
Indoor Scene Segmentation using Conditional Random Fields

Colin Wei and Helen Jiang
Stanford University

{colinwei, helennn}@stanford.edu

Abstract

Indoor scene segmentation is a problem that has become
very popular in the field of computer vision with applica-
tions that include robotics, medical imaging, home remodel-
ing, and video surveillance. This problem proves even more
difficult when the scene is cluttered. Our project aims to
explore ways to improve indoor scene segmentation algo-
rithms by examining and evaluating a popular method.

We focus on evaluating the robustness of the algorithm
for indoor scene segmentation described in [16] by Silber-
man et. al which uses SIFT features and conditional ran-
dom fields to produce segmentations. In our project, we re-
implement their method and compare performance by mod-
ifying specific sections.

We find that the neural network used in [16] is not robust
to an increasing number of classes, but the CRF model is
in the sense that as we increase the number of classes, the
CRF becomes increasingly important to produce an accu-
rate segmentation. Furthermore, we also demonstrate that
changing the algorithm we use to generate superpixel seg-
mentations increases classification accuracy of the entire
pipeline.

1. Introduction
In our paper, we explore the semantic segmentation of

indoor scenes, even cluttered ones. The main goal is that
given an RGB or RGB-D image of a cluttered indoor scene,
we output a properly labeled image with each individual
pixel corresponding to an object class, such as a television,
chair, or table. Although semantically segmenting a scene
is an easy task for humans, automatic segmentation using
machines proves to be a challenging problem.

The solution we are implementing is modeled after the
segmentation algorithm described in [16], which utilizes
neural networks trained on SIFT features along with con-
ditional random fields in order to produce a semantic seg-
mentation.

The goal of our paper is to thoroughly evaluate the al-
gorithm described in [16] in order to understand its suc-

cess cases and failure cases. We hope that in doing so, we
can gain intuition on directions for future work. We follow
and re-implement the technical details of Silberman et. al’s
method of indoor semantic segmentation. Furthermore, we
test modifications to the method.

2. Related Work and Contributions
2.1. Literature Review

There is a large body of work on using conditional ran-
dom fields (CRF’s) in order to produce semantic segmen-
tations of images. In [11], He et. al present an approach
using multi-scale conditional random fields for image seg-
mentation. They leverage 3 different probabilistic mod-
els: a classifier relying only on local information, a con-
ditional random field relying on hidden regional variables
to model interactions between object classes, and a CRF
that incorporates global label information. Their model
relied on a complicated training loop. Subsequent works
such as [15, 18] use pairwise potentials to model the in-
teractions between neighboring pixels when producing se-
mantic segmentations. In [16, 14], Silberman et. al fol-
low the same CRF framework and also introduce the NYU
dataset, a densely labeled dataset of indoor scenes. Finally,
in [8], Chen et. al introduce a state-of-the-art segmenta-
tion pipeline which utilizes a deep convolutional neural net-
work and fully-connected CRF to produce accurate segmen-
tations.

2.2. Our Contribution

We reimplement the semantic segmentation approach in
[16], and run the following main experiments:

1. We evaluate the ability of the neural network used in
[16] to learn 100 object classes. In [16], 13 object
classes are used. This experiment allows us to mea-
sure the robustness of their neural network.

2. We evaluate the performance of their CRF pipeline
using different superpixel algorithms to create initial
low-level segmentations. We also qualitatively analyze
the performance of the CRF on images in the test set
and note potential areas for improvement.

1



Figure 1: Example data from the NYU dataset: Left=RGB
Image; Middle=Raw Depth Image; Right=ground truth
class labels created by Amazon Turk

3. We evaluate the performance of their CRF pipeline in
the 100 object class setting, and show that the CRF
model is robust to an increasing number of object
classes.

3. Technical Details
3.1. Dataset

We use the SUN RGB-D dataset [17], which contains the
RGB-D images from the NYU depth dataset [14] which is
the one that Silberman et. al. created and used, the Berkeley
B3D0 dataset [12], and the SUN3D dataset [21].

In our project, we use 1449 images from only the NYU
v2 dataset [14], although we use the labels provided by the
SUN dataset [17]. The NYU dataset includes the raw RGB
images, the raw depth images, and the labeled images, as
shown by example in Figure 1. We chose to use the SUN
RGB-D version of the NYU images because the SUN RGB-
D dataset is around 10000 images total, allowing us to ex-
tend our work to settings with more data in the future. The
SUN RGB-D dataset provides object class labels for each
individual pixel of every image. Although the dataset pro-
vides depth information for each image, we only use RGB
information for all of our implementations.

3.2. Segmentation Pipeline

To produce a semantic segmentation of an image, we
take the following steps, following the method of Silberman
et. al:

1. Extract SIFT features {fij} from a dense grid on the
image using a sliding window. As in [16], we use a
grid with a stride of 10, where each sliding window is
of size 40 by 40. Although Silberman et. al concate-
nate SIFT features from three different scales, we only
use one scale for our project in the interest of saving
time and computational power.

2. Use a neural network to produce class probabilities
P (·|fi) for each feature location i in the image. As
in [16], our neural network has a single hidden layer
of size 1000.

3. Use a low-level segmentation algorithm to segment the
image into superpixels. We experiment with Felzen-

szwalb segmentation, the approach used in [16], as
well as quickshift and SLIC segmentation. All points i
in a superpixel are assigned class probabilities Pi that
are equal to the average of the class probabilities for
all descriptors corresponding to grid points in a super-
pixel. If no grid points fall inside a superpixel, we as-
sign the superpixel uniform class probabilities.

4. Model pixel labels as a conditional random field. The
energy of the CRF is defined as follows:

E(y) =
∑
i∈I

φi(yi) +
∑
i∈I

∑
j∈N(i)

ψij(yi, yj)

The summations are taken over all pixels in the image.
The first summation models unary potentials for each
class, while the second summation models pairwise in-
teractions between neighboring pixels.

Silberman et. al model φi as the negative log of the
product of Pi(yi) and a location prior on the class yi.
We did not implement location priors and instead set
φi(yi) = − logPi(yi).

Finally, we set pairwise potentials

ψij(yi, yj) = 1(yi 6= yj)ηe
−α‖Ii−Ij‖22

where Ii and Ij are the i-th and j-th RGB color chan-
nels and η, α are hyperparameters. This potential func-
tion mirrors the one used in [10]. Although Silberman
et. al use a different pairwise potential function, we
find that this potential function is easier to tune.

5. Minimize the energy function of the CRF. In [16], Sil-
berman et. al use the scheme provided by [4]. We
experiment with both Boykov et. al’s α-expansion al-
gorithm in [4] and simulated annealing [2].

3.3. Low-level Segmentation Methods

In our semantic segmentation framework, we utilize
three different unsupervised algorithms for the purpose of
producing low-level segmentations:

3.3.1 Felzenszwalb [9]

This algorithm is used by Silberman et. al and preserves
detail in low-variability regions in the image rather than
high-variability regions. The algorithm proceeds by using
a graph-based representation of the image to find region
boundaries, sequentially combining different regions based
on a similarity score across regions.

3.3.2 Quickshift [20]

Quickshift is a mode-seeking clustering algorithm that
builds off of variants of mean-shift. The algorithm provides



a density estimate for each pixel location; it then constructs
a tree where images are connected to their nearest neigh-
bors with larger pixel values. By cutting branches of the
tree whose distance cross a max threshold, we obtain clus-
ters for the image.

3.3.3 SLIC (Simple Linear Iterative Clustering) [1]

SLIC is a clustering method that essentially applies the k-
means algorithm on a different feature space, which takes
into account pixel location and color intensity. After con-
structing this feature space, SLIC uses Lloyd’s algorithm to
output cluster assignments.

3.4. CRF Optimization

Although the minimization of the energy function of a
CRF is an NP-hard problem, the α-expansion algorithm [4]
and simulated annealing provide general methods for per-
forming this optimization [2].

3.4.1 α-expansion Algorithm

This algorithm by [4] formulates the problem of minimiz-
ing the energy function of a CRF as a min-cut problem.
Although this problem is still NP-hard in the worst case,
Boykov et. al provide an approximation algorithm that finds
a local minimum with respect to α-expansion moves, which
consists of moves where pixels change their labels to α for
a given label α. Given a labeling y and label α, we can
compute

min
y′∈Nα(y)

E(y′)

where Nα(y) is the set of labels within one α-expansion of
y and E(y′) is the energy of the labeling y′, in polynomial
time using a reduction to standard min-cut. The algorithm
proceeds by iteratively performing this local minimization
procedure.

3.4.2 Simulated Annealing

Simulated annealing is a black-box combinatorial optimiza-
tion problem that is guaranteed to converge to the optimal
solution, though it may be very slow in practice [2]. The
algorithm proceeds by sampling local changes to a label as-
signment (i.e. the configuration of a single pixel at location
i) with conditional probability equal to

P (ynewi |y) =
exp

(
− 1
T E(ynew)

)∑
y′∈Ni(y) exp

(
− 1
T E(y′)

)
where Ni(y) is the set of labelings obtained by changing
only pixel i, and T is a changing temperature parameter.
The idea is to gradually reduce T from high values, where

Table 1: Statistics for 11 Class Train/Test Set

Class Name # Training Descriptors # Test Index
Bed 31791 39161 0

Bookshelf 58853 38289 1
Cabinet 99732 80484 2
Ceiling 14025 11884 3
Floor 108333 80595 4

Picture 24932 25235 5
Sofa 34744 47957 6
Table 29964 28882 7

Television 7126 12905 8
Wall 373894 311308 9

Window 30695 28160 10

The total number of training and test examples for each
class for our 11 class model.

the probability distribution is near uniform, to low values
near 0, where the distribution concentrates on labelings that
minimize the energy function.

3.5. Our Implementation Details

We implement everything using Python. To extract SIFT
features, we use OpenCV’s Python wrapper [5]. To train
the neural network over the dense grid of SIFT features,
we use the Python package scikit-neuralnetwork [7]. We
use the package scikit-image to run the superpixel seg-
mentation algorithms [19]. Finally, for the graph-cut op-
timization algorithm of [4], we use gco-python, Andreas
Mueller’s Python wrappers for the gco optimization pack-
age [4, 13, 3]. We implemented simulated annealing from
scratch using Cython to optimize for speed. We did not
use any code from [16], as we implemented all of the pre-
processing steps ourselves.

4. Experimental Setup and Results
4.1. Neural Network

We train and test a neural network for classifying image
patches. We partition all images from the NYU dataset into
the train/test splits provided in [14]. For each training im-
age, we extract SIFT features from the dense grid described
in Section 3.2. Likewise, we construct a test set by extract-
ing SIFT features from each image in the test set using the
same dense grid. After consolidating training features, we
randomly partition the SIFT descriptors into 12 total subsets
so we do not have to load the entire training set into mem-
ory. One training loop consists of a pass over all 12 training
subsets, starting with a learning rate of 0.1 and multiplying
by a decay rate of 0.75 with each subsequent subset. Every
other hyperparameter for our neural network is set to the
scikit-neuralnetwork default.

Because the SUN RGB-D dataset contains 894 different



Table 2: Train/Test Accuracy on 11 Class Set
% Train Correct % Test Correct

62.06% 49.96%

Accuracy on 11 class training and test sets. Computed for
all grid points for each train/test image.

Table 3: Train/Test Accuracy on 100 Class Set
% Train Correct % Test Correct

25.89% 13.37%

Accuracy on 100 class training and test sets. Computed for
all grid points for each train/test image.

object class labels, a number that is too big for a neural net-
work with a single hidden layer to accurately classify, we
instead train on subsets of the classes. In total, we train
2 different neural networks. Following [16], we handpick
11 object classes to train on, shown in Table 1. Silberman
et. al use 13 classes - the classes that we use, in addition
to the “blind” and “background” classes. We do not use
these classes, however, because they do not appear in the
SUN RGB-D labels. We also choose the 100 most common
labels, and we train a neural network to classify between
these classes. For reference, our code includes a pickle file
containing the names of these 100 classes. The 11 hand-
picked classes form a large subset of these 100 most com-
mon classes.

From Table 1, we can see that class distributions between
train and test are pretty similar, but class distributions are
both very skewed. This also holds for the 100 classes set.
Because of this skewed distribution, it is possible to train
a neural network that achieves high test accuracy but only
learns a few classes properly. To remedy this issue, we bal-
ance the training distribution by capping each class at 5000
examples per split in the 11 class case and 1000 examples
per split in the 100 class case. We are unclear on how Sil-
berman et. al work around this problem.

In Table 2 and Figure 2, we show the accuracy results
and confusion matrices for the 11 class dataset. In Table 3
and Figure 3, we show the accuracy results and confusion
matrices for the 100 class dataset. From the discrepancy be-
tween the training and testing accuracy for both datasets, it
is clear that our models overfit, even though we use a sub-
stantial amount of training data given the size of networks
we train. There are two main reasons why this could hap-
pen. First, descriptors from the same image corresponding
to nearby points possess some redundancy, which means the
effective number of training samples is smaller than the ac-
tual number. Second, intra-class discrepancy is very high
between different indoor scenes. Since the train/test splits
in [14] are arranged so that not a single scene is in both train
and test, test images could present variations of a class not

(a) Confusion matrix for training.

(b) Confusion matrix for testing.

Figure 2: Confusion matrix for 11 class dataset. Indices
correspond to indices in Table 1.

seen during training.
Judging from the confusion matrices in Figure 2, it

seems that the 11 class neural network performs worst on
classes that are both relatively scarce and similar in appear-
ance to other classes. For example, sofas and tables are
commonly classified as floors. These sofa and table classes
are very scarce compared to floors and exhibit similar prop-
erties such as a large flat surface, leading to this incorrect
classification. We have already mitigated many of these in-
correct classifications by trying to balance classes during
training, but we are unsure how to improve this further with-
out switching to a deeper network architecture. Since Sil-
berman et. al do not provide their neural network results
in [16], we cannot perform a direct comparison. However,
their CRF with only unary potentials achieves a 40.9% pixel
accuracy on 13 classes, which implies that our results on 2
fewer classes are on a comparable performance level.

We cannot make any comparison to [16] on the 100 class
case because they only provide results for 13 classes. How-
ever, the confusion matrix in Figure 3 shows that the sin-
gle layer neural network is not robust enough for the 100
class case. Many of the classes that are very incorrectly



(a) Confusion matrix for training.

(b) Confusion matrix for testing.

Figure 3: Confusion matrix for 100 class dataset. Indices
are available in the code.

classified in the test confusion matrix are also very uncom-
mon; for example the class ”backpack” (index 8) appears
only 539 times throughout the entire training set, and the
model rarely outputs that label. An interesting question is
whether the model fails because SIFT descriptors cannot
capture enough information about all 100 classes or because
the network architecture itself is flawed. In future work, we
could investigate this by training the single layer network
on the raw image patches and observing whether this im-
proves results, which would imply SIFT as the problem. If
the results do not improve, a deeper network may be neces-
sary.

Table 4: Superpixel Algorithm and 11 Class CRF Perfor-
mance

Superpixel Alg. Unary Acc. CRF Acc.
Felzenszwalb 48.74% 49.95%

Quickshift 48.20% 51.21%
SLIC 49.93% 51.35%

Accuracy of pixel-level labels for segmentation of test im-
ages on 11 classes. We only consider pixels that fall in one
of the 11 classes. Unary accuracy is computed from the
segmentation given by minimizing the unary terms of the
energy function. CRF accuracy is computed from consider-
ing pairwise terms too.

(a) Original image

(b) Felzenszwalb, quickshift, SLIC superpixels

Figure 4: Example superpixel segmentation.

4.2. Superpixel Algorithms and CRF Performance

For the 11 class case, we analyze the performance of
the entire segmentation pipeline described in Section 3.2,
varying the algorithm we use to create initial superpixel
segmentations. For the scikit-image implementation of the
Felzenszwalb algorithm, we set the scale parameter to 100
based on qualitative evaluation of a few training images.
For quickshift and SLIC, we use the default hyperparame-
ters from the implementation of scikit-image.

Table 4 shows the accuracy results for our different trials
over the entire test set. To produce the results in Table 4, we
use Boykov et. al’s α-expansion algorithm for minimizing
the CRF energy for each trial [4, 13, 3]. We use 5 iterations
for the α-expansion algorithm.



Figure 5: The images on the left show segmentation results
for different superpixel initializations in Figure 4. On the
right, the truth map is show. Black means the model clas-
sified the pixel correct, white means the model classified
incorrect, and gray means the pixel does not belong to any
of the 11 classes.

(a) Felzenszwalb unary

(b) Felzenszwalb CRF

(c) Quickshift unary

(d) Quickshift CRF

(e) SLIC unary

(f) SLIC CRF

Surprisingly, we find that performing Felzenszwalb seg-
mentation to create superpixels, the method that Silberman
et. al use in [16], actually results in the worst performance
out of all the superpixel segmentation methods that we try.
The accuracy rate of the conditional random field, 49.95%,
is more or less the same as the test accuracy of the 11 class
set, and the accuracy of the unary model with Felzenszwalb
is worse. We should note that the two test sets are differ-
ent - the test set in Section 4.1 uses only the subset of pixel
locations along the dense grid, while our test set here uses
all pixels. Even so, it seems that first performing the super-
pixel segmentation with Felzenszwalb and quickshift actu-
ally hurts the performance of the classifier. This is because,
as seen from Figure 5, both Felzenszwalb and quickshift
create tiny clusters that do not contain any grid points (see
the tiny yellow clusters in Figures 5a and 5c) and are thus
assigned uniform superpixel probabilities. SLIC works well
even restricted to unary potentials because it produces larger
clusters, ensuring that a grid point falls in each cluster.

In the CRF setting with pairwise potentials, quickshift
and SLIC both provide better performance than Felzen-
szwalb segmentation. This is because, as seen in 4b,
quickshift and SLIC provide more balanced cluster sizes,
whereas Felzenszwalb segmentation can often produce very
large superpixels. Since all pixels within a superpixel
share the same class probabilities, if these large superpixels
have the wrong class probabilities, performance will suffer.
Meanwhile, for quickshift and SLIC superpixels which are
smaller, as long as a few superpixels have the correct class
probabilities, the CRF will be able to fix the labels for adja-
cent superpixels too.

For all three superpixel algorithms, the CRF is able to
correct some of the mistakes seen in the unary version of
the model. For example, it can fix nearly all of the inaccura-
cies introduced by superpixel clusters that are too small, as
seen in the smoothness of the CRF segmentations in Figure
5. Furthermore, the CRF is able to produce minor improve-
ments in fixing some small wrongly classified regions. The
potential for improvement is limited in three ways:

1. The accuracy of the neural network is too low. If the
neural network is too confident in the wrong labels,
then it is hard for the CRF to change as desired. In fu-
ture work, we can examine whether using a CRF with
more powerful neural network models results in more
performance gains solely from the CRF.

2. The spatial transition potentials do not provide a good
enough model of the transitions between classes. As
an example, this occurs in Figure 5f. The CRF is able
to correctly label more parts of the floor near the right
side of the bed. As seen in Figure 4b, a large chunk of
the patch of the floor incorrectly classified in the SLIC
unary belongs to the same superpixel. Since the CRF



Table 5: 100 Class CRF Performance
Superpixel Alg. Unary Acc. CRF Acc.
Felzenszwalb 15.16% 15.78%

SLIC 14.77% 15.67%

Accuracy of pixel-level labels for segmentation of test im-
ages on 100 classes. We only consider pixels that fall in one
of the 100 classes. Unary accuracy is computed from the
segmentation given by minimizing the unary terms of the
energy function. CRF accuracy is computed from consider-
ing pairwise terms too.

is able to fix half of this superpixel, neural network in-
accuracy is not the only problem - therefore, transition
potentials must be an issue too.

3. The CRF can fix labels for pixels only if labels for
nearby pixels in the same object are correct. This is
because the CRF model is based on pairwise interac-
tions between neighboring pixels. In future work, we
could attempt to fix this issue by using a fully con-
nected CRF model as in [8], which allows the model
to account for global feature interactions.

Another way to potentially address the first and second lim-
itations is to fine-tune the neural network probabilities and
learn the pairwise interaction potentials by directly train-
ing a CRF model instead of handcrafting the pairwise po-
tentials. We can do this by modeling the pairwise poten-
tials as the result of some convolution kernel applied to
the local image patch followed by some nonlinearity. We
could formulate a training objective that maximizes the log-
likelihood of the true labels, optimize it using contrastive di-
vergence [6], and perform back-propagation into the unary
and pairwise potentials to learn these functions. We suspect
that this approach could mitigate the first and second limita-
tions by providing an energy function that is optimized for
the desired task, producing correct pixel labels. Because of
lack of computational power, we leave this idea for future
work.

4.3. Varying the Number of Classes

We also explore the robustness of the approach in [16]
to a varying number of classes. To do so, we run the seg-
mentation pipeline in Section 3.2 the test set using the 100
most common class labels. We run our experiments using
Felzenszwalb segmentation and SLIC in order to generate
superpixels; we forgo testing quickshift because it provided
similar performance to SLIC in our 11 class test set and the
segmentation algorithm takes too long to run in conjunction
with performing α-expansion optimization on 100 classes,
which already requires significantly more time than the 11
class case.

Original/SLIC

SLIC unary

SLIC CRF

Original/SLIC

SLIC unary

SLIC CRF

Figure 6: Sample truth maps and segmentations for the 100
class case.

We provide our accuracy results in Table 5. Surprisingly,
whereas the superpixel segmentations hurt our unary poten-
tial performance in the 11 class case, they actually improve
our performance in the 100 class case over train and test ac-
curacy given in Table 3. We are unsure why this is the case.
In addition, Felzenszwalb actually provides better perfor-
mance for unary potentials now. This discrepancy might
be due to the fact that in the 100 class case, larger clusters
might result in significant improvement for some test im-
ages because averaging class probabilities of large clusters
reduces noise, and there is more noise in the 100 class case
as opposed to the 11 class case.

The increase in accuracy percentage between the unary
and CRF models is an interesting result that demonstrates
the robustness of the CRF model. As the number of classes
increases, the CRF actually seems to make a bigger impact
on the final segmentation. Although the actual increase in
accuracy is lower in the 100 class case than the 11 class
case, the increase is higher in proportion because many
fewer pixels get labeled correctly in the 100 class case.

From the examples shown in Figure 6, we can also qual-
itatively observe the increased impact of the CRF on seg-
mentation quality. In Figure 6, we show example segmenta-
tions using the SLIC superpixel algorithm; we choose to an-
alyze SLIC because SLIC and Felzenszwalb exhibit similar
CRF performance on the 100 class set, while SLIC is clearly
better on the 11 class set. Whereas the truth maps in Fig-
ure 5 do not change much between the unary and pairwise
cases, the truth maps shown in Figure 6 exhibit significant
changes between the two cases. Furthermore, the segmenta-
tions obtained using the CRF contain far fewer clusters than
the segmentations obtained only using the unary potentials.

We can explain the increased impact of the CRF as fol-
lows: since there are a larger number of classes the network
is less certain about its classification choices and therefore
assigns more uniform class probabilities. As a result, the
pairwise potential term is larger in magnitude than the unary



Table 6: Optimization Algorithm Comparison
Optimization Alg. % Acc on Random Sample

Simulated Annealing 51.55%
Boykov et. al 53.01%

Unary 51.56%

Accuracy of pixel-level labels for segmentation on 11
classes using different optimization scheme. In the “Unary”
scheme, we ignore pairwise potentials and take the argmax
class probability for each pixel. For all optimization meth-
ods, we use SLIC to obtain superpixels.

term, which means the decisions resulting from pairwise
potentials are weighted more heavily. Thus, we can con-
clude that while the neural network model is not robust to an
increase in the number of classes, the CRF is quite robust.
Thus, perhaps we can expect further improvements by us-
ing better CRF potentials as described at the end of Section
4.2. One interesting question for future work is whether the
CRF would still make as big of an impact in the case where
we have a better neural network model for classifying the
grid points.

4.4. Simulated Annealing

In an attempt to determine whether the optimization al-
gorithm used for the CRF is optimal, we implement simu-
lated annealing, a black box algorithm useful for Markov
Random Fields [2]. We anneal from a temperature of 1
to 0.01, using 15 total linearly spaced temperatures. Each
annealing step, we perform a Gibbs sampling sweep over
every single pixel in the image, sampling new class labels
with probability proportional to exp

(
− 1
T E(y)

)
, where T

is the current temperature and E(y) is the energy of CRF
on labels y. We initialize our labels using the minimum en-
ergy configuration for unary potentials - although we tried
different initialization methods, we found that this worked
best empirically. Because we sweep every single pixel in
the image every Gibbs sampling step, our implementation
is extremely slow, even when we use Cython. Therefore,
we only run our segmentation pipeline on a random sample
of 69 test images, using only the 11 class model. For fair-
ness, we compare to the α-expansion algorithm in [4] and
unary potentials using the same random sample. We show
results in Table 6.

(a) Simulated annealing with SLIC

(b) Unary with SLIC

Figure 7: Example segmentation using simulated annealing.



Unfortunately, simulated annealing does not seem to op-
timize the CRF energy at all. As shown in our example,
which is the same initial image as used in Figure 4 and Fig-
ure 5, our simulated annealing implementation does very
little to change the initial assignment. All examples in our
test set appear similar to this. This suggests that some of
our hyperparameters are not set correctly. For example, our
initial temperature might be too high, resulting in the Gibbs
sampler getting “stuck”. Furthermore, we might not have
run a sufficient number of iterations of simulated annealing.
Given more time, we could try to optimize these hyperpa-
rameters to obtain better results. However, we also conclude
that given the large number of hyperparameters to optimize
and the high computational cost, simulated annealing is not
worth the effort compared to cut-based segmentation.

5. Conclusion and Future Work
In this paper, we implement Silberman et. al’s image

segmentation pipeline in [16] with the final goal of explor-
ing the strengths and weaknesses of their algorithm. We
show that the neural network model based on SIFT features
works sufficiently well for a small number of classes, but
does not work for classification tasks on a larger number
of object classes. We also analyze and explain the perfor-
mance of different superpixel algorithms in place of Felzen-
szwalb’s segmentation algorithm, and we find that SLIC
is optimal in terms of both speed and final segmentation
quality. Furthermore, we experiment with a larger num-
ber of object classes in our test set, and we show that the
CRF framework is very robust to an increasing number of
classes, even if the neural network model is not. Finally,
we compare the performance of Boykov’s segmentation al-
gorithm to simulated annealing, and we find that Boykov’s
algorithm works much better for our problem.

Our hope is that our experimentation provides interesting
directions for future research and we believe that our anal-
ysis of the CRF’s performance does this. In Section 4.2,
we discuss limitations of the CRF and argue that directly
learning some CRF potentials from data is a promising di-
rection for further work. In Section 4.3, we show that the
CRF becomes more important as the number of classes in-
creases. Another interesting direction for future work is to
see if this still holds for an even larger number of classes
and also differing CRF connectivities.

Our code can be found at:

https://github.com/cwein3/
im-seg

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Ssstrunk. Slic superpixels compared to state-of-the-art su-
perpixel methods. 3

[2] D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statist.
Sci., 8(1):10–15, 02 1993. 2, 3, 8

[3] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max- flow algorithms for energy minimization in
vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, Sept 2004. 3, 5

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. Pattern Anal.
Mach. Intell., 23(11):1222–1239, Nov. 2001. 2, 3, 5, 8

[5] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools,
2000. 3

[6] M. A. Carreira-Perpinan and G. E. Hinton. On contrastive
divergence learning. 7

[7] A. Champandard and S. Samothrakis. sknn: Deep neural
networks without the learning cliff. 2015. 3

[8] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic image segmentation with deep convolu-
tional nets and fully connected crfs. CoRR, abs/1412.7062,
2014. 1, 7

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. Int. J. Comput. Vision,
59(2):167–181, Sept. 2004. 2

[10] L. Grady. Random walks for image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 28(11):1768–1783, Nov.
2006. 2

[11] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale
conditional random fields for image labeling. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, vol-
ume 2, pages II–695–II–702 Vol.2, June 2004. 1

[12] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,
K. Saenko, and T. Darrell. A category-level 3-d object
dataset: Putting the kinect to work. in iccv workshop on con-
sumer depth cameras for computer vision. 2011. 2

[13] V. Kolmogorov and R. Zabih. What energy functions can
be minimized via graph cuts? In Proceedings of the 7th
European Conference on Computer Vision-Part III, ECCV
’02, pages 65–81, London, UK, UK, 2002. Springer-Verlag.
3, 5

[14] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 1, 2, 3, 4

[15] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Com-
puter Vision – ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7-13, 2006. Proceed-
ings, Part I, chapter TextonBoost: Joint Appearance, Shape
and Context Modeling for Multi-class Object Recognition
and Segmentation, pages 1–15. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. 1

[16] N. Silberman and R. Fergus. Indoor scene segmentation us-
ing a structured light sensor. In Proceedings of the Inter-
national Conference on Computer Vision - Workshop on 3D
Representation and Recognition, 2011. 1, 2, 3, 4, 6, 7, 9

[17] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 2

https://github.com/cwein3/im-seg
https://github.com/cwein3/im-seg


[18] B. Triggs and J. J. Verbeek. Scene segmentation with
crfs learned from partially labeled images. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 1553–
1560. Curran Associates, Inc., 2008. 1

[19] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias,
F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu,
and the scikit-image contributors. scikit-image: image pro-
cessing in Python. PeerJ, 2:e453, 6 2014. 3

[20] A. Vedaldi and S. Soatto. Quick shift and kernel methods for
mode seeking. 2008. 2

[21] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database
of big spaces reconstructed using sfm and object labels. In
ICCV, 2013. 2


