotated
with emotions including happy, sad, surprised, fear,
etc. A more complete discussion can be found in the
Experiments section, but ultimately we use a binary
happy/neutral classification when training our SVM.

Once we have a prediction for each face, we divide
the image into 16 evenly spaced windows. Each win-
dow acts as 2-class histogram to produce a count of
the number of smiles and neutral faces for each por-
tion of the image. We then use this 32-element vector
as our feature vector for our emotion pipeline. This

binning process standardizes the length of the feature
vector for each image so that we can run an SVM on
these features for each of our final sentiment classes.

3.5 Pose Estimation

As mentioned earlier, the Poselet detector provides
a wealth of information relating to people in images.
There are 150 types of poselet descriptors, and each
one acts as a detector for different body parts (e.g.,
left leg, right arm, head, shoulders, etc.).

Given an input image, we get all poselets as bound-
ing boxes along with an i.d. and score for each
poselet. The i.d. identifies the type of poselet and
the score indicates the accuracy with which the im-
age within the bounding box matches that particular
poselet type. We filter out all poselets below a certain
score threshold. Empirically, we find that a score of
0.9 provides a reasonable threshold. After filtering
out these erroneous poselets, we produce a 150-class
feature vector for the image by binning poselets ac-
cording to their i.d. This gives us a count of the
number of occurrences of each poselet type.

As discussed in the Experiments section, these fea-
ture vectors provide a reasonable estimation of the
different human poses throughout the image. Pose-
lets not only identify body parts, but they also give
indications of the shapes of these parts (e.g., elbow
bent vs. elbow straight). These feature vectors from
poselets ultimately prove to have significant predic-
tive power.

3.6 Group Structure and Orientation
Estimation

We now describe our approach for predicting orienta-
tion and group structures in images. First, we com-
pare two methods for prediction of orientation. We
then propose a 3D estimation algorithm to estimate
the 3D coordinates of people. Then, using both ori-
entations and 3D coordinates, we run a variant of
the k-means algorithm to cluster people into groups.
Below, we detail our two methods for orientation pre-
diction.

In the first method, we use grab cut to get the
silhouettes of the people in each image. To estimate
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relative foreground and background of each person,
we utilize the matched torso and face per bounding
box. Specifically, we mark a stripe of pixels in the
face of the person and a rectangular area of pixels
in the torso of a person to be the foreground and
all the pixels outside of the bounding box to be the
background. We then extract SIFT features on the
resultant silhouettes and train an SVM using these
features to predict orientation.

Our second method is slightly simpler. Instead of
extracting SIFT features from silhouettes, we extract
HOG features from the bounding box. The benefit
of this second method is that we obtain a denser fea-
ture representation of the image without losing the
”global” nature of the image. Because HOG looks at
the image more globally, it does better with occlu-
sions. For our orientation prediction, we move for-
ward with this second method due to its simplicity,
representational efficiency, and time constraints.

To estimate the depth of each person, we utilize the
following relationship between depth and size of the
face, d = k

f , where d is depth, f is the size of the face
in the image, and k is a constant. Intuitively, as the
face size decreases, the depth of the face increases.

Finally, with each person mapped to a 3D coordi-
nate, we can run a variant of k-means constrained by
the orientations of people to find clusters of groups in
the image. Our variation of k-means uses an orienta-
tion coefficient which linearly weights the traditional
Euclidean distance between a point and its corre-
sponding cluster centroid. For each person with unit
orientation vector θ, we compute the vector θ − φ,
where φ is the unit vector along the direction be-
tween the person and the cluster center. The orien-
tation coefficient c is computed as a linear function
of θ − φ, with c = 0.5 when θ = φ and c = 1.5 when
θ = −φ. This orientation heuristic favors clusters in
which more people in a cluster are facing the clus-
ter center, mimicking situations in which people are
facing each other during a conversation.

With this modified distance function in place, we
run k-means with varying values of k. We then choose
the value of k that minimizes the sum of modified dis-
tances between points and their cluster centers while
placing a restriction on the number of singleton clus-
ters (clusters with only one person). We place this

restriction on singleton clusters because we want to
avoid the situation in which all centers are coincident
with people since we do not know the value of k be-
forehand. Note that we do not use mean shift because
we also do not know the appropriate window size be-
forehand, and mean shift generally does not perform
as well on small, sparse datasets. We define our po-
tential function below which we want to maximize to
achieve the optimal k.

n∑
i

~o · ~c− k ∗
n∑
i

d

where

k = constant factor

o = orientation vector

c = direction vector to cluster center

d = distance to cluster center

This allows us to avoid over-invidualizing the
groupings while only including persons within the a
reasonable distance.

It is important to note that due to time constraints,
we were unable to fully implement the 3D estimation
and orientation aspects of our pipeline. We did, how-
ever, implement most of the pipeline and were able
to produce a very accurate classifier of person ori-
entations. We believe the approach outlined above
would identify groups of people adequately enough
to provide additional predictive power on the overall
problem of sentiment classification.

4 Experiments

As mentioned, getting a grasp of the group senti-
ment requires several individualized parts to come
together. Therefore, as to bring together these in-
dividualized parts, we conducted a series of experi-
ments.

4.1 Baselines

We start by establishing two baselines. Our first
baseline is built by extracting color histograms for
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Figure 2: Final confusion
matrix of interaction pre-
diction
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Figure 3: Final confusion
matrix of focus prediction
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Figure 4: Final confusion
matrix of happiness pre-
diction
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Figure 5: Final confusion
matrix of activity predic-
tion

each images then modeling an SVM using those fea-
ture vectors. We achieve 28.3% or about 3% better
than random. Our second baseline is built by build-
ing a feature vector from the bounding boxes. The
idea behind this was to form a crude estimation of
the groupings. It performed relatively poorly, achiev-
ing an average accuracy of 30%, only 5% better than
randomly binning into one of four intensities for a
sentiment class.

4.2 Smile Detection

A key component of group sentiment is determining
individual sentiment. We begin by testing our imple-
mentation of the Half-Octave Multi-Scale Guassian
Pyramid algorithm[8] on the GENKI 4K Dataset[13].
We successfully achieve an accuracy of 83.5% when
classifying in binary fashion for smile or neutral, on
par with current methods for smile detection.

Crowley Us
Training error N/A 0.0
Testing error 0.082 0.165

Table 1: Error comparisons with Crowley paper

Admittedly, our accuracy is slightly below that of
Jain & Crowley as we do not fine-tune the param-
eters of the soft-margin SVM as meticulously. Yet
as we will see this individualized emotion extraction
algorithm plays a key roll in improving overall group
sentiment analysis prediction.

4.3 Sad and Happy Detection with
the Kaggle Dataset

Using the same Gaussian Pyramid algorithm, we fur-
ther test our ability to extract features and detect
emotions on the Kaggle Facial Expressions Recogni-
tion Challenge dataset. The detection system worked
less robustly on this set achieving 71.5% accuracy in
classifying between happiness and neutrality and 56%
when classifying between sadness and neutrality.

There are two important observations to note here.
First, the images in the GENKI set are more re-
fined, featuring almost always only faces that are
larger than those from the Kaggle set. The Kag-
gle set meanwhile often has pictures with hands
covering parts of the face. Occlusions, then, are
particularly challenging to the Multi-Scale Gaussian
method. Second, the Gaussian Pyramid algorithm
seems particularly well-adjusted to the intricacies of a
smile. While not performing as well when identifying
”happy” verus ”neutral” in the Kaggle set as it did on
the GENKI set, the algorithm did better within the
Kaggle set on the binary classification of ”happy” ver-
sus the binary classification of ”sad.” This could be
because the sadness expressed in the Kaggle dataset
was usually visually less expressive than the happi-
ness, and therefore less distinct from the neutral state

4.4 Orientation Classification

The next stage in overall group sentiment analysis is
incorporating the groupings between the individual
people. In order to do that, we built a relatively
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robust SVM model using HOG feature extraction
trained on the TUD Multiview Pedestrian Dataset,
successfully achieving 90.3% accuracy when classify-
ing orientations into one of eight cardinal directions.
Such a high accuracy rate is likely due to the fact that
gradient orientations can easily define the overall ori-
entation of people, and that gradient orientations are
the basis of HOG extracted features.

Figure 6: A comparison of a GENKI happy, a neutral
Kaggle, and a sad Kaggle image. Note there is little
visual difference between the neutral and sad Kaggle
images

4.5 Group Sentiment Anlaysis

We can then featurize our (detailed in the our ap-
proach) distinct features into an overall scene feature
vector. Their performance is detailed below.

4.5.1 Individual Emotion Extraction

When using an overall facial emotion feature vector
by, we achieve strong results for happiness and ac-
tivity. This is expected as our Multi-Scale Gaussian
algorithm proves strongest in being able to detect
smiles which correlate heavily with the overall hap-
piness of a scene as well as, in the case of the Group
Discovery Dataset, with activity. In contrast, over-
all group ”focus” is probably more correlated with
posture and ”interaction” more correlated with the
number and size of the groupings.

4.5.2 Poselets

When using only the most identifying poses visible
in the scene, weighing them by their score from the
poselet detector, we achieve better results only for

”activity.” While we expect better results for focus
as well, this could very well be an indication that
”focus” is not easily measurable from one frame of a
scene.

4.5.3 Individual Emotion Extraction and
Poselets

Our final experiment is our true goal: testing our co-
hesive method for classifying overall scene sentiment
analysis. For each sentiment we bin into four inten-
sities and achieve accuracies as follows:

4.5.4 A Binary Classification of Intensities

We achieve 45% accuracy in classifying the happiness
of scenes into their right intensity bucket. However,
classifying other sentiment values were less accurate.
To a great degree, this could be because of the fick-
leness of human labeling. It is often hard, even for a
human, to distinguish between a focus intensity of 3
and a focus intensity of 4. As such, we ran one final
experiment, labeling all intensity values of 3 or 4 as 1
and all intensity values of 1 or 2 as 0. The following
are the results for this modified binary classifier.

Taking happiness as an example, as it is our most
accurate result, we achieve a 53.4% improvement over
random selection while with an intensity classifier we
achieve an 80.4% improvement over random classi-
fication. Thus there is not a strong improvement in
using a binary classifier over the four degree intensity
classifier which means the weaknesses more likely, not
in the gradients of labeling but in the previously men-
tioned techniques of feature extraction itself.

4.6 Final Notes

Unfortunately we did not have enough time to use our
robust orientation detection model to test group dis-
covery. An ordering of our thoughts, however, are de-
tailed in the technical approach. In order to achieve
even better results in the future, we would likely need
to incorporate more complex scene information such
as objects in the background and scene type.
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Combined Feature Extraction Results
Metric Happiness Activity Interaction Focus
Training Er-
ror

0.306 0.285 0.310 0.266

Testing
Error

0.558 0.617 0.642 0.667

Table 2: Errors for the SVM trained by extracting emotions and poselets

Combined Feature Extraction Results under a Binary Classifier
Metric Happiness Activity Interaction Focus
Training Er-
ror

0.189 0.163 0.237 0.277

Testing
Error

0.233 0.242 0.4 0.4167

Table 3: Errors for the SVM trained by extracting emotions and poselets but using a binary classifier

5 Conclusion

In closing, we summarize a couple of important re-
sults. For our feature extraction results, we have high
performance detecting emotion (namely, smiles) as
well as on predicting orientation. Using these fea-
tures, we perform reasonably on happiness and ac-
tivity, We see a strong correlation between our ex-
tracted emotions with happiness level as well as be-
tween poselets and activity level in the image, which
is an intuitive result. In our further work, we hope to
complete our group estimation pipeline and combine
these features into our final feature vectors. Adding
the group features will most likely increase the ac-
curacy of our system in predicting interaction and
focus.

In this paper, we contribute a multi-label classifica-
tion system that performs significantly above random
chance with our feature extraction methods. Our ap-
proach effectively utilizes previous feature extraction
methods as well as novel methods.

Finally here is a link to our Github repo:
https://github.com/zeshanmh/VisualSentiment
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