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Abstract 

 
    Optical chemical structure recognition is the task of 
converting a graphical image of a chemical molecule into 
its standard structural representation. Specifically, the 
chemical structure recognition algorithm should correctly 
identify the graph structure with correct atomic/group 
labels for each node, and the correct type of bond label for 
each vertex. We introduce a novel method to improve upon 
state-of-the-art methods with an eye towards solving the 
problem in the face of the additional difficulties when 
molecules are hand-drawn. We employ basic text 
recognition and corner detection methods to first label the 
atoms and groups that form the nodes of the chemical 
structure graph, and conclude that our approach to corner 
detection outperforms the line vectorization algorithms 
typically used in other systems. A Hough transform is used 
to recognize the presence of bonds between the nodes. The 
major difference in our approach is to use a new 
technique that classifies bonds according to various 
feature descriptors of sliding-window cross-sections of 
bonds using a supervised machine learning approach. In 
addition to the baseline method of using the Hough 
transform to also classify bonds, we use local maxima 
detectors on single-pixel slices of bond cross-sections and 
histogram of oriented gradients (HOG) features of wider 
bond cross-sections coupled with support vector machine 
(SVM), logistic regression, decision tree, and neural 
network classifiers. We compare the results of these 
feature descriptors, analyzing our pipeline on a hand-
drawn dataset of 360 simple molecules and conclude that 
these new bond recognition technique leads to major 
improvements in recognition performance over the 
baseline. 

1  Introduction 
 
The standard presentation of organic chemical data in a 
wide variety of fields, such as biology, chemistry, and 
medicine, remains the structural diagram, which contains 
all the chemical information of a given molecule, but is 
unsuitable for computational analysis. The problem of 
optical structure recognition, the conversion of these 
images of structures into the usable, machine-readable 
labeled graph data formats, remains highly inconvenient 

and inaccurate in many cases. Wide availability of this 
kind of data from scientific patents, journal articles, 
textbooks and other printed sources would lead to major 
progress in not only chemistry, but also pharmaceuticals 
[1], chemical biology [2], medicine [3], and several other 
fields of scientific research. A tool for chemical structure 
recognition would also open up new possibilities for 
modern artificial intelligence and data mining applied to 
already existing datasets that currently only exist in image 
format. Furthermore, virtually no work has been done on 
the generalization of optical structure recognition to hand-
drawn chemical molecules. Current research approaches 
focus on optimizing computer-generated algorithms to 
improve accuracy on extremely large molecules typically 
presented in scientific patents. (Fig. 1) Little work has 
been done on smaller, more common hand-drawn 
molecules. (Fig. 2) While computer generated molecules 
are difficult enough to recognize, smaller hand-drawn 
molecules present different and unique challenges from a 
computer vision perspective.  
 

 
Fig. 1: A molecule from U.S. Patent Class #435; most 

current optical structure recognition research focuses on 
similar molecules. 

 

 
Fig. 2: A molecule from our dataset. Its overall structure is 

much simpler, but its bonds and labels require different 
treatment. 
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There are several additional advantages of being able to 
recognize handwritten molecules in addition to computer-
generated molecules. For example, the computer 
generation of molecular structures is currently quite 
tedious, and an application to perform real-time 
recognition of small components of hand-drawn structures 
does not yet exist. 
 
2   Review of Previous Work 
 
2.1  Summary of Previous Work 
 
Previous work on the optical structure recognition 
problem has to date focused exclusively on computer-
generated structures. Early research began in the 1990s, 
with IBM receiving a patent for recognition of chemical 
graphics among other printed material on a page as well as 
basic line tracing techniques (Fig. 3) to recognize 
structures.  [4] A similar approach was developed by 
University of Leeds researchers and called CLiDE in the 
same year. [5]  
 

 
Fig. 3: IBM’s line-tracing algorithm.  

 
More modern approaches, such as ChemReader from the 
University of Michigan [6], and the National Cancer 
Institute’s open-source OSRA [7] have both employed 
more sophisticated text recognition (OCR) and line 
detection algorithms; ChemReader uses a generalized 
Hough Transform and OSRA uses the Potrace library.  
 
State-of-the-art approaches, such as the approach of 
MLOCSR, developed by Italian researchers Frasconi, 
Gabbrielli, Lippi, and Marinai, generally recognize 
molecules in two stages. The first stage is a low-level 
processing module, which detects edges, corners, and text; 
and a high-level reasoning engine, which uses Markov 
logic networks, utilizing prior chemical and graphical 
knowledge to correct errors in the low-level module. [8] 
Modern approaches, such as a more recent iteration of 
CLiDE, also use a specialized artificial neural network to 
classify text labels. 
 

2.2   Improvements to Existing Approaches 
 
The focus of this paper is the novel approach to the correct 
identification of hand-drawn bonds in the low-level 
module, the correct identification of atoms and edges 
without the use of high-level correction using chemical 
and graphical knowledge. Previous attempts at optical 
structure recognition, even state-of-the-art approaches, are 
heavily dependent on the correct identification of fine 
lines (the individual thin lines constituting double, triple, 
and dashed bones), which fails in the case of imperfect 
hand-drawn bonds. Frasconi et. al.’s algorithm, MLOCSR, 
uses the Douglas-Peucker algorithm [9] to approximate 
the contour of the molecule with a polygon which fits the 
least-vertex polygon to the contour within a certain 
precision. We hypothesize that line detection-only 
vectorization algorithms such as the Douglas-Peucker 
algorithm may fail in cases where bonds are not straight 
(Fig. 4), assigning too many vertices to the molecule. 
Furthermore, classification algorithms can fail when 
dashes follow an irregular pattern and/or touch (Fig. 5).  
 
 
 
 
 
 
 
 
 
 

 
Several algorithms use the Hough transform to detect lines 
and line segments. However, Fig. 6 displays the difficulty 
of using the Hough transform on a hand-drawn image. 
Even when the threshold for the required number of votes 
for the Hough transform to detect a line is optimized, both 
false positives and false negatives still occur for reasons 
specific to hand-drawn images. 
 
The solution to these difficulties is by using the Hough 
transform to only recognize bonds. Bonds are then 
classified according to the features of their horizontal 
cross-sections. In this paper, we experiment with a number 
of features and classifiers to optimize the accuracy of bond 
type recognition. These experiments constitute a majority 
of the current paper, with enhancements to text 
recognition and further experimentation on the higher-
level module incorporating chemical knowledge 
representations forthcoming in future work. 

Fig. 4: Bonds are not 
straight, a difficulty for 
line-only vectorization 

Fig. 5: Dashes 
touch and are 

irregular 
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3  Methods 
 
3.1 Summary 
 
The abstract general structure of the pipeline we use in 
order to recognize the chemical structure of our molecules 
is as follows: 
 

• Recognize text labels using scale-invariant 
template matching 

• Removal of text from image 
• Bond and corner detection 
• Bond detection 
• Bond classification 
• Association of corners to atoms and groups 

 
Due to the lack of a large amount of hand-drawn chemical 
data and the small number of labels, a simpler scale-
invariant template-matching approach was used to detect 
text in images with reasonable accuracy. Other 
approaches, such as Google Tesseract [9] and other 
supervised learning classifiers with histogram of oriented 
gradients (HOG) [10] features were attempted. Tesseract 
was exceedingly difficult to configure due to its more 
general use parameters, which use a number of language 
models which make a large number of assumptions in 
order to more accurately recognize more structured 
sources of text.  However, these assumptions, which do 
not apply to our purposes, were difficult to remove 
programmatically and debug. Future work may 
incorporate a state-of-the-art OCR engine; however, this 

approach was ultimately unsuccessful. HOG classifiers 
were found to suffer from a large number of false positives 
due to a lack of negative training examples. With more 
data, this approach could also prove to be more successful, 
but was inapplicable with our limited amount of training 
data. 
 
Bond and corner detection was used to identify various 
points of interest of the coarse line features; intersections 
of lines that represent a carbon, or lines which end in a 
connection to a text box, representing a different atom or 
group. A coarse Gaussian filter was applied to the image 
before applying a Hough transform to find the lines and 
points of interest. 
 
Finally, these points of interest were assembled to locate 
the atoms and groups of the molecule as well as the bonds, 
leaving bond classification as the final task. Cross-sections 
of the bonds were analyzed using various feature 
descriptors and classified according to several machine-
learning classifiers trained on 45 hand-drawn molecules. 
The success of our approach with a small training set size 
is again reason to believe this approach will become more 
accurate as more data is acquired. More details on the 
bond classification algorithm is described in the methods 
section. 
 
3.2  Technical Solution 
 
3.2.1  Data  
 
Our data comprises 360 images of 9 different simple hand-
drawn molecules (40 images of each molecule) drawn on 
standard white printer paper in fine point black Sharpie 
marker. Each image was taken with an iPhone 6 camera at 
3264 x 2448 resolution with three color channels (no alpha 
channel) downsampled to 400 x 300 grayscale using 
bilinear interpolation. All the images were taken in 
identical lighting, and were drawn by three different 
people, so our model would not overfit to a particular 
person’s drawing style. Each image was preprocessed with 
binarization using a 40% threshold. No other 
preprocessing stages were applied.  
 
45 of the images (5 per molecule) were set aside as a 
training set. 
 
3.2.2  Text Recognition 
 
For text recognition, we tried a number of approaches, 
including scale-invariant template matching using 5 
images of each of 6 templates (“O,” “H”, “OR”, “RO”, 
“N”, and “OH”), and a number of supervised learning 
classifiers using 4 templates (“O,” “H,” “R,” and “N”). By 
visual of the dataset, we estimated a minimum and 

Fig 6: Difficulty of using the Hough transform on 
a hand-drawn molecule. A false positive is 

detected on the bottom left because of the bend in 
the single bond. The double bond on the right, 
meanwhile, is undetected as a false negative. 



 

 4 

maximum scale for the images at 20x20 pixels and 60x60 
pixels respectively and implemented a spatial pyramid 
sliding window with the length of each square window 
increasing from 20 to 60 pixels in steps of 5 pixels. This 
was a very conservative estimate, and for 
reimplementation on different image sizes, we recommend 
scaling from 0.3% of the total area of the image to 3%.   
 
For the supervised learning classifiers, to collect negative 
training examples, we randomly selected 1200 of these 
windows that were verified by hand to have no text from 
the training set. We then collected 5 of each of the 4 
templates from the training set. To augment the number of 
positive examples, we additionally used 55 images for 
each template from the open source Chars74K handwritten 
dataset [11]. We cropped each image to eliminate 
whitespace and extracted histogram of oriented gradients 
features from each using 64 bins. We then compared the 
performance of a logistic regression classifier, a linear 
SVM classifier, and a neural network with one hidden 
layer with 30 nodes. Results are presented in section 4.  
 
For the scale-invariant template-matching, we applied a 
Gaussian filter with size equal to half the width of the 
measured strokes to all training templates and the image 
for matching, and then used the spatial pyramid sliding 
window described above to match the images. We then 
chose the tolerance level, 0.77, for which the F1 score was 
maximized. Non-maximal suppression is used to remove 
overlapping bounding boxes. A sample of the output of 
this stage is presented in Fig. 7. We used the results of this 
algorithm for the next stages of the pipeline. More details 
are presented in section 4.  
 

 
Fig. 7: Sample results of template matching OCR. 

 
3.2.3   Corner Detection Overview 
 
We reimplement the Douglas-Peucker algorithm on our 
dataset for comparison with MLOCSR, and we also 
implement a corner detection algorithm based on a broad 
Harris corner detector. 
 

For clarity, we use the terminology of MLOCSR, defining 
a C-point to be a corner corresponding to the intersection 
of the main bonds of a carbon, a D-point to be the 
endpoint of a line segment not connected to the main bond 
to represent a double or triple bond, and a T-point to be the 
end of a line segment drawn to a text box to indicate a 
bond to a non-carbon.  
 
3.2.4  Best-Fit Polygon Reimplementation 
 
As in MLOCSR, we use the Douglas-Peucker algorithm to 
detect the vicinity of C-points and T-points, and look for 
D-points later once the main corners are located. This 
algorithm for each contour iteratively tries to fit n-vertex 
polygons to the contour, increasing n until no point on a 
contour is further than a threshold distance away from the 
polygon. The algorithm then returns the vertices of the 
polygon. 
 
We search for clusters of all points of polygons that fit the 
opposite contours of the image after a Canny edge detector 
is applied in order to accomplish this goal. We use the 
threshold of √2 times the edge length as prescribed in 
MLOSCR. Fig. 8 shows the results of this stage.  
 

 
Fig. 8: Result of the Douglas-Peucker algorithm to fit a 

polygon to the contours of the Canny edges of the 
molecule image.  

 
We then use a basic agglomerative clustering algorithm, 
setting a maximum distance between clusters to 50 pixels.. 
If a polygon vertex is less than 50 pixels away from an 
existing cluster center, we assign it to that cluster, 
updating the center point of that cluster. Otherwise, we 
initialize a new cluster. The results of this stage applied 
correctly to a molecule image are shown below in Fig. 9, 
with the blue points representing final cluster centers. 
Testing results are shown in section 4.  
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Fig. 9: Results of agglomerative clustering stage. 
 

3.2.5  Harris Corner Detector 
 
The goal of the Harris detector [12] in this context is the 
same; to identify the C- and T-points but not necessarily 
the finer D-points that distinguish double and triple bonds. 
The Harris corner detector looks for a high variation in the 
gradient of an image in two directions.  
 
We first apply a coarse Gaussian filter to the image with 
the size of the estimated stroke width. We then run the 
Harris corner detector, once again requiring corners to be a 
threshold distance apart.  
 
A sample result on the same molecule after filtering is 
presented in Fig. 10. 
 

 
Fig. 10: Results of Harris corner detector. 

 
A comparison of the results is presented in detail in Sec. 4, 
but we find that the Harris corner detector (89% accuracy) 
outperforms the polygon reconstruction method (75% 
accuracy).   

 
3.2.6  Bond Detection 
 
In contrast to methods based on line vectorization, which 
comprises not only MLOCSR but also a majority of the 
existing methods in the literature, we use the Hough 
transform only to detect bonds, rather than to classify 
them. Line vectorization methods make several errors and 
in the case of hand-drawn molecules, are not precise 
enough to detect the D-points that can be detected by the 
polygon reconstruction method when molecules are 
perfectly straight. As the state-of-the-art method in 
MLOCSR only recognizes under 80% of the C- and T-
points, there is very little hope for such an algorithm to be 
able to detect the finer D-points given the large amount of 
variability in hand-drawn bonds.  
 
Since a carbon can only have four bonds, for each of the 
nodes detected in the previous stage, we look at the four 
closest nodes to see if there is a bond between them. While 
further molecules are not strictly forbidden from being 
connected to a carbon, it is extremely uncommon, and this 
case does not occur in any of the molecules in our dataset. 
For more general molecules, more nodes can be examined 
and spurious matches can be removed using a Markov 
logic network similar to what is implemented in 
MLOCSR, but we do not implement that here for 
simplicity. 
 
The other heuristic we use is that if three nodes are 
collinear, there is not a bond between the two outer nodes. 
This situation only occurs when there are two bonds at a 
180-degree bond angle, so the outer nodes cannot have a 
bond between them. 
 
These heuristics leave us with a number of candidate 
bonds, a list of possible node-node pairs that could contain 
a bond between them. To refine this list, we create a 
bounding box of the edge between the two nodes at a fixed 
width (40 pixels) and split the bounding box into windows 
of fixed size. On each window, we then apply the Hough 
transform with a very low threshold to look for lines in the 
window. We only accept lines that are within 1 degree of 
the expected direction of the bond. We then require that all 
of the windows in the bounding box contain a line 
detected by the Hough transform. We assume that if a 
node-node pair does not contain a bond, at least one of its 
windows will not have a matching line in the orientation 
of the node-node pair. This approach leads to several false 
negatives, but these can be rectified by a Markov logic 
network in later steps, because most of the false negatives 
are simply a missing bond in a ring or another predictable 
structure. This approach does lead to a relatively low false 
positive rate, and the false positives are generally simply 
spurious triangular closings, which are very rare in organic 
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molecules and would also be removed by a Markov logic 
network. Results are presented in Sec. 4. The process is 
visualized in Fig. 11. 
 

  
 
 
 
 
 
 
 
 

 
Fig. 11: Top left, top right: Hough line detections (blue) 
for the node-node pairs with a bond for a given window 
(red) in the bounding box. Bottom: A window between 

two opposite nodes that will not have a Hough line 
detection, so the algorithm will not assign it a bond, even 
though there is contamination elsewhere in the bounding 

box. 
 

3.2.7  Bond Classification 
 
The final part of the pipeline is bond classification, before 
higher-level modules use chemical knowledge to correct 
errors (future work).  
 
We use a sliding window moving along the cross-sections 
of bonds extracted from our training set via screenshots, 
using a window size of 10 pixels down the length of the 
bond and 40 pixels across. Typically this will result in 
around 3 to 10 windows per bond. Our training set 
contains 62 single bonds, 33 double bonds, 10 wedge 
bonds, 10 dashed bonds, and 5 triple bonds.  
 
We then use HOG features on each of the sliding windows 
and use these features to train a supervised learning 
classifier. We experiment with a multiclass logistic 
regression classifier, a linear support vector machine, and 
a decision tree. (We avoided using a neural network since 
it is prone to over-fitting in the case of a small training 
set).  
 
Then, for each bond in the test set, we extract the same 
sliding window HOG features and use the classifier to 
predict the type of bond that appears in each of the 
windows. Then we employ a voting system where each 

window gets a “vote” for the overall type of bond. A 
sample result is shown below in Fig. 12, and overall 
results are presented in Sec. 4.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Final result of bond classification for a benzene 
ring. 

 
4   Results 
 
4.1   Text Recognition Results 
 
4.1.1  Scale-Invariant Template Matching 
 
The results of text recognition are presented here. In order 
to optimize the tolerance of the scale-invariant template 
matching, we measured the precision and recall on the test 
set. The results are presented in Fig. 13. We chose the 
tolerance that maximizes the F1 score, 0.77. 
 

 
Fig. 13: OCR precision and recall on test set. The optimal 

value was found to be 0.77.  
 

We then apply the template matching to the test set. By 
molecule and in total, the results are presented below in 
Table 1. Accuracy is by molecule image, so a molecule 
has to have all of its text completely recognized with no 
false positives for it to count positively towards the 
accuracy metric. Diagrams of the molecules associated 
with each molecule ID can be found in the Appendix. 
 



 

 7 

Molecule ID Precision Recall Accuracy 
1 1.0 1.0 1.0 
2 1.0 1.0 1.0 
3 0.54 1.0 0.50 
4 1.0 1.0 1.0 
5 0.95 0.95 0.90 
6 1.0 1.0 1.0 
7 0.96 0.79 0.40 
8 0.79 0.65 0.53 
9 0.98 0.90 0.58 
Total 0.91 0.92 0.77 
 
Table 1: Results of scale-invariant template matching on 

test set.  
 

While an accuracy of 77% is far from ideal, it is 
surprisingly effective considering we only used 5 training 
images to build the templates. With more examples, this 
method could perform even better in future work. We use 
the images where text was accurately identified from this 
stage in the further stages of the pipeline. 

 
4.1.2  Supervised Classifiers 

Table 2: Results of supervised classifiers on the OCR 
training set. 

 
The performance of the supervised learning classifiers 
using HOG features with 64 bins was evaluated using 
cross-validation, training a classifier with 90% of the 1100 
negative test images and 60 positive test images per 
character, and testing on the remaining 10%. We conclude 
our training set is not large enough to provide accurate 
detections on the test set, recording less than 1% overall 
accuracy. This is because although the performance of the 
supervised learning classifiers on the cross-validation set 
is relatively good, perfect matching on the test set 
requires a correct match on each of the 1000+ sliding 
windows used for detection, so even the neural network, 
with 99% accuracy on the cross-validation set, is unable 
to perform well in the natural setting, with nearly 0% 
accuracy and several false positives.  
 

For future work we would like to expand the size of the 
training set to improve the accuracy; but for now we use 
template matching.  
 
4.2   Corner Detection Results 
 
As shown in Table 3, we conclude that the Harris corner 
detector outperforms the baseline method of the MLOCSR 
polygon reconstruction method quite significantly, by 
approximately 15% on the molecule level (node level 
refers to the number of correctly detected nodes over the 
total number of nodes, molecule level refers to the number 
of correctly detected molecules with no false positives 
divided by the total number of molecules. There are 
several reasons that this result is the case. First, the 
polygon reconstruction method performs very poorly in 
the case of dashed bonds; whereas the Gaussian smoothing 
applied to the image before applying Harris corner 
detection “blends” dashed bonds into an edge before 
finding the corners. This kind of preprocessing is not 
feasible for the polygon reconstruction method since it 
relies on the narrow opposite contours that form the edges 
of the thick lines. The performance on a dashed molecule 
is demonstrated in Fig. []. While neither method performs 
particularly well on dashed bonds (polygon method 
performs at 15% on these dashed bonds, while Harris 
method performs at 45% on dashed bonds), which when 
blended are very wide, making corner detection difficult 
especially when they a dashed bond is near other corners.  

 
 
 

Table 3: Comparison of corner detection methods. 
 
 

           
           Fig. 14 

 Parameters Train 
Set 

Cross- 
Validation 

#Iter-
ations 

Avg.
Acc. 

Logistic 
Regression 
with HOG 
features 

Regularization 
coeff. = 1.0, L2 
norm 

1330 
examples 

10-fold 100 0.97 

Linear 
Support 
Vector 
Machine 
with HOG 
features 

Regularization 
coeff. = 1.0, L2 
norm 

1330 
examples 

10-fold 100 0.96 

One-Layer 
Neural 
Network 
with HOG 
features 

One hidden 
layer with 30 
nodes 

1330 
examples 

10-fold 100 0.99 

 Molecule 
accuracy 
 

Overall 
Precision 

Overall 
Recall 

Polygon 
Method 

0.748 0.960 0.970 

Harris Method 0.896 0.987 0.989 
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Fig. 14: Harris corner detection on a molecule with dashed 
bonds (left) and polygon reconstruction method with 

initial corners in blue and clustered corners in red. (right). 
A wide Gaussian filter helps “blend” dashed bonds 

together. Since each dash of the dashed bond is a contour, 
many spurious corners in blue are detected with the 

polygon reconstruction method and make the 
agglomerative clustering inaccurate. 

 
As we hypothesized, the Harris method also outperforms 
the polygon reconstruction method when bonds are not 
perfectly straight. This was particularly evident in the 
benzene rings, which the Harris corner detector (95% 
accuracy on benzene rings) was able to substantially 
outperform the polygon reconstruction method (50% 
accuracy on benzene rings). This effect is shown in Fig. 
15.  
 

 
Fig. 15: The polygon reconstruction method detects 

several incorrect corners due to curved lines, as shown in 
blue. The Harris method does not suffer from this 

drawback. 
 
4.3  Bond Detection Results 
 
The bond detection is the worst performing stage of the 
pipeline, but fortunately it is the most correctable by a 
higher-level Markov model as described in MLOCSR. 
Still, large improvements can still be made to the 
algorithm by applying more heuristics about how the 
various atoms bond. We did not take chemical knowledge 
about the topological structure of molecules into account 
when looking for bonds, but there exist further constraints 
that can reduce our false positive rate, which would let us 
adjust the tolerance thresholds on the Hough detector and 
the angle acceptance to reduce the false negative rate. The 
results are presented below in Table 4 and errors are 
characterized further in Figs. 16 and 17. 
 
 
 
 
 

Molecule ID Molecule 
Accuracy 

Overall 
Precision 

Overall 
Recall 

1 1.0 1.0 1.0 
2 0.31 0.94 0.95 
3 0.0 1.0 0.78 
4 0.26 1.0 0.79 
5 0.70 1.0 0.88 
6 0.82 1.0 0.94 
7 0.22 0.86 0.97 
8 0.70 1.0 0.90 
9 0.10 0.90 0.83 
Total 0.55 0.96 0.91 

Table 4: Bond detection results. 
 
Typical errors included a missing bond, as shown in Fig. 
16, and false triangular closures with bonds at very wide 
angles (bonds that are nearly, but not quite collinear), as 
shown in Fig. 17.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: A typical bond detection error, a missing bond, 

likely due to slight inaccuracy of corner detection. These 
“missing bonds” can be detected in later stages as long as 

most of the structure is correct. 
 

 
Fig. 17: Another common bond detection error, triangular 

closure of wide bonds, due to there being too much 
contamination in the bounding box. These can also be 

corrected later if most of the molecule is correct. 
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4.4  Bond Classification Results 
 
4.4.1  Comparison of Classifiers 
 
We split our training bonds randomly according to a 90-10 
split and run cross-validation 10 times.  
 
Classifier Cross-Validation Cross-Validation 

Accuracy 
Logistic Regression 10-fold 0.85 
Linear Support 
Vector Machine 

10-fold 0.97 

Decision Tree 10-fold 0.88 
 

Table 5: Cross-Validation Results on a 90-10 training set 
split of known bond labels. 

 
4.4.2  Performance on Test Set 
 
Based on the results on the cross-validation set, we use the 
SVM for classification on the full set of molecules. We 
find that there is no great disparity in confusing one type 
for another; despite the only 5 training examples of triple 
bonds, we find that double bonds are no more often 
mistaken for single bonds as triple bonds, for example. 
 
Molecule ID Accuracy By Bond Accuracy By 

Molecule 
1 0.98 0.90 
2 0.97 0.81 
3 0.57 0.0 
4 0.80 0.30 
5 1.0 1.0 
6 0.83 0.50 
7 1.0 1.0 
8 0.98 0.93 
9 1.0 1.0 
Total 0.94 0.75 
Table 6: Test results by molecule using an SVM classifier. 
 
4.5  Overall Results 
 
When the overall pipeline is run on the entire set of 
molecules, 94 out of the original 360 molecules are 
correctly recognized in their entirety. While this accuracy 
may seem low, it is still higher than the performance of the 
“out of the box” existing optical structure recognition 
algorithms, the most well-known being OSRA, which 
when used on handwritten data have nearly 0% accuracy. 
We also find that even the approach of MLOCSR applied 
to the data, which relies on the Douglas-Peucker polygon 
fitting algorithm, does not even detect C- and T- points as 
successfully as our algorithm on our hand-written dataset. 
We also find that our supervised learning bond 
classification algorithm performs extremely well given the 
very small training data set, which was extracted from 
only 5 images of each molecule. We are optimistic that 

with more training data we will be able to obtain nearly 
100% accuracy with this method in the future.  
 

 
Fig. 18: Two examples of correctly recognized molecules 
after completion of the full pipeline. These can be easily 

converted to a standard chemical data format. 
 
5  Conclusion 
 
Although our overall accuracy is low, we believe that the 
work presented in this paper will lay the foundation for 
hand-drawn structure recognition in the future.  
 
Much of the low accuracy can simply be attributed to a 
lack of training data. State-of-the-art OCR methods, for 
example, would boost the accuracy of text recognition 
from 77% to near perfect. We also believe that more 
training data will ultimately allow us to use a 
convolutional neural network for the bond classification 
stage rather than an SVM, and more data will be able to 
significantly improve the accuracy of bond classification 
as well.  
 
Additionally, as mentioned previously, the focus of this 
project was on the low-level recognition of atoms and 
bonds; or the nodes and vertices that make up the overall 
graph. There are additional heuristics that can be applied 
in higher-level modules, such as bonding patterns like 
valence rules that we did not take into account, which will 
significantly improve the performance of bond detection.  
 
Accuracy may also be a misleading metric for certain 
applications of hand-drawn structure recognition as well, 
in cases where more information is obtained. For example, 
in an electronic tablet drawing application, in a similar 
way to how Chinese and Japanese characters are 
recognized by OCR software, information about how the 
user is drawing the structure is also available. This can 
improve the localization of corners (using information 
about when the user picks up and puts down the pen) and 
identify bonds with much greater accuracy (based on 
speed of stroke, etc.). Additionally, if there is a limited 
subset of molecules that the engine is required to 
recognize, various molecule similarity algorithms can be 
used to compare the molecule against the database of 
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possible molecules and return the one with the greatest 
similarity. This is often the case for simple molecules and 
could be very useful in chemistry education. 
 
We conclude that handwritten structure recognition and 
analysis is a difficult problem, one that cannot be treated 
in the same way that computer-generated structure 
recognition is treated. More flexibility must be applied in 
accounting for the greater degree of variability in hand-
drawn images, and we have accounted for that in this work 
with modern corner and line detection techniques. The key 
insight of this project was analyzing small cross-sections 
of bonds so the algorithm can gain a consensus from many 
cross-sections instead of trying to analyze bonds as a 
whole, as previous algorithms have done. Overall, there 
are many parts of this pipeline that can be improved as 
mentioned, but much progress has been made towards 
being able to apply these methods to a public application. 
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7  Code Access 
 
The code is available open-source. The repository is 
located at https://github.com/bradleyemi/chemtype2. 
Instructions for downloading data and usage are located on 
GitHub. 
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