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Abstract

When performing visual tasks, it can be argued
that humans do not focus on an entire scene at one
time. Rather, we focus our attention on important
parts of the scene, using contextual cues such as ob-
Jjects and human pose to help guide our attention. This
project proposes the use of pose to guide Recurrent
Neural Networks (RNNs) with Long Short-Term Mem-
ory (LSTM) units for action prediction. The proposed
model is evaluated on the Stanford 40 Actions dataset,
producing results that support further exploration of
guided attention in RNNs.

1. Introduction

Visual cognition research has noted that humans
sequentially focus their attention on different parts
of the scene, extracting relevant information for
completing tasks [8]. In recent years there has been
an increase in interest in attention based models for
several visual cognition tasks, including including
caption generation [14]], visual question answering
[13], and action recognition [10]. These models
often utilize RNNs with LSTM units, which have
shown promising results in learning sequence based
problems.

This project aims to tackle to problem of human
action recognition in images. While not traditionally
a sequence based problem, the idea of visual attention
can be modeled as a sequence based problem, in
which each area of focus is an item in the sequence of
focus areas used to classify the action, and each area
influences the next focus area. We propose the use of a
recurrent neural network with three LSTM units. The

network aims to learn hidden output of each LSTM
unit as an attention map for the current input.

In this paper we first discuss related work in the
areas of action recognition, attention based networks,
and pose estimation. Then we outline the proposed
technical solution to the problem, noting the dataset
used, feature extraction, and how the network was im-
plemented. Finally, we discuss the results and key in-
sights gained from experimentation.

1.1. Related Work

Action Recognition
Recognizing human actions in images has many
useful applications including image retrieval and
scene understanding. There have been many recent
network designs proposed to solve the task of action
recognition, many of which use RNN variants. Yeung
et al. [[17] define a novel form of the LSTM for action
recognition to model temporal relationships between
frames in a video by utilizing multiple input and
output connections. Due to this connective modeling,
the model is able to refine its predictions in retrospect
after seeing more frames. Yao et al. [15] propose a
mutual context model to model the co-occurrence of
objects and human pose in order to predict interaction.
The researchers introduce a set of atomic poses that
allow for flexibility in classification and extensibility
to additional datasets and activities. Rosenfeld et
al. [9] train a series of neural networks to localize
and extract hand and face regions for input into a
hand-object interaction classifier. They show that
recognition is improved by precise localization of
the object related to the action, and consequently
extracting information of the object together with
the human in the interaction. As a result, they



achieved an improvement of 35% over the state-of
the art. Sharma et al. [10] train soft attention models
using an LSTM based recurrent neural network
for action prediction in videos. The researchers
train a multi-layered RNN with LSTM units to
detect which portions of the set of frames are relevant
for the current task before predicting the video actions.

RNNs with Long Short-Term Memory

Recurrent neural networks, especially those with
Long Short-Term Memory, have proven to be very
effective at learning models with large amounts of
sequential data because they are deep both spatially
and temporally. Lately, they have become extremely
popular for a wide variety of tasks, including language
modeling, machine translation, speech recognition,
and image caption generation [[18]]. Karpathy et al.
[6] analyze the strengths and limitations of LSTM
based RNNs, finding that while they often show im-
pressive performance, further architectural innovation
is needed to eliminate error entirely. Zaremba et al.
[18] show how to apply dropout to LSTMs, showing
that when used correctly, it substantially reduces
overfitting in many tasks. Its wide application set and
utilization in many state of the art algorithms suggest
that LSTM based RNNs are promising and warrant
further exploration.

Attention Based Networks
Attention models that utilize RNNs have proven to be
useful in a wide variety of applications. Wang et al.
[11] give a theoretical and mathematical overview of
attention-based recurrent neural networks, showing
their flexibility of input and output as well as the
different types of models and training schemes. They
also define the two main attention mechanisms for
RNNs, soft and hard. Xu et al. [14] implement
both hard and soft attention mechanisms in networks
trained to repeatedly weigh locations of the image
based on the importance of the current word being
predicted in caption generation. Xu et al. [13]] define a
multi-hop spatial attention memory network for visual
question answering. The researchers implement soft
attention models to train a recurrent neural network
that generates answers to questions about images. In
this network, the question is input as a variable length
sequence of words due to the flexibility of the model.

Gregor et al. [4] developed an auto-encoder network
which utilizes a novel spatial attention mechanism
that mimics the natural movement of the human
eye in order to draw digits. Bahdanau et al. [2]]
address the sequence to sequence learning problem for
machine translation. Using an attention mechanism,
the researchers improve poor performance of direct
translation in their network.

Pose Estimation

An important component of this project was choos-
ing a suitable pose estimation algorithm, as not every
action recognition dataset includes pose annotations.
Recently, there have been several promising networks
designed to tackle the task of pose estimation. Haque
et al. [3]] train a convolutional neural network using
soft attention models and depth maps to estimate hu-
man pose in 3 dimensions. In this network, glimpses
of body part information is extracted and used as input
into the network. Carreira et al. [3] propose an iter-
ative, self correcting convolutional neural network for
human pose estimation that utilizes stochastic gradient
descent to infer a set of 2D keypoints describing body
pose from a single RGB image. Wei et al. [12] utilize
multi-stage pose prediction framework incorporating
convolutional neural networks for feature extraction.
Newell et. al. [7] introduce the stacked hourglass net-
work, a framework for pose estimation that samples
and combines features from high to low resolutions in
order to predict joint probabilities at each pixel. By
modeling human pose structure via feature extraction,
the network allows for higher precision in estimation
of joints, even when occluded, and achieves the current
state-of-the-art percentage of correct keypoints. This
project uses the stacked hourglass network for pose es-
timation.

2. Technical Details
2.1. Problem Statement

This project aims to solve the problem of single
action recognition in images using pose information.
Given an image, we want to first estimate the joint
locations of the center person and then predict what
action is occurring out of a set of actions. To solve this
problem, we propose an LSTM based recurrent neural
network that takes in either an image’s features or the



Figure 1. Example Images from the Stanford 40 actions
dataset and their corresponding heat maps.

features and the pose map and outputs the predicted
action.

Network Inputs

We explore two types of inputs. In the first input,
we take the image, concatenate the pose information
to the bottom of the image and extract GoogLeNet
features. From there, we vectorize the image and
input this vector into the network. In the second type
of input, we take only the images GoogleNet features
as the initial input, and use the pose map as the initial
hidden state to the first LSTM unit in the network.

Dataset and Convolutional Features

The dataset used in this project is the Stanford 40
Actions Dataset [16], which contains 9532 images
of humans performing one of 40 Actions. For each
input, we use the GoogleNet model, pre-trained on
Imagenet. Taking the last convolutional layer of size
[7 x 7 x 1024], we reshape and resize the layer to a
single vector of size 4096 to speed up computation
time. Pose data is estimated using the stacked hour-
glass network for pose estimation. We take each of
the 16 outputted heatmaps and take the max across all
maps, coming up with a heatmap similar to those in
Figure 1.

Long Short-Term Memory units
In our network, we use the variant of the LSTM unit
defined by Karpathy et al. [6]]. Figure 2 shows a di-
agram of the unit. Each contains four gates, input i,
output oy, cell ¢; and forget f;, and one output, the hid-
den state h;. Their states are governed by the equations
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Figure 2. Schematic of a single LSTM unit.

Source:
|http://blog.otoro.net/2015/05/14/long-short-term-memory|
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The o (sigmoid operator) and tanh (tanh operator)
are applied element wise. W' is a [4n x 2n] matrix,
corresponding to the learned weights of the network.
The 4;, o; and f; are vectors in R", and control the
local state of the hidden vector. The vector gy is
also in R", and ranges between -1 to 1. g is used
to additively modify the cell memory contents, such
that during backpropogation the sum distributes the
gradients backwards through time.

2.2. Network Design

Figures 3 and 4 show the diagram of the network.
The first step is to modify the input images utilizing
the output from the stacked hourglass pose estimation
network [7]. Then, we input this into the first LSTM,
which predicts a hidden state and sends that as input
into the second LSTM, which produces another hidden
state for input into the third LSTM, which predicts an
output. We apply the tanh operator to the output to
get the final classification scores. After this, we apply
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Figure 3. Network with first type of input. Input is the
GoogleNet features of the concatenated image and pose
map.

Figure 4. Network with second type of input. Input is
GoogLeNet features of image, and initial hidden state is
pose map.

batch normalization in an attempt to prevent overfit-
ting. The class with the greatest score is predicted as
the output.

3. Experimental Setup

The network is implemented on an NVIDIA Tesla
K40c GPU using Torch7, with dependencies on
CUDA and the following torch libraries: cutorch,
cunn, cudnn, cltorch, and dp. We extend the LSTM
implementation from [6], using 3 individual units
as described above. We use a multi-class Cross
Entropy loss function, as defined by the built in class
nn.MultiLabelSoftMarginCriterion. We
evaluate both models on 3 subsets of the Stanford 40
Actions [16] dataset: the complete set, a subset with
25 actions from each class (Small), and a subset with
25 actions from 15 classes (xSmall). We run both net-
works on all three datasets, calculating classification
accuracy on the train, validation and test splits. We
run training for 350 epochs of 500 iterations each,
with a batch size of 200 examples and a learning rate

of 0.001. With pre-computed inputs, each model takes
approximately 6 hours to train. Table 1 shows the
results.

Results & Discussion

Quantitative Analysis

For the first input, we achieve high training accuracy
on the Complete, Small and xSmall datasets. Vali-
dation and test accuracy for the complete dataset is
decent, around 0.50 for both cases. The small and
xSmall datasets, however, do not perform well in
validation and test, the Small dataset achieving 0.24
and 0.08 validation and test accuracy, and the sSmall
dataset achieving 0 accuracy for both validation and
test. For the second input, we achieve similar results,
however, the complete set achieves lower accuracy
in all three categories, while the small and xSmall
datasets achieve slightly higher validation and test set
accuracies.

The first model seems to generalize large amounts
of data very well, but vastly overfits the small sized
sets. This makes sense: Because the LSTM is spatially
deep, fitting a small amount of data is reduced to the
task of memorizing that data. As a result, the model
overfits the training data heavily. The second model
overfits the small datasets as well for the same reason.
On the complete set, however, the second model
performed more poorly than the first model, which is
not what we would expect, but can be explained by
the inherent structure of the model. While we provide
the initial hidden state to the model and hope that the
model learns to predict the next hidden state as an
attention map, we cannot guarantee that the model
will learn this because we only backpropogate on the
output classification labels.

Qualitative Analysis
A qualitative evaluation metric utilized was to look at
the predicted hidden states of the LSTM for various
images. Figure 5 shows the hidden states for the first
two LSTM units for the image of the child brushing
their teeth in Figure 1. The hidden states do not look
like attention maps, but noisy speckles all around the
image, which is not what we desired. One way to
reconcile this would be to first train the bottom two
LSTM units to predict pose embeddings based on the



Table 1. Train, Validation and Test Accuracy for both types of inputs on all three datasets.

Dataset type Input type Train Accuracy | Validation Accuracy | Test Accuracy
Complete | Pose concatenated to image 0.82 0.525 0.493
Small Pose concatenated to image 0.97 0.24 .08
xSmall Pose concatenated to image 1 0 0
Complete Pose as initial hidden state 0.796 0.36 0.328
Small Pose as initial hidden state 0.95 0.2 0.15
xSmall Pose as initial hidden state 1 0.12 0.2

Figure 5. Hidden states for first two LSTM units for the
third image in Figure 1. The top image corresponds to the
output of the first LSTM unit, and the second corresponds to
the output of the second unit. These states are not visually
informative and can explain poor performance of the second
method.

first pose map, and then train the last LSTM unit and
the following network layers to predict classification
from these pose embeddings.

While the results are decent for large amounts of

data, they don’t come near the state of the art for a
couple of reasons. First, due to time constraints, the
model was only trained for 350 epochs of 500 itera-
tions each, as stated above. Because of this, the mod-
els were not fully trained, and would likely take days
to weeks for the training loss to reach zero. Addition-
ally, using a learning rate of 0.001 may have been too
fast, allowing the model to slightly overfit training data
in all cases. If time had permitted, a good experiment
would have been to run both models with increased it-
erations and batch sizes, but with a decreased learning
rate, and noting whether or not accuracy increased.

4. Conclusions

This project has shown that pose may be useful
in guiding attention for action recognition. While
these models only achieved over 50% and 30% testing
accuracy, they have shown that the LSTM architecture
is flexible enough to learn many types of inputs, and
that human pose can provide good contextual features
to guide action recognition. Initially, we predicted that
the second model, because of its more complicated
structure, would achieve better results when compared
to the first model. This was not the case, and led
to the insight that the direct output of pose works
better as a feature vector than an initial hidden state.
Because these models utilize the output of another
model, rather than ground truth annotations for pose,
The model may be learning incorrect parameters due
to inaccurate pose estimation. Additionally, resizing
the GoogleNet features may result in inaccuracy of
features, making training a more difficult task.

Further Work
There are many future directions this project could
take. Because of time constraints, there was not much
experimentation done with choosing the learning



parameters of the model. One direction is to simply
play with the learning parameters until a maximally
accurate model is developed, or even to dynamically
increase or decrease the parameters based on valida-
tion loss.

One proposed input that was not implemented was
the creation of an embedding space that transforms
each of the joint heat maps into an attention map, to
be used as the initial hidden state for the LSTM units.
Additionally, the attention mechanism used in this
project was to simply use pose as an input or a hidden
state, rather than multiply that attention by the input.
Another direction could be to implement the LSTM
unit that calculates a weight map and multiplies that
weight by the input at each step.

This project focused heavily on LSTM units. An-
other unit we could implement would be the Gated
Recurrence Unit (GRU), which was also explored by
Karpathy et al. [6], who showed that in many cases the
GRU achieves minimal loss as compared to a vanilla
RNN or an LSTM. Finally, one major issue is the size
of the dataset we used. Because the Stanford 40 ac-
tions dataset contains only 9532 images, overfitting
may always be an issue. Instead, we could evaluate
the models on the MPII human pose dataset [1]. Be-
cause this dataset contains over 22k images with pose
annotations for each image, it could alleviate the prob-
lems of overfitting and inaccurate pose estimation.

5. Code Submission

The code for this project was sent as a Google Drive
link in the form provided by Kenji on piazza.
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