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Abstract

Human pose estimation is a well studied topic in vision.
However, most modern techniques in human pose estima-
tion on multiple, consecutive frames, or motion capture,
require 3D depth data, which is not always readily avail-
able. Prior work using single view 2D data, on the other
hand, has been limited to pose estimation in single frames.
This raises some interesting questions. Can human pose
estimation in multiple frames be effected using 2D single
frame techniques, thereby discarding the expensive reliance
on 3D data? Can these 2D pose estimation models be im-
proved upon by taking advantage of the data similarities
across multiple consecutive images? In this paper, we en-
deavor to answer these questions. We take Yang et al.’s [lI]
single frame pose estimation model using flexible mixture
of parts and apply it in a multi-frame context. We demon-
strate that we can achieve improvements on the original
method by taking advantage of the inherent data similar-
ities between consecutive frames. We achieve speed im-
provements by restricting Yang et al.’s to search locally in
intermediate frames and, under certain circumstances, ac-
curacy improvements by running a second, corrective, pass
using SVMs trained for instance recognition.

1. Introduction

Human pose estimation has become an extremely
important problem in computer vision. Quality solutions
to this problem have potential to impact many different
aspects of vision such as activity recognition and motion
capture. Additionally, success in these aspects can be
applied to gaming, human-computer interaction, athletics,
communication, and health-care. Despite huge progress
in motion capture, as exemplified with the Xbox Kinect,
the current solutions used in gaming require extensive
hardware making it impossible for such technology to be
used in daily human-computer interactions [2]. We hope to
improve motion capture to work with simple RGB single
view cameras allowing this technology to exist on everyday
phones and computers.
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State of the art models for human pose estimation
that are implemented for single static RGB images, also
have some minimal but noticeable accuracy shortcomings
[1]]. Currently, when used on video frame sequences, these
models do not utilize the additional information provided
by surrounding frames. Operating under the assumption
that human poses change minimally between frames,
we improve the accuracy of Yang er al’s [1]] efficient
and flexible model for human detection and human pose
estimation in single static images. We take into account
the sift features of other frames in the same video clip
by training SVMs on these features. We can improve the
output of Yang’s model by testing the SVMs on parts of
the images and adjusting the original body parts to reflect
the scores calculated by the trained SVMs. The result is
a notable increase in accuracy of the imperfect Yang pose
estimation.

After discussing related work and the implications of
our method in Section 2, we further describe our process,
resulting algorithm, and our evaluation process in detail in
Section 3. Finally, we analyze our testing data and experi-
mental results for our various methods and hyperparameters
in Section 4.

2. Background
2.1. Review of Previous Work

Human pose estimation is a well studied subject, both
in video (multiple frames) and in images (single frames).
Currently, most modern techniques for pose estimation in
video rely on 3D depth data. A well known example of
this is the xBox Kinect [2], which uses pose estimation to
determine the gamer’s motion. 3D depth data has many
advantages over 2D image data, not the least of which is
the additional dimension of information. However, 3D data
can only be captured using specialized, and often expen-
sive equipment and is not as nearly ubiquitous as 2D videos.

Recent work in pose estimation on 2D image data



feature a wide range of techniques and approaches, among
them Yang’s [1]], Agarwal’s [3], Dantone’s [4], and To-
shev’s [5]]. These methodologies are similar in that they
focus on pose estimation on single images. We focus
primarily on Yang’s [[1] method of pose estimation using a
flexible mixture-of-parts. Yang’s method has the advantage
of producing relatively good results on full body images
across a variety of poses and background contexts, while
still retaining a significant speed advantage over certain
other approaches, such as Toshev’s [5] pose estimation
using convolutional neural networks. A relatively fast
algorithm is of particular significance when we consider
pose estimation in the multi-frame context.

2.2. Our Method

Previous methods for pose estimation in the multi-frame
realm rely on 3D depth data. Our method uses only RGB
single view image data to accurately locate 26 different
body parts. Additionally, our SVMs are trained specifi-
cally on information from a given video clip resulting in
a more accurate classification of small, specific body parts.
Because deep learning would not be feasible in this con-
text, as neural networks take too long to train and require
an extremely large amount of training data, we believe our
method is the best learning-based technique to improve pose
estimation in the multi-frame context.

3. Technical Details
3.1. Overview of Methodology

Utilizing the available source code, we are improving
Yang et al.’s Image Parse model algorithm [1]] on a vari-
ety of image sequences of human motion gathered from
Youtube. As an initial attempt, we implemented a HOG
features search algorithm where we compute HOG features
for each frame and find the location of body parts by search-
ing for similar features to those calculated for the body part
in the frame prior. We found that although this method
dramatically speeds up the process, the results are wors-
ened. Then, we implemented an SVM correction method
where we train an SVM for each body part for each video
clip. We improve the original Yang by testing the SVMs
on parts of the image and adjusting the Yang output based
on the scoring results. Expanding upon this method, we
integrated hard negative mining [6] for computing logical
negatives for each SVM. Additionally, we added a double-
pass with another SVM trained to classify a sub-image as
a body part or background. Finally, in order to measure
the accuracy of our computed bounding boxes we manually
annotate ground truth bounding boxes on the same image
sequences.

3.2. Yang Algorithm Speedup

The original implementation of Yang’s mixture of parts
algorithm runs in 30 seconds on a typical clip from our
test set (see section 4.1). Since we are testing on upwards
of 2000 images, this is unacceptably slow. Also, in a
multi-frame video with multiple people the highest scoring
bounding boxes often migrate from person to person. To
remedy these issues we reduced the space in which the
mixture of parts algorithm searched for the bounding boxes.

For the first frame of the video clip we run the full
Yang algorithm. For the second frame, we crop the image
to the box bounding containing the entire person plus
a little extra, the size of a body part bounding box, on
the top, bottom, and sides. We then run the full Yang
algorithm on the cropped image. We store the pyramid
level that is used for the bounding boxes on the second
image. For the third frame and all subsequent frames,
we crop the image using the same method to crop the
second image and we search only within the pyramid lev-
els above, at, and below the previously stored pyramid level.

Cropping the image ensures the bounding boxes do
not migrate to another person and speeds up the search
for the bounding boxes. Reducing the pyramid levels also
results in significant speedup. Instead of 30 seconds, the
algorithms runs in about 0.1-0.4 seconds per frame. This
speedup made our SVM correction method, described in
section 3.4, feasible because it allowed us to run Yang on
all the frames of a given video clip in a reasonable amount
of time. This was necessary to obtain enough training data
for the SVMs.

3.3. Interpolation with HOGs

The HOG interpolation method relies on the assumption
that a person’s pose can change only so much between
consecutive frames. Therefore, given the bounding boxes
for body parts in one frame, we are assured that the
associated bounding boxes in subsequent frame may be
found in the same vicinity and would retain similar features.

Our implementation uses Yang’s model to select bounding
boxes for the first frame of the target sequence. In each
subsequent frame, for each bounding box, we run a sliding
window search in the local vicinity of its location in the
prior frame to select candidate bounding boxes. We then
select the candidate with the closest match in HOG features
to the associated bounding box in the prior frame.

By running Yang’s relatively expensive procedure only on
the first frame, we are able to achieve significant speed
improvements over a full run of Yang’s across all frames.
However, this methodology has two disadvantages. Firstly,



any pose estimation error made by Yang in first frame
are propagated into the subsequent frames. Secondly,
the quality of the interpolation disintegrates the farther
removed we are from the initial frame. The key weakness
of interpolation with HOGs is that it takes into account
the output of Yang’s model for only a single frame. In
subsequent investigations, we focus instead on producing
accuracy improvements using SVMs trained on the output
across all frames.

3.4. SVM Correction

Considering only a single human in each of the image se-
quences, we notice that various features, such as the color of
their skin or clothing, do not change over frames. Using this
observation, we train video clip specific SVMs to improve
the output from Yang’s model [1]]. From Yang, there are
26 bounding boxes indicating locations of 26 body parts for
each frame. We split up the frames into sub-images defined
by each bounding box as seen in Figure [I] and treat each
of these sub-images as training data for the SVMs. Addi-
tionally, for each frame, we compute negative examples by
randomly selecting bounding boxes within a certain area of
the human and then discarding those that overlap with any
of the calculated body part bounding boxes. We then re-
peat this process until enough negative examples are found

(Figure[2).

Sub-images for
each body part

Marked Frames

Figure 1: A visualization of segmenting the frames from the
bounding boxes calculated by Yang [1]] to create the training
data used to train the 26 different SVMs.

Utilizing the VLFeat library [7], we compute cluster
centers from the combined training data by calculating the
sift features for each training example and using k-means
clustering to find centers for all the sift features. Note that
sift features were computed using the RGB information as
the colors are important features for training. We found that
a larger number of centers, such as 100, produced better
results. For all of the training data, we create Bag of Words
feature vectors. For each pyramid depth, p, we break the
training example into a p X p grid of sub-images and take
the sift feature vector for each section. After finding the

Figure 2: The process of finding negative examples in each
frame. The leftmost image shows the boundary around the
person in which random bounding boxes are found. The
center image shows these boxes. Then, all the boxes that
overlap with any of the body parts are filtered out and the
resulting bounding boxes that will become negative exam-
ples are displayed in the rightmost image. This process is
repeated until a sufficient amount of negative examples are
found.

closest cluster center to each sift feature vector, we create a
histogram of this distribution and concatenate all sub-image
histograms together to form our Bag of Words. The Bag
of Words features are then used to train the 26 SVMs. For
a given SVM for body part a, all features for the 25 other
body parts and for the negative sub-images are treated as
negative examples.

In order to improve the original output from Yang’s
model [I]], we test the SVM on every 10 frames using a
sliding window. As shown in Figure [3] for a given frame
and a given body part, a, we initialize a score for the
SVMs associated with a on the original calculation from
Yang. Then, we start sliding a window of the same size as
the original computing a score at every position with the
SVM for a. The window position with the maximum score
becomes the corrected bounding box.

Figure 3: The sliding window method. The image to the
left displays the original Yang output for the left hand. The
middle image shows the sliding window starting from the
to left and moving across and down. A score is calculated
for each position. The image on the right indicates the cor-
rected body part which is the position of the sliding window
that resulted in the best score.



3.4.1 Double-Pass SVM

After our initial results, we noticed that if Yang’s model
mistakenly placed enough bounding boxes on parts of the
background that our SVM would do the same. We improve
our method by using an additional, background distinguish-
ing SVM. We train this SVM on the same feature set as the
26 body parts SVMs but using as positives all body parts
bounding boxes and as negatives all background bounding
boxes. During the sliding windows stage, this SVM is used
to filter candidate bounding boxes. Only bounding boxes
that are classified as non-background are kept and subse-
quently scored by the corresponding body part SVM.

3.4.2 Hard Negative Mining

To further improve our method, we take advantage of the
hard negative mining method [6]. In this addition to our
SVM Correction technique, we train our original 26 SVMs
without any negative examples aside from other body parts.
Then, using these SVMs, we test the on the randomly se-
lected negatives collected by our previous method. We do
this over a series of iterations where in each iteration we
collect new negative examples, test these negative examples
on all 26 SVMs, take the maximum score, and then keep a
maximum of 30 negative examples for each video frame
that have a positive score. Our iterations stop once we have
kept a sufficient amount of negative examples. Using this
technique, we are able to collect the most ”confusing” neg-
atives to train our SVMs on. We then recompute the cluster
centers and Bag of Words features including the negative
examples and re-train all 26 SVMs. The correction step us-
ing the sliding window technique remains the same.

3.5. Evaluation

To evaluate the performance of our algorithm, we
measure how many body parts are correctly localized by
comparing the pixel positions of the computed bounding
boxes and the manually annotated ground truth bounding
boxes. The Image Parse model outputs the four corners of
a square bounding box while the manual annotation only
stores the centroid of a bounding box. We measure the
intersection over union of the computed bounding box and
the ground truth. We assume the size of the bounding box
for the ground truth is the same as the size of the computed
bounding boxes. A bounding box is labeled correct” if its
IOU is above a certain threshold.

To aggregate this data for a single video clip, we count the
number of frames a body part is correctly localized and
divide that by the total number of frames. This number is
the average precision (AP) of the algorithm for that body
part in that video clip.

To evaluate the performance of our algorithms, we
compute an AP vs. overlap threshold curve (AOC), similar
to the AP curve described in [8]. A robust algorithm
should generate a curve that maintains high AP for all
overlap thresholds, however some drop off is expected. If
there is a drop off it should occur at high overlap thresholds.

Different regions of the body have drastically differ-
ent performances. In general arms and legs perform more
poorly than head and torso in Yang’s algorithm. Therefore,
we also look at the average raw IOU for each region of
the body for each clip to see if the relative performance
between different algorithms depends on the body region.
We defined seven regions: head, left torso, left arm, left
leg, right torso, right arm, and right leg.

4. Experiments
4.1. Dataset

Yang’s model [1] is pre-trained on the Image Parse
dataset [9]. For testing, we require a dataset containing
human full-body footage because the model is trained on
images containing full-body poses.

To capture a variety of poses, we pulled video footage from
Youtube containing varied subject matter [10]], [[11], [12],
[13] such as people walking, dancing, and playing sports.
We cut these videos such that each clip contains a single
camera view and the full-body of the subject. We prepro-
cess the clips to obtain image sequences of the frames.
Each frame is downsized using bicubic interpolation to be
about 256x256 pixels while maintaining the original aspect
ratio. The downsizing is done to match the approximate
size of the testing images used in [1].

The ground truths associated with our dataset were
made by manually clicking the points of all 26 different
body parts for every 10 frames. Each click is the centroid
of a bounding box for a given body part. For evaluation, we
believe comparing every 10 frames with the ground truth
values is sufficient to determine accuracy.

4.2. Results
4.2.1 HOG interpolation

The HOG interpolation failed to provide accurate bounding
boxes for subsequent frames because of drift. Any pose
estimation error made by Yang in first frame are propagated
into the subsequent frames and the quality of the interpo-
lation disintegrates the farther removed we are from the
initial frame. Figure [4] shows the decrease in average IOU
with increasing frame number. In general, the average IOU
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Figure 4: Average IOU over for all video clips. Each thin
solid line represents a clip. There are 12 clips ranging from
51 to 121 frames. The black dotted line is an average IOU
over all clips.
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Figure 5: Average IOU over all clips for each body region
of Yang output (blue) and HOGs interpolation (yellow).

overlap with the ground truth over all frames in all clips is
significantly lower than in the original Yang output (Figure

B).

All clips performed worse under HOG interpolation
except for Walking Clip 3 (the diamond in Figure [6). A
histogram of the average IOU for each body region rein-
forces that finding (Figure[7). This is likely not because the
HOGs performed well but instead because the Yang output
performed poorly for that particular clip. Note that the
left arm in Figure [8]is not properly localized by the Yang
output, but the HOGs have some overlap with the ground
truth. Also note that the right arm has better localization in
the HOGs interpolation than the Yang output.

Average Precision
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Figure 6: AP vs. Overlap Threshold Curve of the original
Yang output (red) and the HOGs interpolation output (blue).
Lines with corresponding symbols indicate corresponding
clips. For example, the triangle symbol is the Yang and
HOG evaluation for Walking Clip 1.
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Figure 7: Average IOU in Walking Clip 3 for each body
region of Yang output (blue) and HOGs interpolation (yel-
low).

4.2.2 One Pass SVM with Randomly Selected Nega-
tives

Our single pass SVM has a pyramid depth of 5 and 100
cluster centers because those parameters produced consis-
tently good results. We trained and tested the SVM on 5
clips and found that it improved the performance of two of
the clips, and decreased performance in two of the clips,
and did not change the performance in one of the clips (see
Figure [9). Specifically, the SVM improved Beyonce Clip
1 and MLB Clip 1, it made worse Dog Walking Clip 2
and Walking Clip 1, while Dog Walking Clip 1 remained
the same. The improvement in Beyonce Clip 1 was very
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Figure 9: AP vs. Overlap Threshold Curve of the original
Yang output (red), the single pass SVM correction (blue),
and the double pass SVM correction (green). Lines with
corresponding symbols indicate corresponding clips. dia-
mond: Beyonce CLip 1, asterisk: Beyonce CLip 6, x: Dog
Walking Clip 1, triangle: Dog Walking Clip 2, square: MLB
Clip 1, carrot: Walking Clip 1.

significant (the asterisk in Figure ). Figure [I0]shows that
the original Yang output placed the bounding boxes too
far right and the SVM correction shifted them back to the
center. The SVM also fixed one of the bounding boxes in
the left (pink) arm.

Averaging the IOU over all of the clips (Figure [TI))
reveals that the SVM did slightly worse for all body regions
except for the head, left torso and left arm.

4.2.3 Double Pass SVM with Hard Negatives

The double pass with hard negative mining improves the
performance over the single pass SVM in Beyonce Clip

(c) Ground Truth

Figure 10: Frame 91 of Beyonce Clip 1
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Figure 11: Average IOU over all clips for each body region
of Yang output (blue), single pass SVM correction (green)
and double pass SVM correction (yellow).

6, Dog Walking Clip 2, and Walking Clip 1 (Figure [9).
However, in Dog Walking Clip 2 and Walking Clip 1, it still
performed worse than the original Yang output. The double
pass SVM performed significantly better than the original
Yang output in Beyonce Clip 1 and Beyonce Clip 6. For
MLB Clip 6, the SVM corrections have higher average
precision at lower and middle thresholds while the original
Yang output has a higher average precision at the highest
thresholds. In Dog Walking Clip 1 the performance of all
three methods are similar.

In general, both the single and double pass SVM,
when averaged over all the clips, resulted in more accurate
bounding boxes than the original Yang output (Figure ??).
The Single pass SVM performs the best for the left torso,
and right leg, while the double pass SVM performs the



(a) MLB Clip 1

(b) Dog Walking Clip 1

(c) Beyonce Clip 1 (d) Walking Clip 1

Figure 12: Example frames from various different clips displaying the SVM correction using hard negative mining and a
double pass. The top row is the original Yang result and the bottom row is the result after our SVM correction.

best with the head, left arm, left leg, and right torso. This
indicates that the extra background SVM pass and the hard
negatives mining did improve the performance of the SVM
correction overall especially since the arms from incorrect
Yang outputs tend to include background sub-images.

Figure [I2] shows example frames of where the double
pass SVM corrects errors in the original Yang output. For
example, the right arm for Walking Clip 1 in the Yang
output bounds the background while in the SVM correction
it bounds the right arm. For MLB Clip 1 and Beyonce Clip
1 the arms move closer to the body in the SVM correction
except for one bounding box. The solitary bounding
box remains far away because the true arm is outside of
the search space defined by our correction algorithm. In
Beyonce Clip 1 the left and right legs alternate probably
because the sift features are very similar between left and
right legs. There is also a right arm bounding box on the
left leg because, please, Beyonce’s legs basically look like
arms anyway.

5. Future Work

If given the time, we could make several modifications
to our SVM. Firstly, we did not tune all of the parameters of
the SVM across all of the clips to find the best overall set of
parameters. We also noticed that while some values worked
well for some clips, they worked less well for others. More
investigation in this area could produce interesting insights.

Secondly, in the implementation of the hard negatives
for the SVM, we arbitrarily set a threshold to decide
whether to include the negative example in our set of
negatives for the final SVM. For some clips this threshold
was too high and it was difficult to collect enough negative
examples in a reasonable time. In the future we could

vary the threshold and create another AP curve or ROC
curve based on that threshold to determine its effect on the
performance of the SVM.

The current implementation of the SVM is impracti-
cally slow. The most time is spent computing the Bag of
Words feature vectors in various parts of our algorithm
including the hard negative mining loop and the sliding
window correction section. Therefore, we believe this to
be the bottleneck of our method. Thus, parallelizing this
computation such that all frames or even all body parts in
each frame are computed in tandem could have a significant
speed up.

6. Conclusion

It is certainly true that human pose estimation is a
challenging subject with many avenues of research yet to
be explored. We have made a small effort by introducing
a method that utilizes the similarities among video frames
to improve a single image pose estimation model when
used in a multi-frame context. The improvement was
particularly marked on the clips where the original Yang’s
algorithm performed the most poorly - and arguably where
improvement was most necessary.

More importantly, we have highlighted areas where
more research is possible and laid the groundwork for
future avenues of investigation.

References

[11 Y. Yang and D. Ramanan. Articulated pose es-
timation with flexible mixtures-of-parts. In IEEE
Conf. on Computer Vision and Pattern Recognition



(2]

(3]

(4]

(5]

[6

—_

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(CVPR), pages 1385-1392, Washington, DC, USA,
2011. IEEE.

B. Bonnechre, Jansen B., P. Salvia, H. Bouzahouene,
Omelina L., J. Cornelis, M. Rooze, and S. Van
Sint Jan. What are the current limits of the kinect sen-
sor? In 9th International Conf. on Disability, Virtual
Reality and Associated Technologies, pages 287-294,
Laval, France, 2012.

A. Agarwal and B Triggs. 3d human pose from silhou-
ettes by relevance vector regression. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR),
volume 2, pages [I-882-I1-888 Vol.2, June 2004.

M. Dantone, J. Gall, C. Leistner, and L. van Gool. Hu-
man pose estimation using body parts dependent joint
regressors. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 3041-3048, Port-
land, OR, USA, June 2013. IEEE.

A Toshev and C Szegedy. Deeppose: Human
pose estimation via deep neural networks. CoRR,
abs/1312.4659, 2013.

Andrea Vedaldi. Object category detection practical.
http://www.robots.ox.ac.uk/ vgg/practicals/category-
detection.

A. Vedaldi and B. Fulkerson. VLFeat: An open
and portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The pascal visual object
classes (voc) challenge. International Journal of Com-
puter Vision, 88(2):303-338, June 2010.

D. Ramanan. Learning to parse images of articulated
bodies. In Advances in Neural Information Processing
Systems 19, Proceedings of the Twentieth Annual Con-
ference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7,
2006, pages 1129-1136, 2006.

beyonceVEVO. Beyonce - sin-
gle ladies (put a ring on it).
https://www.youtube.com/watch?v=4m 1 EFMoRFvY.

Barcroft TV. Dog  whisperer: Trainer
walks pack of dogs without a leash.
https://www.youtube.com/watch?v=Cbtkoo3zAyI.

Cesar Bess. Mlb top plays april 2015.
https://www.youtube.com/watch?v=mpe9w-CHsoE.

BigDawsVlogs.  Walking next to people extras.
https://www.youtube.com/watch?v=776niN4-A58.



