Cross-domain Deep Encoding for 3D Voxels and 2D Images

Jingwei Ji
Stanford University

jingweij@stanford.edu

1. Introduction

3D reconstruction is one of the hardest problems in com-
puter vision. An ideal application is the generation of a 3D
scene from one single image. However, the amount of in-
formation contained in one isolated image is not enough for
reasonable reconstruction of scene with rich information, so
the direct back-projection from 2D to 3D is a dead end. In-
stead, we need to extract the common semantic information
implicitly contained in both 2D image and 3D shape, so that
a machine could recognize an object regardless whether it
is originally shown in a 2D or 3D form. The semantic in-
formation is in a highly abstracted form, i.e. an encoded
feature. Such an encoded feature will be concise but rep-
resentative for object in various forms. Therefore, the first
step of a solid 3D reconstruction is to find a way to jointly
encode both 2D and 3D forms of information.

Hand-designing a powerful joint encoder would be dif-
ficult. Fortunately, deep learning approach serves as a fea-
sible way to accomplish this task. With the help of mas-
sive data for training, a proper designed deep neural net-
work (DNN) architecture could be used for cross-domain
encoding. The design principle is to establish two encoding
network channels for 3D shapes and 2D images, respec-
tively. Each channel is consist of units including convo-
lutional, ReLU, pooling and fully connected layers. Both
channels would output encoded features of the same size.
To guarantee that the encoded feature is representative of
object in different forms, the metric of the embedding space
should be learned well. In other words, the embedding
space should have a metric such that similar objects are
clustered together, and different objects are separated.

The key of metric learning is the choice of loss function,
used as a learning guidance. In this work, we experiment
with the triplet loss function proposed and examined in [[11]],
[6]. In each iteration, the triplet loss will be computed after
the forward-propagation computation of encoded features,
then the gradients of weights in each layer are computed in
back-propagation to update the network parameters. After
enough iterations of updating the network parameters, this
deep encoder should be trained well enough to reasonably
encode each input 3D shape and 2D image, and reach a low

Danyang Wang
Stanford University

danyangw@stanford.edu

loss in the embedding space.

This work is a foundation step of a larger 3D reconstruc-
tion project in progress, thus the design of the encoding net-
work could not be too complex due to the limitation of GPU
memory. To design a smaller network instead of the pre-
trained heavy weighed ones, we decide to design and train
from scratch. We experiment on several combination of lay-
ers and examine them on learning performance. Another
challenge is the implementation of 3D layers. In our work,
3D shapes are presented in the form of voxels. Although
deep learning library including Theano [9] and TensorFlow
[1]] have supported 3D voxel layers, some modifications are
needed to fit them into our skeleton. Finally, we show the
t-SNE embedding [10] as a visualization of the resulting
embedding space.

2. Related Works
2.1. Deep learning on volumetric data

Deep learning has been a popular approach to solve com-
puter vision problems since AlexNet [4]’s winning on im-
age classification in 2012. Intensive studies have been car-
ried out on object recognition, however mostly on 2D im-
ages. Recently deep learning approach has also been ap-
plied on volumetric modality of data to target on 3D recon-
struction, such as [3]]. We start from the skeleton codes from
[3]] and build up our own architecture design.

2.2. Triplet loss function

Metric learning is crucial in establishing the embedding
space. A good embedding space should be general to dif-
ferent categories of objects, and also distinct enough for
different objects. To well learn the metric, the loss func-
tion should be properly designed. We attempted the triplet
loss used in [L1][6] in this work. More details on the loss
function would be shown in section 3.3.

3. Technical Details
3.1. Dataset and data processing

Our data are from the car category in ShapeNet [2]. In
total, there are 7497 CAD models of different kinds of cars,
including sedan, coupe, sports car, etc. 80% of them are
used as training set, and 20% as testing set. During the
training, the network will not use information from testing
set for learning.

The 3D volumetric data are generated through voxeliza-
tion on mesh data provided by ShapeNet. The voxelization
tool is given by [5]. We generate 96 x 96 x 96 voxel for
all the CAD models in the car category. The voxel size is
comparably larger than previous works on 3D voxel deep
learning, which is for our future research on high resolution
3D reconstruction. In this work, we still target on dealing
with data with lower resolution, so we set a pooling layer
right behind the input layer.

The 2D images are rendered from ShapeNet CAD mod-
els of cars. The rendering images offer a direct labeling
without further manual annotation. The size of images are
486 x 486. Similar as the voxels, we also use a pooling layer
to lower the resolution. Instead of rendering the image from
uniform distribution of viewpoints, we follow the distribu-
tion of real image statistics to make the rendered images
more real. In detail, we count the viewpoints data from the
manual annotations in a new dataset ObjectNet3D (will be
released soon), then sample the viewpoints with a method
of KDE [8]]. The viewpoints distribution of the real images
in ObjectNet3D is shown in Fig[2] To make the rendered
images more diversified, we also add random color back-
ground as noise to avoid overfitting.

The triplet loss requires the data to be trained in a triplet
way. Each 3D volumetric shape is paired with one posi-
tive image and one negative image, as shown in Fig[T] The
positive image contains the same object as in the 3D voxel,
while the negative image contains a different object. More
details would be illustrated in section 3.3.

3.2. Deep encoding network architecture

The whole deep encoding network architecture is shown
in Fig[3] The detail setting of parameters is illustrated in
Table m In general, for both channels, we use two conv-
relu-conv-relu-pool units followed by two fully connected
layers. This architecture is chosen from the several can-
didates according to their learning performance, which is
illustrated in section 4.1.

The implementation is completed on Theano, which is
very supportive to 3D DNN layers. Still, we modified sev-
eral layers ourselves to fit our skeleton codes.

&

Figure 1. The triplet grouped data. Every triplet contains a 3D
voxel with positive and negative images. Green: positive relation;
red: negative relation.

Figure 2. Viewpoints distribution of the real images of car in Ob-
jectNet3D. The camera positions are visualized as points on the
unit sphere (red: in-plane rotation < 15°; green: in-plane rotation
> 15°). Clearly, most viewpoints have a small elevation angle,
which is very different from a uniform elevation distribution.

3.3. Loss function

After the deep encoding, the encoded features of voxel,
positive and negative images are used to compute the triplet
loss. Triplet loss is trained on the triplet data p;, v;, n;, de-
noting the i-th positive image, voxel and negative image. In
the triplet data, p; and v; have the same label, presenting the
same object, while n; and v, are different. The loss function
is as following:

1 &))
L= m Z maX(DPi,vi - Dni,vi +a, O)a (D

where D, , = || f(z) — f(y)|] is the Euclidean distance be-
tween two encoded features, and « is the margin parameter,
m is the size of mini-batch. During the training, the positive
pair would be pulled closer and negative pair pushed away
from each other in the embedding space. Ideally, the triplet

Input Encoder Embedding Space
3D vox, 2D img Architecture: Pool + [[Conv, ReLU] * 2, Pool] *2 + FC + ReLU + FC
3D channel
S
> = | \
Positive
Triplet Loss:

2D channel
, | /’
Negative /"
,/"
— % A

Z max(DZ — D2 + a,0)

Figure 3. The sketch of the cross-domain deep encoding architecture. Red: convolutional layer; yellow: leaky ReLLU layer; blue: pooling

layer.

loss would help form many clusters in this way.

[c] I [d]

Figure 4. The learning curve for (a) 1-conv-1-fc, (b) 2-conv-1-fc,
(c) 3-conv-1-fc, (d) 2-conv-2-fc. We use MSRA filler for weights
initialization, Adam update policy with default learning rates, mar-
gin a = 1. Test loss is calculated on one mini-batch from testing
dataset portion every 20 iterations.

4. Experiments and Results

In the experiments, we first observe the learning behav-
iors of several network architecture candidates. Then we
select the best network out of them and trained on the full
training dataset (80% portion), and visualize the final en-
coded feature space using t-SNE embedding.

4.1. Learning behavior of different network

We build up the networks from scratch, so we experiment
with the architecture candidates in an add-on style. Denote
a network with m conv-relu-conv-relu-pool units followed
by n fc layers by m-conv-n-fc, we have built four candi-

dates: 1-conv-1-fc, 2-conv-1-fc, 3-conv-1-fc, 2-conv-2-fc.
The learning curve of the first 20000 iterations are shown
in Fig[d] The training dataset has around 6000 CAD mod-
els, and we fetch a mini-batch of 24 triplet into the net-
work, so every 250 iterations is an epoch. From the learning
curves, we can see that the shallowest 1-conv-1-fc would
cause overfitting easily after 7000 iterations. In 2-conv-1-
fc, overfitting begins around 20000 iterations. As for 3-
conv-1-fc, the network is not easy to train, so in the first
5000 iterations the loss is not decreasing. Sometimes we
need more 20000 iterations just for the loss to begin low-
ering down. The 2-conv-2-fc is better than the other three,
due to its more weights in fc layers and shallower convolu-
tional structure than 3-conv-1-fc. So we use 2-conv-2-fc as
our final choice. The details of this architecture is shown in

Table [T

40

30
-]

a
'1;>';v' v -l-' >
> < 0 B
¥ By VY @|o Swl
Fv'o .

10 o 'Nb' :o e ¥ .
) H o
°ogh c@ @ p o T,
0 ‘4" 10,0 DL <® .~.>"
L) % o> <
_10 R @ ‘:....O‘v" [4:;“‘
o 4 e l.ofR::QE L] 3
A 'w?. i D.:
-20 ‘i“h F ks > 3]
°

=30
- 20 30 40

Figure 5. The t-SNE embedding of 300 testing images of 10 ob-
jects. Each marker denotes one object.

channel | label size-in size-out memory params weights
pool0 96 x 96 x 96 x 2 32 x32x32x2 256 KB p=3 0
convla 32 x32x32x2 32 x 32 x32x 16 2MB 3x3x3x16 1.7KB
rectla 32 x 32 x32x16 32 x 32 x32x 16 2MB 0
convlb | 32 x 32 x 32 x 16 32 x 32 x 32 x 32 2MB 3x3x%x3x32 3.4KB
rectlb 32 x 32 x 32 x 32 32 x 32 x 32 x 32 4MB 0
pooll 32 x 32 x 32 x 32 16 x 16 x 16 x 32 512KB p=2 0
voxel conv2a | 16 x 16 x 16 x 32 16 x 16 x 16 x 64 1MB 3x3x3x64 6.8KB
rect2a 16 x 16 x 16 x 64 16 x 16 x 16 x 64 1MB 0
conv2b | 16 x 16 x 16 x 64 16 x 16 x 16 x 128 2MB 3x3x3x128 | 13.5KB
rect2b | 16 x 16 x 16 x 128 16 x 16 x 16 x 128 2MB 0
pool2 | 16 x 16 x 16 x 128 4x4x4x128 32KB p=4 0
flat2 4x4x4x128 4% 4%4%128 = 8192 32KB 0
fc3 8192 4096 16KB 8192 x 4096 128MB
rect3 4096 4096 16KB 0
fcd 4096 128 0.5KB 4096 x 128 2MB
pool0 486 x 486 x 3 162 x 162 x 3 307.5KB p=3 0
convla 162 x 162 x 3 162 x 162 x 16 1.6MB 3x3x16 576B
rectla 162 x 162 x 16 162 x 162 x 16 1.6MB 0
convlb 162 x 162 x 16 162 x 162 x 32 3.2MB 3x3x32 1.1KB
rectlb 162 x 162 x 32 162 x 162 x 32 3.2MB 0
pooll 162 x 162 x 32 54 x b4 x 32 364.5KB p=3 0
image conv2a 54 x 54 x 32 54 x 54 x 64 729KB 3 x3x64 2.3KB
rect2a 54 x 54 x 64 54 x 54 x 64 729KB 0
conv2b 54 x 54 x 64 54 x 54 x 128 1.4MB 3 x 3 x 128 4.5KB
rect2b 54 x 54 x 128 54 x 54 x 128 1.4MB 0
pool2 54 x 54 x 128 6 x 6 x 128 18KB p=9 0
flat2 6 x 6 x 128 6 * 6 x 128 = 4608 18KB 0
fc3 4608 4096 16KB 4608 x 4096 72MB
rect3 4096 4096 16KB 0
fcd 4096 128 0.5KB 4096 x 128 2MB
total 48MB 204MB

Table 1. Details of the architecture of the cross-domain deep encoder. p is the pooling parameter. All sliding windows in conv layers use
stride of 1. Flat layer flattens an n-dimension array into a vector. We use leaky ReLU for the rectified layer. The number type is float 32,
taking 4 bytes each. The output memory and for images are doubled in the calculation of total amount, since there are both positive and

negative images paired with each voxel.

4.2. Embedding space visualization

To validate the quality of our embedding space, we visu-
alize the space using t-SNE [10] method. The technique is
for dimensionality reduction, and has been widely used for
approximate visualization of high dimensional space. The
result of the images embedding is shown in Fig[5] How-
ever, the voxels are not embedded well in this space. They
are embedded quite far away from images clusters. We be-
lieve that one reason is the use of triplet loss. Our setting of
triplet takes into consideration the difference between im-
ages, but no difference between voxels. In other words, the
setting for voxel and image is not symmetric. One way to
solve this is to use a recently proposed lifted structure loss
function [7]]. This loss function would consider the rela-

tion between every two datums in one mini-batch, so the
similarity of voxels would also be take into account. The
implementation of lifted structure embedding space would
be finished in the future work.

5. Conclusion

In this work, we proposed a cross-domain deep encoding
approach to bridge 3D voxel and 2D image data. We ex-
periment on several DNN architecture to establish the deep
encoder, and tested them on learning behaviours and em-
bedding space visualization. We have also argued that lifted
structure loss could improve the joint encoding quality.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d
model repository. CoRR, abs/1512.03012, 2015.

C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. CoRR, abs/1604.00449, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

F. S. Nooruddin and G. Turk. Simplification and repair of
polygonal models using volumetric techniques. Visualization
and Computer Graphics, IEEE Transactions on, 9(2):191—
205, 2003.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015.

H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep met-
ric learning via lifted structured feature embedding. arXiv
preprint arXiv:1511.06452, 2015.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn:
Viewpoint estimation in images using cnns trained with ren-
dered 3d model views. In The IEEE International Confer-
ence on Computer Vision (ICCV), December 2015.

Theano Development Team. Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-
prints, abs/1605.02688, May 2016.

L. Van Der Maaten. Accelerating t-sne using tree-based
algorithms. The Journal of Machine Learning Research,
15(1):3221-3245, 2014.

K. Q. Weinberger and L. K. Saul. Distance metric learning
for large margin nearest neighbor classification. The Journal
of Machine Learning Research, 10:207-244, 2009.

