Extending Convolution into the Z-Dimension
Experimenting with Uniting Convolution over Scale and Multi-Scale Features

A CS231A Project Report

Christopher Sauer
Stanford University
450 Serra Mall, Stanford, CA 94305

cpsauer@stanford.edu

Abstract

Convolutional neural networks represent the state of the
art in a wide variety of computer vision tasks, from im-
age classification, to object recognition, to image caption-
ing. The convolutional architecture succeeds because it
captures the translationally invariant structure of images
in the structure of the computational graph, freeing up the
network to learn the task at hand, rather than first having
to also learn this structure from the data.

Unfortunately, the same connection restrictions that al-
low traditional convolutional networks to better learn trans-
lationally invariant structure, severely hamstring them in
their ability to handle two other key structural aspect of
images from a camera: feature scale invariance and com-
position of multiple scales—or at least not without requir-
ing dramatically increasing depth which is problematic for
learning.

In this project, I explore a novel means of extending con-
volution such that it cleanly and readily capture those two
structural aspects together. The method amounts to extend-
ing filters into an additional dimension—that of scale—and
can be described as convolving over a pyramid shaped in-
put tensor. Like traditional convolution, the resulting ar-
chitecture is not dependent on the size of the input image,
heavily shares parameters, and, in my tests, provides better
performance with fewer parameters than larger networks
that take far longer to train. It lays the foundation for fu-
ture thesis work exploring this method as a replacement for
traditional convolution.

1. Introduction

With this project, I investigate a new architectural idea
for extending convolutional neural networks to better han-
dle the structure inherent to real-world images taken by a
perspective camera. In particular, the structural idea works
to allow features to be composed of sub-features at multiple
relative scales, without fixing the absolute scale of the fea-
ture. Since a strength of deep learning is its ability to learn
higher level features from data, rather than require them
to be hand designed, it follows that the network structure
should be amenable to the types of features we would ex-
pect to be relevant in real-world, perspective images. Here,
I will argue that current, spatial convolutional architectures
are inherently limited in their handling of scale and propose
a promising alternative that addresses these limitations.

The idea hit me in class while I was considering the rea-
sons for the success of traditional spatial convolution in
terms of the camera’s position in world space. Convolu-
tion’s efficacy is usually explained purely in terms of pro-
cessing on an image, but there are considerable insights to
be gained by taking a CS231A approach rather than a purely
CS231N one and thinking instead about convolution’s inter-
pretation in world space: running filters over the projection
of real objects onto the image plane. Excited by the idea
and the insight of thinking in world-terms, I decided to be-
gin exploring the idea as my class project. The project as
proposed and executed aims to prospect the idea for poten-
tial continued work as part of my thesis next year. Hence
my pursuing this as a solo project.

The structure of this report, then, will follow a similar,
though more streamlined, path to the one that led to the idea
and and its testing. In the Problem Statement section, I be-

gin by analyzing convolution in world terms. This leads
to finding that traditional convolutions does not lend itself
to capturing certain aspects we would expect of data from
objects projected onto an image plane.

I follow this with the Technical Approach section, which
proposes my solution to the weaknesses identified in spatial
convolution. Hopefully, the solution will feel natural and
obvious given the explanation of the problem, though com-
ing up with its formulation was actually a very substantial
portion of the thought involved in this project. Non-obvious
ideas usually seem obvious in hindsight.

Rather than explain the two approaches that were re-
jected in favor of the current, I will instead review the liter-
ature around building features that apply at multiple scales
and that are composed of sub-features at multiple scales. As
opposed to my approach, these two problems are usually
seen as separate problems elsewhere. This gives equivalent
insight into other promising areas and potential pitfalls.

Finally, I describe the experimental eetup and the results
found so far in testing the new architecture.

Having explained that this report and project are a begin-
ning exploration of a substantial new idea, stemming from
those in CS231A, I will close this section by noting what
the project is not. This project is not about applying a set
of established techniques to an existing problem and com-
paring their efficacy. Nor is it about reimplementing a pub-
lished paper or iterating on it. Instead, it is a partly theoret-
ical project and an exploration of that new theoretical terri-
tory, a prospect to see if the vein discovered is likely to be a
valuable one. Exploring everything in full is a thesis length
project, not a one-class individual project, as is hopefully
clear from the Experimental Setup and Results section. The
rest will—and was intended to be—explored next year.

I will now explain the theory, the intuition, and the ex-
perimental validation of the idea’s promise.

2. Problem Statement

Let us begin, then, by exploring and explaining the effec-
tiveness of convolutional neural networks in world terms.
At the same time, we will explore the relationship between
parameter sharing and data augmentation, both for its own
sake and as a means of arguing for the importance of build-
ing the structure associated with scale into network archi-
tecture.

The benefits of building structure into the network to
accommodate the properties of a projective camera might
already be familiar to the reader from Spatial Transformer
Networks, which, among other things, build naturally into a
network the inverse of projecting a planar region. Baking in
this 3D structure lead to practically perfect performance on
sign recognition, which is an example of a task that involves
the projection of planar regions.[8]

For the purposes of this report, however, we will start

from first principles, building up a justification for convolv-
ing filters from our intuitions about world space.

2.1. Convolution in World Space: The Power of
Parameter Sharing

The core insight of convolutional neural networks is that
the structure of images is largely translationally invariant.
This is true for a deeper reason than simply stating that 2D
images tend to have shared structure throughout: The po-
sition of the camera relative to the world and the objects of
interest in it is somewhat arbitrary. Further, similar patterns,
i.e. features worth learning, appear in different objects be-
cause the natural and man-made objects we photograph fit
into categories with substantial similarities. Because posi-
tion in the input image matrix is a projection of real world
position, this is true in the image as well.

—

‘ g g
e
DN =
A L
(Cartoon Photo)
rvf
(«
=

L)

[

(Cartoon Photo)

Figure 1. Cartoon intuition behind translational invariance in 2D.
Because images are a projection of real world objects, which can
be arranged arbitrarily, the same features that are useful in one
image are useful at different position when the scene is arranged
differently or when the camera is at a different position relative to
the same scene.

Of course, objects of interest are more likely to be in
the center of the frame, but nonetheless the similarity in
structure across the image allows for a dramatic sharing of
parameters that enables networks to capture the structure
of images with far fewer training examples. From the per-
spective of each convolutional filter, this is akin to massive
data augmentation whereby the filter effectively sees many
more images than it would otherwise, each being a related
sub-region of a smaller number of original images. At the

x (Cartoon World)

Figure 2. The same scene as in Figure 1 represented in world
space. The camera is in the lower left, and the red box represents
a the area corresponding to a hair-texture filter of use in both im-
ages. Note that this filter is useful in a different position in image
space when the camera is translated along its « or y axes. This is
addressed by spatial convolution over the image. But what about
the arbitraryness of the camera’s z-position?

level of the network, rather than the parameters, however,
we can view it instead as sharing parameters with shared
intermediate computation, allowing for fast, efficient train-
ing. Parameter sharing is thus like data augmentation in that
it allows us to impart our understanding of the structure of
the problem, but it is to be preferred because it allows us to
share computation.

2.1.1 Z-Dimension Camera Translation

From this world-frame perspective it is hard to not be struck
by the fact that there is a third axis being ignored. This leads
to another type of invariance over which we would like to
capture similarities in structure: scale. Camera position is
not only largely arbitrary in the direction of the image plane;
closeness, i.e., z-position, of the camera is arbitrary as well.
For most objects, which have relatively small depth relative
to the scene, changing the distance between the object and
the camera manifests itself as simple scaling in the image.
We know that we want our networks to capture scale invari-
ance at the level of their output layer, e.g., we would like a
ship to be recognized as such whether it takes up an eighth

of the frame or fills the image. Since sub-features scale with
the image, we ought to strive for this also at every interme-
diate layer.

(Cartoon Worid) — /—\\ [

/W!/
)[2;'\ —~
N

gf
Y2 («
' S =
L R

5

Figure 3. z-translation mostly manifests itself as changes in object
scale.

1%

We know that networks with such scale invariant prop-
erties perform better than those without, because training
of modern networks explicitly involves enforcing this prop-
erty with enormous, scale-based data augmentation. One
of the earlier notes about this was in the All Convolutional
Network paper, which notes the large accuracy gains from
large-scale, scale-based data augmentation.[10] Similarly,
one of the oft copied items from the paper outlining Resid-
ual Networks is their scale-smoothing data augmentation
scheme, in addition to their new network architecture.[7]

2.1.2 Problems in Purely Spatial Convolution Captur-
ing Scale

Said differently, if we would like our network’s neurons
to capture scale-invariant concepts, including output neu-
rons, that build on one another in complexity, we ought
to have a structure in which that relationship can be easily
represented. Currently, our structure, with its reliance on
small filters, ties layer depth heavily to receptive field size,
meaning that only higher-layer neurons can capture larger
concepts. However, the larger concepts are not necessar-
ily more complex ones, and vice versa. We would like our
network to be able to capture lower level concepts in lower
layers and higher ones in higher layers, without instead hav-
ing to skip many layers to build up a larger effective recep-
tive field. One cannot help but wonder if this contributes
to the great need for depth—which, among other things, al-
lows us to represent functions not capturable in individual
convolution layers—and to the effectiveness of skip connec-
tions in residual networks and highway networks.[7] [11]
And while depth is often regarded with pride, we should re-
member that it comes at great cost to training time because
of vanishing gradients among other things. Far better if we

could enable convolutional neural networks to capture scale
without needing huge depth.

Figure 4. Features may be naturally composed of sub features of
radically different sizes. Simple, “low-level” features are not nec-
essarily small, nor do they necessarily fit in the receptive fields of
low layer neurons. Red squares again represent filter features.

There is another scale-related concept we’d like our net-
works to capture, which is drawing on features at multiple
scales. Consider how you might describe your process for
recognizing a face. I might describe it in terms of an elas-
tic collection of sub-features: a round head, hair texture,
eyes, eyebrows, nose, and mouth. People have sometimes
described CNNs as related to deformable part models, but
we should expect the structure that I have described to be
quite hard to represent with standard convolution layers.[5]
Note that the aspects of the hypothetical face are radically
differently sized, especially when you consider the round
head compared to, say, an eyebrow. The need to build fea-
tures out of multi-scale sub-features is explicitly part of
the inspiration behind Google’s Inception Module, which
does this by creating filters of different sizes with different
parameters.[12]

To summarize where we are so far: Parameter sharing in
convolutional neural networks works fundamentally not just
because structure is shared across the image, but because
the camera’s position is somewhat arbitrary in a similarly-
structured world. This suggests we might also want to con-
volve over the third translation dimension of the camera,
which manifests itself as the scale of objects in the image.
We would like our networks to be able to capture this shared
structure at whatever size it appears without blowing up the
number of parameters, and to compose features out of sub-
features of different sizes.

Instead of trying to solve these problems separately, I
have been working on extending convolution into the cam-
era’s z-dimension by expanding filters into a fourth dimen-
sion, over scale, and by sliding those filters over another di-
mension, up a scale pyramid. This approach should create
scale-invariant layers capable of efficiently detecting multi-
scale features with relatively few additional parameters. I
will explain the structure in more detail in the following
section.

3. Technical Approach

What follows are the technical details for the plan on
convolution over scale and how I am breaking the problem
down into two quasi-independent parts, with with the first
being the testable checkpoint investigated here before the
second builds on it. This allows me to validate and explore
assumptions early.

g——~> i« —&/ﬁoﬁ{)‘w’eﬁ‘

;V Conce }vaﬁ)

o

4 |

-

Figure 5. Extending filters up the pyramid into the scale dimen-
sion.

In the first step toward building scale convolution into
the network, I’'m working on expanding filters into the scale
dimension but not sliding them linearly up the pyramid.
This gives multi-scale features, and is equivalent to adding
a scale-pyramid dimension to the convolutional filters. To
simplify and be able to build this functionality out of stan-
dard scaling and convolution operations, I reformulate the
addition of the scale dimension as appending to the chan-
nel dimension . This avoids introducing hard-to-visualize
4D tensors. To get a sufficiently tall scale pyramid, I need
images where 3x3 filters are still sensible at 1/4th or 1/8th
scale for this. I chose Tiny ImageNet, which is a test dataset
made by scaling the ImageNet Classification and Localiza-
tion dataset to 64x64 and reducing to 100,000 images for
200 classes. [9][3]. This dataset is a good choice, given it
is the smallest scale that offers sufficient resolution, its ob-
jects are more heavily deformed and scaled, and it is not an
easily solved task.

The second step is to begin sliding the filter over the scale
dimension, with the intent of getting scale-invariant, multi-
scale features (e.g., capture that a face is composed of el-
ements of multiple sizes, a face can be at multiple scales,
and that what matters is the relative scale and position be-
tween elements). Here I need a dataset that still meaning-
ful to convolve over when scaled down 16x or more. This
means having an original resolution of 128x128 or more.
Therefore, I need to use either ImageNet or, if necessary for
speed or experimentation, create a custom Tiny ImageNet
that is 128x128.

As an aside, we should note that the full approach here
is equivalent to converting the input image into a pyramid-

W —>

Figure 6. Sliding scale-convolution filters up the scale pyramid.

shaped tensor and convolving pyramid shaped filters over
that. Imagine pushing the channels into a non-drawn 4th di-
mension, and instead drawing the scale pyramid as a solid.
The first of the two steps above effectively adds the pyramid
height dimension to our filters, which makes them smaller
pyramids being slid laterally across the image pyramid.
With the second step, the start being slid up and down they
pyramid as well. Further, drawing a pyramid shaped tensor
yields a figure strikingly similar to that of a three dimen-
sional pinhole camera, and that is exactly what we would
expect given our intuition behind the z-dimension manifest-
ing as scale. The tensor’s pyramid dimension is an approx-
imation of what the image would have looked like for dif-
ferent positions of the image plane.

Figure 7. Pyramid shaped tensor has an interpretation as move-
ment of the image plane.

4. Literature Review

There have been some previous attempts at the scale-
invariant network and multi-scale feature problems sepa-
rately. They achieve enough success in each to validate

that there is promise, but neither see the shared structure
between the two, nor attempt to solve both together. When
previous approaches do involve parameter sharing at all, the
attempts tend to use an extremely computationally ineffi-
cient filter dilation approach. We will cover them briefly
here:

On the scale-invariant network side, Farabet, et al, have
an example of increased accuracy for scene parsing which
got performance gains by running their entire network in
parallel on each section of a pyramid.[4] This makes sense,
because you’d expect the problem of objects appearing at
different sizes to be exacerbated in a scene. It also validates
that there’s value in scale-invariance, and is similar to my
approach if you cut the filter size in the z dimension to 1.

For multi-scale features, formulations either rely on fil-
ter dilation or on assembling independent filters of different
sizes. Dilation increases the image size rather than reduc-
ing the image scale. [14] [13] This is extremely problematic
for computational reasons, because not only do the spatial
dimensions not shrink higher up the pyramid, but the larger
filters demand more computation with their size squared.
Thus, as the height of the scale pyramid increases, a sum of
squares term emerges, leading to an O(numScale®) run-
time increase, even without extending each filter into mul-
tiple scales. By contrast, the exponential decrease convo-
lution approach I describe should lead to a O(numScale)
runtime increase, but as we will see, this is offset by needing
fewer distinct filters. Of course, Inception modules provide
a tested way of capturing features at different scales, but
Inception does not provide for scale invariance, nor does it
share parameters between the filter sizes.[12]

5. Experimental Setup and Results
5.1. Ablation Testing

The general approach I take in evaluating my ap-
proach for extending the filter dimension is termed abla-
tion studies. Ablation studies involve running incremen-
tally changed models against one another to determine the
marginal effect, and this approach led Facebook researchers
to quickly find substantial improvements to Microsoft Re-
search’s Residual Net architecture.[6] Usually one does so
on the smallest datasets that still present a meaningful chal-
lenge to the architecture, which I do here with Tiny Ima-
geNet.

5.2. Requisite Hardware

Successfully training and iterating quickly on these
datasets requires working with a powerful GPU and in a li-
brary suited to machine learning experimentation. Of those
two, the GPU is by far the harder part, since virtualized
GPUs are unfortunately essentially crippled. In my bench-
marks, I found I can train models about as fast on my four-

year-old laptop’s GPU as on the most powerful AWS GPU
instance. As mentioned in the proposal, one of the first or-
ders of business, then, was to build myself a more powerful
machine. I can justify the upfront cost because I’ll continue
to use it for my thesis work next year group, as well as for
VR tasks—T’ll be at Oculus this summer.

I picked out the parts at below left, assembled them. Af-
ter a few dozen hours of fiddling, I built a very stable system
pictured in the figure below.

cPU Intel Core i7-6700K 4.0GHz Quad-Core Processor $343.99

CPU Cooler Zalman CNPS8000B CPU Cooler $34.99

Motherboard Gigabyte GA-Z170X-UDS5 TH ATX LGA1151 Motherboard $189.99

P E ¢~

Memory Crucial Ballistix Sport LT 32GB (4 x 8GB) DDR4-2400 Memory $123.99

Add Additional Memory

Samsung 850 EVO-Series 250GB 2.5" Solid State Drive $85.79

Storage
Em= Samsung 950 PRO 512GB M.2-2280 Solid State Drive $317.00

@ Seagate Barracuda 2TB 3.5" 7200RPM Internal Hard Drive $65.88

Add Additional Storage

Video Card ‘ EVGA GeForce GTX 980 Ti 6GB FTW ACX 2.0+ Video Card $614.22
‘Add Another Video Card For 2-Way SLI
Case I NZXT H440 (Matte Black) ATX Mid Tower Case $99.99

Power Supply @B Corsair RM 850W 80+ Gold Certified Fully-Modular AT Power Supply $129.99

MvyrmiDON

Figure 8. Deep learning machine built for the purposes of the
project. The GPU is a NVIDIA GXT 980 Ti.

5.3. Framework and Writing Infrastructure

For the framework, I picked out Torch7 and CUDNN,
so I applied for NVIDIA developer access and installed

both.[2] This is the fastest current setup and is great for
experimentation, though TensorFlow is finally catching up,
and Nirvana’s Neon remains a close second. [1] Unfortu-
nately this means that writing the code requires installing
both those libraries, so it will not run on Corn. This was
cleared with Professor Savarese ahead of time.

If you do attempt to run the code, first install Torch7,
and then I highly recommend placing the CUDNN libraries
in Torch’s include folder rather than the system install
NVIDIA recommends. Otherwise, Torch has trouble find-
ing the libraries, especially on OS X.

What I did not fully appreciate when I chose Torch was
just how rough of a language Lua is. Torch is an incredi-
ble package for pushing computational graphs through the
GPU, but the training and dataset loading infrastructure re-
quired a large amount of effort to build from scratch in Lua,
since libraries you would expect in every language—Ilike
string split, for example—are not present. All in all, I ended
up writing more than 1500 lines of Lua to get a training suite
set up. Existing libraries on the web, especially for Ima-
geNet are often slow, and their means of multithreaded data
loading executes a half dozen copies before finally feeding
the data to the network. Instead, I wrote my own multi-
threaded data loader, extensible dataset reader, and model
trainer that allowed me to quickly train one model after an-
other. A periodic check-pointer that I wrote allows models
to be freeze-dried to disk and resumed as necessary. This
large amount of infrastructure code will likely serve me well
in the future, but required quite a lot of up front time to write
as an individual. I will try to release components of it on
GitHub in the near future to speed others in their work.

For speed of prototyping, I implemented the extension
of filters into the scale dimension using Torch table layers.
This will be discussed more in the Comparison Results sub-
section.

5.4. Initial Training Difficulties: In Both Senses of
the Term

I was surprised to find that, by default, the current ver-
sion of Torch7 still uses Xavier initialization. This com-
pletely stalled training until I discovered it and replaced it
with MSR initialization designed for ReL.U units.

By contrast, other data preprocessing like mean subtrac-
tion and normalization that are usually considered of the
utmost importance for training convergence led to little im-
provement. Eliminating these unnecessary steps will im-
prove training infrastructure in the future.

5.5. Comparison Results

After significant experimentation comparing my step one
models against traditional spatial convolutional networks, I
found repeatedly that by replacing standard convolutional
layers with those described I could train networks with the

same accuracies but more quickly and with many fewer pa-
rameters. Rather than describe one model after another, 1
will focus on a single comparison as a case study.

As an overview, I provide a picture of the computational
graphs used in the head to head comparison.

. SpatalConvolution(s4 > 16,363, 1.1, 11)
Storage d: 6

. SpatalConvolution(64 > 64, 353, 22, 1)
Storage d: 14

'

nReLU.
Storage id: 14

S +
Storage id: 15

L33, L1 L)

Storage d: 1§

anJoinTsble
Storage d: 28

. SpatialConvolution(64 > 64, 353,22, 1)
Storage d: 29

'

n Reshape(1024)
Storage d: 29

Figure 9. The computational graph for the multi scale architecture
proposed in this paper.

The two networks are identical except that convolutional
layers in the baseline network have been replaces with the
layers described in this paper. These layers have 1/4, 1/3,
and 1/2 the number of parameters as the originals they re-
place.

Nonetheless, the two networks are largely equivalent in
their accuracies. The non-baseline model also trained sub-

Input
Storage id: |

'

nn.SpatialConvolution(3 -> 64, 3x3, 22, 1.1y
Storage id: 2

;

nn.ReLU
Storage id: 2

nn.SpatialConvolution(64 > 64, 3x3, 1.1, 11)
Storage id: §

!

nnReLU
Storage id: 5

'

ion(64 > 64, 313, 2,2, 1,1)
ge id: 6

lutior
Story

nnReLU
Storage id: 6

nnSpatialConvol

nn SpatialConvolution(64 -> 64, 3x3, 2.2, 1.1)
Storage id:

l

nnReLU
Storage id: 8

'

nn.Reshape(1024)
Storage id: §

vehen

Figure 10. The baseline network benchmarked against.

stantially faster that the baseline, achieving its best valida-
tion error in only 3 epochs as opposed to 9.

In terms of runtime performance, the two were also
largely equivalent, with batch step times of 26ms and 25ms
respectively for batches of 64 images. Note that the new
architecture could likely be optimized to run substantially
faster if it were optimized to not reconstruct the pyramid
from scratch at each layer.

6. Conclusions

The convolution over scale approach described in this
report represents a mathematically and intuitively clean ap-
proach for extending the convolutional architecture to han-

Model

Baseline
Pyramid

Validation Error

77%
76%

Train Error

32%
36%

Table 1. Slightly better accuracies with many fewer parameters.
Note that the goal is comparison to validate the approach, not low
overall error. This result was not cherrypicked among the models
tried.

dle scaling properties we would expect from images cap-
tured by a perspective camera in the real world. Traditional
networks cannot easily capture these scale invariances, nor
do they automatically generalize learning at one scale to
learning at another. Instead, they rely on depth to capture
scale invariances, which is costly in training and execution
time. The approach presented here captures scale invari-
ances within each layer by design.

The goal of this project was to find an approach for build-
ing convolutional layers that are scale-invariant and support
multi-scale-features, to implement those layers, to validate
that they can be trained by conventional means, and to begin
to evaluate their promise against standard convolutional lay-
ers. I did all of those things, and the layers show exciting
promise in terms of being able to capture image structure
with far fewer parameters.

Excitingly, there are many avenues for future research
here. What happens when these convolutional layers are
imbedded in ResNets? How do they perform on larger im-
age datasets with training times that would make testing on
them during a project infeasible? How does their effective-
ness change as we change the amount of steps the filters
slide along the scale pyramid? I look forward to exploring
all these and more in my thesis next year.

7. Appendix: Project Code Access

The code written for this project can be accessed through
the following short link:

http://bit.ly/1ZsGKbF

This link leads to a directory on Dropbox, since the
repository is not otherwise public. All the Lua code writ-
ten is present and reasonably well documented and com-
mented, with the exception of the testing suite, which has
been omitted for ease of your reading. The link will remain
active through grading. If somehow it gets broken, please
send me an email, and I will fix it immediately.

References

[1] Convnet benchmarks. https://github.com/
soumith/convnet-benchmarks, 2016.

[2] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning.

(3]

(4]

(3]

(6]
(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence, August 2013.
R. B. Girshick, F. N. Iandola, T. Darrell, and J. Malik.
Deformable part models are convolutional neural networks.
CoRR, abs/1409.5403, 2014.

S. Gross and M. Wilber. Training and investigating residual
nets.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

M. Jaderberg, K. Simonyan,
K. Kavukcuoglu. Spatial transformer networks.
abs/1506.02025, 2015.

J. Johnson. Tiny imagenet. https://github.com/
jcjohnson/tiny-imagenet, 2016.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-
miller. Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806, 2014.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. CoRR, abs/1505.00387, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

Y. Xu, T. Xiao, J. Zhang, K. Yang, and Z. Zhang.
Scale-invariant convolutional neural networks. CoRR,
abs/1411.6369, 2014.

F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. CoRR, abs/1511.07122, 2015.

A. Zisserman, and
CoRR,

