
CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 1

Structure from Dense Paired Stereo Reconstruction
Davis Wertheimer, Leah Kim, James Cranston

{daviswer, leahkim, jamesc4}@stanford.edu

Abstract—We approach scene reconstruction in the absence
of explicit point correspondences between camera pairs. Our
model requires known camera parameters and creates rectified
pairs in order to generate dense point cloud reconstructions.
While more straightforward and robust than prior methods, we
discovered fundamental flaws in our algorithm, detailed below,
which prevent the algorithm from obtaining accurate results for
large numbers of images.

Table of Contents:
• Title and authors
• Sec 1. Introduction
• Sec 2-a. Review of previous work
• Sec 2-b. Comparison with our solution
• Sec 3-a. Summary of the technical solution
• Sec 3-b. Technical part
• Sec 4-a. Experiments - Qualitative Results
• Sec 4-b. Experiments - Quantitative Results
• Sec 4-c. Sources of Error
• Sec 5. Conclusions
• References

I. INTRODUCTION

As one of the forefront topics in the field of computer vision,
the scene reconstruction problem has multiple solutions, each
with its own strengths, flaws, and operational constraints.
Many of the solutions require human assistance in the form
of known correspondences, or some sort of silhouette of the
object, which make them prone to human error and perhaps
unrealistically time-intensive for human users.

In this paper, we attempted a new algorithm which would
create richer SFM scene reconstructions without human-
generated point correspondences between the images. Rather
than solving straightforward SFM, where cameras are not
calibrated and point correspondences are available, we decided
to assume that camera intrinsics and extrinsics are known, but
that no point correspondences are available. This allows us
to create a dense reconstruction of the scene without manual
human input. Another way to think of the algorithm is as an
alternative to voxel carving with no need for image silhouettes,
or voxel coloring with fewer operational constraints.

II. PREVIOUS LITERATURE

A. Previous Works

There are some ways to reconstruct 3D objects from sets
of static images without the explicit use of human correspon-
dences, including voxel carving and voxel shading. Instead
of human-generated points, voxel carving utilizes contours
generated from the set of images, possibly without human

input. Similarly, voxel coloring uses the voxel colors as the
criteria of projection. However each method has its own prob-
lems, for instance voxel carving cannot map concavities and
is highly aggressive at removing space, while voxel coloring
has a uniqueness problem.

A paper by Dellaert et al. explores another method to recon-
struct scenes without human correspondences by calculating
the maximum likelihood estimate of the structure and motion.
Instead of directly solving SFM, the researchers construct a
probability distribution for the entire structure and iterate until
they reach convergence.

B. Comparison with our solution

Our solution tries to overcome some of the flaws of previous
methods such as SFM, voxel carving or voxel coloring. By
automating feature comparisons, our solution does rely on
human input, nor does it have a uniqueness issue. Further-
more, our solution is much more straightforward than the one
suggested by Dellaert et al. In general our solution promises
to eliminate human error and time investment in generating
explicit point correspondences, and we hope that our algorithm
will be utilized as a robust substitute to voxel carving or voxel
coloring.

III. TECHNICAL PART

A. Technical Summary

The series of steps in the execution of our algorithm are
given below. First, take pictures of a scene from various
positions and angles, using only a single calibrated camera
at each point. Use k-means clustering to screen out the image
backgrounds, and find close pairs of images using Euclidean
distance between the corresponding camera centers. Then, rec-
tify these pairs to create pseudo-stereo pairs. Generate a point
cloud from each pair using the sliding-window algorithm. For
any camera included in more than one stereo pair, use the
overlapping point correspondences from the stereo pairs shar-
ing that camera to generate point correspondences between the
point clouds of those pairs. With these correspondences, find
the best-fit similarity transformation and apply the similarities
in sequence to map every pair’s point cloud into a single dense
point cloud.

B. Technical Details

1) Use K-means clustering to screen off image backgrounds
We downsample each image by a factor of 10, in

order to achieve feasible run-times for the k-means
clustering algorithm. We cluster color values using 4



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 2

Fig. 1. The minimum spanning tree used to generate point correspondences and clouds. Image labels correspond to the number of each camera in the
bird dataset, and the image displayed is the K-means screened image associated with that camera. Edge labels correspond to the number of the point cloud
generated from the linked images. The direction of the arrow indicates which best-fit similarities are applied to the point cloud associated with each edge,
and in what order. For example, mapping point cloud 12 to point cloud 1 involves mapping 12 to 11, 11 to 4, 4 to 2, and 2 to 1. These node and edge labels
are referenced frequently in subsequent portions of the report. When in doubt, refer to these labels. Edge one has no error because everything else maps to
the first edge.



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 3

centroids and 50 iterations, or until convergence. We
then examine the perimeter of the original, full-size
image, and screen off any pixels in the image which
correspond to a centroid which maps to more than
one eighth of the pixels on the image perimeter. This
screens out the majority of the image background and
decreases noise in subsequent steps of the algorithm.
Screened images are displayed in Fig. 1. We assigned
values of 0 to screened-off regions, and incremented
all other color values by 1, with a maximum of 255,
in order to distinguish black pixels from screened-off
pixels.

2) Construct camera pairs by forming a minimum spanning
tree

Determine which pairs of cameras to use as pseudo-
stereo pairs. In order to extract point correspondences
between every point cloud, we need every pair to have
at least one camera in common with at least one other
pair. This is because the point correspondences between
point clouds associated with camera pairs come from
overlap in the image from the camera shared by the two
pairs. We define the cameras as nodes of a graph, with
edges representing the use of the two linked cameras
as inputs to a stereo pair. The minimum set of edges
required to aggregate all the point clouds then represents
a spanning tree. Because cameras that are closer to
each other rectify with less image distortion, and are
likely to contain the most image overlap, we find the
minimum spanning tree where edge weights correspond
to the Euclidean distance between the camera centers.
Each edge is used to create a pseudo-stereo pair. The
final minimum spanning tree is displayed in Fig. 1.

3) Rectify the images for each pair
As described in Fusiello et al., to rectify two images,

we need to know the intrinsic and extrinsic parameters
of the camera. Since we are given the projection matrix,
we can use QR decomposition to separate the intrinsic
and extrinsic parameters and further extract both the ro-
tation matrix and the translation vector for the rectifying
homography.

With the extracted parameters of each camera matrix,
we rotate the cameras so that their baseline (the new
X axis) is parallel to both image planes and epipolar
lines meet at infinity. There are additional conditions,
such as the new Y axis being upright and orthogonal
to the X axis, and the new Z axis orthogonal to the
XY plane, to ensure that the cameras have the same
orientation. The resulting rectification function returns
transformation matrices for each camera which can be
applied to the corresponding images, and generate new
projection matrices for each rectified camera.

Using this transformation matrix, we generate a
bounding box for the rectified image, and scale that
bounding box to a smaller size. The first image is
scaled to a 200 by 200 pixel square, and the second
image is scaled according to the same proportions. For

each pixel in the smaller image, we then descale it to
find the corresponding point in the full rectified image,
and use the inverse of the rectifying transformation
matrix to map the pixel coordinates in the rectified
image to pixel coordinates in the original image. If the
point lands in a screened-off area, the corresponding
pixel in the scaled rectified image is screened off. If
it doesn’t, then the four nearest pixel values are used
to calculate the color value of the pixel in the scaled
rectified image. We use the weighted average of the
four pixels, with weights equal to the distance from the
pixel coordinate to the mapped point. Applying this
process to every pixel generates a square-pixel, scaled,
rectified image for each camera in the pseudo-stereo
pair.

4) Build a dense point cloud for each rectified pair
We use the sliding-window algorithm for stereo

pairs presented in class to find feature correspondences
between rectified pairs of images. Our algorithm
uses a normalized cross-correlation similarity metric
and aggregates color channels using dual-aggregate
harmonic mean, described in Galar et al. For each
pixel in the first image, we find the corresponding
pixel in the second image such that the similarity for
windows around those points is maximized. We accept
this as a feature if that maximum similarity, which
ranges from 0 to 1, is above 0.5. Because later steps
require a one-to-one mapping of features, we run the
sliding-window algorithm a second time, from image 2
to image 1, and take the intersection of the two feature
correspondence lists (since multiple points in image
1 could maximally correspond to the same point in
image 2). The rectified camera matrices are then used to
convert each point correspondence into a projected point
in the world coordinate system, using the triangulation
method described on page 312 of the Multiple
View Geometry textbook. The resulting point cloud is
known up to scale since the cameras are fully calibrated.

5) For pairs of point clouds with a shared camera, generate
point correspondences

Given two stereo pairs with a common camera, we
can take pairs of points in the resulting point clouds
which correspond to the same location in the shared
camera’s image, and create a point correspondence
from that pair. Each pixel in each of the two rectified
versions of the shared image is mapped onto the
original shared image, and we calculate the distance
pairwise between every point coming from the first
rectified image and every point coming from the second
rectified image. The 20 closest point pairs are used to
find the 20 corresponding pairs of points in the point
clouds of the two stereo pairs being examined, and
these 20 correspondences are used to find the similarity
that maps the second point cloud onto the first, in a
single coordinate space.



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 4

6) Calculate best-fit similarity transformation
We extend the method presented by Besl & McKay

for finding the best-fit isometry between two point
clouds. This method works by calculating the centroids
of the two point clouds, translating the clouds so that
the centroids align, and then using SVD to find the
best-fit rotation. The isometry transformation is then
calculated from the rotation and translation values. Our
method calculates the centroids of the two point clouds,
translates both centroids to the origin, and scales the
individual point values so that the mean distance from
the centroid of each cloud is one. The best-fit rotation
is then calculated using the same method, and the
translation, scale, and rotation transformations are then
applied in sequence to generate the best-fit similarity
matrix. This best-fit similarity sets the centroid location
and mean distance from the centroid to match exactly
between the two point clouds, and subsequently finds
the best-fit similarity under those constraints.

7) Generate aggregate point cloud
Finally, we apply the best-fit similarities in sequence

to the edges of the MST, since each edge corresponds
to a stereo pair and an associated point cloud. Each
point cloud is mapped through successive similarities,
as shown in Fig. 1, until every cloud has been mapped
into the coordinate space of edge #1. This edge was
chosen arbitrarily, since the aggregate cloud resulting
from using any other edge is related to our output by
similarity, and we only know our final result up to
similarity in the first place. The sum of all the adjusted
point clouds forms the final aggregate reconstruction.

IV. EXPERIMENT

We coded our algorithm in matlab and used the bird dataset
from the third class assignment.

A. Qualitative Results

We initially plotted the non-adjusted point clouds but real-
ized that they each have their own orientations and scaling.
We adjusted the point clouds such that they all share the same
pose in the world space, and we can see the results in Fig. 2
and Fig. 3.

As shown in the aggregate point clouds in Fig. 3, the bird
is visible when aggregating the first 3 to 8 point clouds and
afterwards is occluded by noise. Despite suboptimal results,
we would still like to note that our algorithm has been able
to deal with concavities robustly since the first couple point
clouds visibly represent the entire bird, which is only later
occluded by background structure and noise.

B. Quantitative Results

Due to the nature of our algorithms output, it is actually
extremely difficult to quantitatively compare our results with
the ground truth point cloud. First, our algorithm captures ex-
traneous, but still accurate, information about the scene, such

as the floor, visible in many of the individual (though perhaps
not the aggregate) point clouds, and the photography chamber,
as demonstrated in Fig. 2, images 1 and 3 It is unclear how to
compare these extraneous but accurate points against a ground
truth which contains no such corresponding points. It seems
overly harsh to include them in the comparison, but overly
lenient to ignore them.

No matter which option we choose, further problems arise.
The scene reconstruction generated by our algorithm is known
up to similarity, which means that a direct point-to-point
comparison with the ground truth is impossible without a
best-fit similarity to map one onto the other. Additionally,
since knowing up to similarity includes knowing up to scale,
it is impossible to determine what degree of accuracy weve
achieved in terms of real physical distances, without a best-
fit similarity between the two point clouds. However, any
error from the best-fit similarity would itself alter the accuracy
calculation, and it would likely depend on human-generated
point correspondences between our point cloud and the ground
truth. It is difficult to determine, however, exactly which points
correspond, looking at the point clouds alone.

An alternative is to take the aggregate scene reconstruction,
use the best-fit similarities to map the entire point cloud into
the coordinate systems of each stereo pair, and to determine the
mean re-projection error for each rectified image in each stereo
pair. However, this is an intrinsic error metric, as opposed to
an extrinsic measure that compares our results to the ground
truth, which is what we desire.

A final possibility is to use estimated surface normals
to describe the point cloud contours invariant to scale, but
again, doing a point-to-point, or in this case, normal-to-normal
comparison would still require a best-fit similarity transfor-
mation between our output and the ground truth. We could
instead examine the global distributions of normal orientations
between the two point clouds, in a manner invariant to rotation,
but rather than attempt to develop and implement any of
the quantitative metrics proposed here, we assume that the
qualitative results demonstrate sufficiently that the resulting
aggregate point cloud is not highly accurate, especially for
increasingly large numbers of images, and instead present
an argument for and analysis of what we believe to be the
fundamental flaws in our proposed algorithm which cause this
to be the case.

C. Sources of Error

While our algorithm appeared at first to be a straightforward
and relatively simple method for generating dense point cloud
scene reconstructions without human-generated input, we dis-
covered over the course of testing and implementation that it
has fundamental flaws which must be addressed before unsu-
pervised dense scene reconstruction can take place. Smaller
issues include the lack of subtractive mechanisms to eliminate
noise in the point cloud, and the failure of the sliding-window
algorithm to find reliable point correspondences on smooth
surfaces, but the main issue is that the way our algorithm is
set up to process data causes errors to compound repeatedly
over multiple steps.



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 5

Fig. 2. Adjusted point clouds associated with each camera pair. Plots are arranged in row-major order, with titles corresponding to the labels in Fig. 1 of
the images used to generate each cloud. Each cloud is adjusted to reflect the bird in the same orientation, with head to the left and tail to the right. The
unadjusted point clouds outline the bird much more reliably, but with different orientations, making them much more accurate but unsuitable for viewing.
Fewer transformations are applied to the earlier images, which is why the earlier images largely outline the bird while the later images do not.

Fig. 3. Aggregate point clouds generated by our algorithm. Each image consists of all the images preceding it in Fig. 2. For example, point cloud 3 contains
the first, second, and third clouds from Fig. 2, while point cloud 10 contains all the points from clouds 1-10. Note that the bird is relatively visible with 3 to
8 point clouds aggregated, but that aggregating more point clouds buries the desired model in noise.



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 6

There are four points in our algorithms execution which
can produce error: the creation of scaled, rectified images,
the sliding-window algorithm, the calculation of best-fit simi-
larities, and the application of those similarities. Because the
second step operates pairwise on rectified images, the third
step operates pairwise on stereo pairs, and the fourth pair
operates on up to ten similarities, any error from the first
step compounds in the second step, this error plus any error
produced by the sliding-window algorithm compounds in the
third step, and all of these errors compound in the fourth.
The precise errors generated at each step are to some degree
inherent to those algorithmic processes, so we believe that
these compounding errors represent a fundamental flaw in our
algorithm.

The first source of error, creating the rectified images,
consists of two basic steps, each of which is responsible for in-
accuracies in different ways. Fusiello et al.s image rectification
method generates a perfectly accurate pixel-location-to-pixel-
location homography, but creating the actual rectified image
involves both scaling the output to an approximate 200x200
pixel square, and then finding the color value of every pixel
in that square. Scaling the output to a small square results
in reasonable and predictable run-times, but also significant
down-sampling and some horizontal distortion. Finding the
color value of each pixel involves mapping that pixel back
onto the non-rectified image. Because this mapping is non-
linear, certain parts of the image are sampled for color values
more frequently than others. In most cases, any inaccuracy
resulting from these sources of error would not be particularly
concerning, but in our algorithm, these normally insignificant
errors are compounded over multiple steps.

The second source of error is the sliding window algorithm,
which takes two square-pixel rectified images and returns lists
of point correspondences. Even under optimal conditions this
algorithm can produce false matches. We attempt to reduce
noisy matches by taking a match between two pixels only if
the first is the best match in its row for the second, and the
second is the best match in its row for the first. Nevertheless,
the output will contain some noise, and additionally, accurate
matches can only be generated to the extent that the two rec-
tified images accurately represent their non-rectified images.
Thus any error in either of the two inputs images will result
in inaccuracies in the sliding-window output. Errors from the
previous step compound in this step.

The third source of error is the method we use to sample
point correspondences between stereo pairs with a shared
camera, which are then used to calculate the best-fit similarity
mapping between those pairs. Our method consists of taking
the two rectified images from the shared camera, and mapping
the correspondence points from each back into the original
image. The 20 closest point pairs are then selected, since they
correspond to very close points in the original image. We see
from Fig. 4 that the mean distance of these corresponding
point pairs is very small, considering the large resolution of
the image. Thus, this does not represent a significant source
of error. However, we have no guarantee that these points rep-
resent accurate sliding-window correspondences, just because
they are close in the original image. If either of these points

Fig. 4. The mean distance between point correspondences used to generate
best-fit similarities between point clouds. These points are mapped onto the
image from the shared camera, and the 20 closest point pairs are selected.
The distance given here is measured in terms of pixels in the shared image.
The three numbers in each label correspond to the three cameras that define
the pair of stereo pairs, with the shared camera in the middle.

represent a false or inaccurate match from the sliding-window
algorithm, then this point correspondence between stereo pairs
is a bad correspondence to calculate the best-fit similarity off
of, no matter how close the points may be in the shared image.
We need both points to come from good matches in order
to get a good correspondence, so inaccuracies from steps one
and two compound during step three. If the proportion of good
matches for the sliding window algorithm is a fraction X , then
the proportion of good matches for the similarity calculation
is only X2.

Because of the way points are triangulated, bad sliding
window matches lead to points that are, on average, far from
the camera centers, since there is a finite distance between the
true location and the camera centers, but an infinite distance
between the true location and the horizon. Thus, bad matches
not only generate noise, but also have a disproportionate
degree of influence on the calculated similarity, since these
outliers cause large shifts in centroid locations and scale.
This could possibly explain why the later point clouds are
progressively scaled down throughout repeated applications of
best-fit similarities, as demonstrated in Fig. 2. The later images
screen off less of the background than the early ones, leading
to increased variation in the location of bad sliding-window
matches. This shrinks the point clouds based on later images
to match the small mean-distance-from-centroid quantities of
the earlier images.

The fourth source of error is the fact that mapping point
clouds together from opposite ends of the minimum span-
ning tree requires applying up to ten best-fit similarities
in sequence. Any error present in these similarities is then
compounded with the degree of error present in all the others.
This also helps to explain why the early point clouds in Fig.
3 outline the bird, while adding the later point clouds causes
it to disappear, since the later clouds have been subjected to
increasingly large numbers of inaccurate best-fit similarities.

We believe that this high degree of compounding noise
explains the failure of our point clouds to aggregate into
an accurate scene reconstruction. Through repeated pairwise



CS231A FINAL REPORT, JUNE 2016, STANFORD UNIVERSITY 7

operations, which depend on accurate inputs to achieve accu-
rate outputs, the overall accuracy rate of our reconstruction
decreases asymptotically to zero with every step. In order to
construct an accurate, dense point cloud reconstruction without
human input, either the pairwise approach will have to be
abandoned, or the component steps will have to reach a high,
perhaps unrealistically high, degree of accuracy.

V. CONCLUSIONS

The code we have written is located here:

https://github.com/jamespcranston/cs231a-group-project.git

Due to compounding error from different stereo pairs,
the results ended up more inaccurate than we expected.
However, our experiment does show that it is feasible to
perform dense scene reconstruction without explicit, human-
generated point correspondences. Furthermore, a refined, non-
recursively-pairwise version of our algorithm, if feasible, could
aid for better voxel carving, since the color and space infor-
mation, including concavities, is all preserved in our aggregate
output.

REFERENCES

[1] Andrea Fusiello, Emanuele Trucco, Alessandro Verri, A Compact Algo-
rithm For Rectification of Stereo Pairs, 2000

[2] Mikel Galar, Aranzazu Jurio, Carlos Lopez-Molina, Daniel Paternain,
Jose Sanz, and Humberto Bustince, Aggregation functions to combine
RGB color channels in stereo matching, 2013

[3] Frank Dellaert, Steven M. Seitz, Charles E. Thorpe, Sebastian Thrun,
Structure from Motion without Correspondence, 2000

[4] Paul J. Besl, Member, IEEE, Neil D. McKay, A Method for Registration
of 3-D Shapes, 1992


