
Measuring Heart Rate from Video

Isabel Bush
Stanford Computer Science

353 Serra Mall, Stanford, CA 94305
ibush@stanford.edu

Abstract

A non-contact means of measuring heart rate could be
beneficial for sensitive populations, and the ability to cal-
culate pulse using a simple webcam or phone camera could
be useful in telemedicine. Previous studies have shown that
heart rate may be measured in color video of a person’s
face. This paper discusses the reimplementation of one
such approach that uses independent component analysis
on mean pixel color values within a region of interest (ROI)
about the face. We explore the idea further by assessing
the algorithm’s robustness to subject movement and bound-
ing box noise and examine new means of choosing the ROI,
including segmentation of facial pixels through a reimple-
mentation of GrabCut. Heart rate was measured with an
error of 3.4 ± 0.6 bpm in still video and 2.0 ± 1.6 bpm
in video with movement. Facial segmentation improved the
robustness of the algorithm to bounding box noise.

1. Introduction
A person’s heart rate can be indicative of their health, fit-

ness, activity level, stress, and much more. Cardiac pulse is
typically measured in clinical settings using electrocardio-
gram (ECG), which requires patients to wear chest straps
with adhesive gel patches that can be abrasive and become
uncomfortable for the user. Heart rate may also be moni-
tored using pulse oximetry sensors that may be worn on the
fingertip or earlobe. These sensors are not convenient for
long-term wear and the pressure can become uncomfortable
over time.

In addition to the discomforts of traditional pulse mea-
surement devices, these devices can damage the fragile skin
of premature newborns or elderly people. For these popu-
lations especially, a non-contact means of detecting pulse
could be very beneficial. Non-contact heart rate measure-
ment through a simple webcam or phone camera would also
aid telemedicine and allow the average person to track their
heart rate without purchasing special equipment. As part of
the recent gain in popularity of fitness apps and the quanti-

fied self, regular non-obtrusive monitoring through a com-
puter or phone camera may help detect changes in a per-
son’s heart rate over time and indicate changing health or
fitness.

Heart rate can be detected without contact through
photo-plethysmograpy (PPG), which measures variations
in blood volume by detecting changes in light reflectance
or transmission throughout the cardiovascular pulse cycle.
PPG is usually performed with dedicated light sources with
red or infrared wavelengths, as is the case for pulse oxime-
try sensors.

Verkruysse et al. showed that the plethysmographic sig-
nal could also be detected in video from a regular color
camera [10]. They found that the signal could be detected
within the red, green, and blue channels of color video of
exposed skin, but that it was strongest in the green channel,
which corresponds to the fact that hemoglobin has absorp-
tion peaks for green and yellow light wavelengths. They
also found that although the signal could be detected in mul-
tiple locations on the body, it was strongest on the face, es-
pecially on the forehead.

Although the plethysmographic signal may be detected
in the raw color channel data, it is mixed in with other
sources of color variation such as changes in ambient light
or motion. Poh et al. found that the signal could be better
extracted by using independent component analysis (ICA)
to separate independent source signals from the mixed color
signals [8].

Other studies have shown that color changes in the face
due to pulse may be magnified by amplifying small changes
between video frames [12], and that heart rate can be de-
tected through vertical head motion in addition to color
changes [1]. Although these are interesting new develop-
ments in this space, they are less practical for daily or med-
ical use as the former is more for visualization than quan-
tification, and the latter requires the subject to remain very
still for accurate measurements.

In this paper, we explore an approach for heart rate de-
tection using RGB color changes in video of faces similar
to that done by Poh et al. [8]. In addition to implement-

1



Figure 1. Example Haar-like features used in the boosted cascade
face classifier from the original paper by Viola and Jones [11].
Each feature is calculated as the sum of pixels in the grey rectan-
gles less the sum of pixels in the white rectangles.

ing all of the heart rate detection steps from that paper, we
also explore improving the selection of pixels used to cal-
culate heart rate including segmenting out the facial pixels
through a reimplementation of GrabCut. We examine how
these variations on the algorithm compare for still videos as
well as when there is movement or noise in the videos.

The rest of this paper details the process used to measure
heart rate from video of a person’s face. Section 2 details
the technical approach, section 3 discusses the experimental
setup, section 4 reveals the results, and section 5 offers some
conclusions.

2. Technical Approach
Detecting heart rate in video consists of three main steps,

which are detailed in the following sections. First, the facial
region must be detected in each frame of the video since the
face is the only portion of the frame that will contain heart
rate information (section 2.1). Second, the desired region
of interest (ROI) within the face bounding box must be cho-
sen (section 2.2). And third, the plethysmographic signal
must be extracted from the change in pixel colors within
the ROI over time and analyzed to determine the prominent
frequency within the heart rate range (section 2.3).

2.1. Face Detection and Tracking

Face detection and tracking is performed using Haar
cascade classifiers as proposed by Viola and Jones [11]
and improved by Lienhart et al. [6]. Specifically, we use
the OpenCV Cascade Classifier pre-trained on positive and
negative frontal face images [5]. The face detector is
built from a cascade of classifiers of increasing complexity,
where each classifier uses one or more Haar-like features.

The features consist of two, three, or four rectangular
pixels as shown in figure 1. Each feature is calculated as the
sum of pixels in the grey rectangles less the sum of pixels
in the white rectangles. These features are able to detect
simple vertical, horizontal, and diagonal edges and blobs.

Since there are over 180,000 potential features in each
sub-window, only a small subset of these features are actu-
ally used. The AdaBoost learning algorithm is used to train
classifiers built on one to a few hundred features. To choose
which feature(s) to use, a weak classifier is trained on each

feature individually and the classification error is evaluated.
The classifier (and associated feature) with the lowest error
is chosen for that round, the weights are updated, and the
process is repeated until the desired number of features are
chosen. This process creates a single strong classifier that
is a weighted combination of numerous weak classifiers.

The strong classifiers are then used in series in the atten-
tional cascade, which is essentially a decision tree for each
sub-window within the image. The cascade begins with a
simple classifier (built on a single feature) with a low thresh-
old such that it is designed to have a very low false negative
rate (with high false positive rate). If this classifier yields
a positive result on a window, that window passes to the
next classifier. If the classifier yields a negative result, the
sub-window is rejected. Each round of the cascade uses a
more complicated classifier built on more and more features
since it must differentiate sub-windows that all passed the
previous round. But since there are fewer windows in each
round, the processing time is less than if the complicated
classifiers were used on all windows in the image.

To achieve invariance with respect to lighting and scale,
sub-windows are normalized and the final detector is slid
over the image at varying window sizes. Any overlapping
positive-classification windows are averaged to create a sin-
gle facial bounding box.

This face detection algorithm is applied to each frame
in the video and outputs a bounding box for each face it
detects. To maintain consistency across frames, if no face
is detected in a frame, the face from the previous frame is
used, and if multiple faces are detected, the face nearest to
that in the previous frame is used.

2.2. Region of Interest Selection

Since the face bounding box found using face detection
contains background pixels in addition to the facial pix-
els, an ROI must be chosen from within the bounding box.
The simplest choice of ROI is to use the center 60% of the
bounding box width and the full height, as was done by
Poh et al. [8]. Since the bounding box is usually within the
face region height-wise but outside the face width-wise, this
method simply adjusts the box to exclude background pix-
els to the sides of the face. With this method, some hair or
background pixels are usually still present at the corners of
the box.

We also explore other means of selecting the ROI. We
examine the effects of removing the eye region, which con-
tains non-skin pixels that may vary across frames due to
blinking or eye movement. Removing pixels from between
25% and 50% of the bounding box height worked well to
remove the eyes. We also explore retaining only the pixels
above the eye region, since Verkruysse et al. found the fore-
head has the strongest plethysmographic signal. Finally,
we explore segmenting out the facial pixels from the back-

2



ground pixels.
Facial segmentation is performed using GrabCut, devel-

oped by Rother et al. [9]. GrabCut segments images by
iteratively minimizing an energy cost function. This energy
minimization can be achieved by defining a graph model to
represent the image and determining the minimum cut for
the graph to yield two sets of nodes, which represent the
foreground and background pixels of the image. Although
an implementation of GrabCut is available in the OpenCV
library [5], the algorithm was also reimplemented as part of
this project to better understand how it works.

The graph model is formed by assigning a node for each
pixel in the image. Edges are formed between neighboring
image pixels, with weights defined by the color similarity
between the two pixels. More similar pixels have higher
edge weights to encourage them to end up in the same set
after the graph cut. Each pixel has eight neighbors, and the
edge weights between them are calculated as

WN (p, q) =
γ

dist(p, q)
∗ e−β||zp−zq||

2

where zp is the color of pixel p, dist(p, q) is the pixel dis-
tance between p and q, and the constants are set to γ = 50
and

β =
1

2〈||zp − zq||2〉

following Boykov and Jolly [3].
Two more nodes are added to the graph and connected

to all other nodes. These nodes represent the foreground
and background portions of the image and will be placed
in opposite sets by the min-cut algorithm. The weights of
the terminal edges between a pixel and the foreground and
background nodes represent the probability that the pixel
belongs to each set. These probabilities are determined us-
ing Gaussian Mixture Models (GMMs) for the foreground
and background pixel color distributions.

The foreground set is initialized to contain all pixels in-
side the bounding box and the background set is initialized
to contain all pixels outside the bounding box. Pixels out-
side the box are assumed to be certainly background pixels,
while pixels within the bounding box are potentially fore-
ground or background. In each iteration of GrabCut, GMMs
are formed for both the foreground and background sets and
pixels in those sets are assigned to one of theK GMM clus-
ters. The GMMs were determined using the scikit-learn li-
brary [7].

The terminal weights for all uncertain pixels p are then
calculated as

WT (p) = −log
K∑
i=1

πi
1√

det(Σi)
e(− 1

2 [zp−µi]
T Σ−

i 1[zp−µi])

where the summation is over the K GMM clusters in either
the foreground or the background GMM, µi and Σi are the
mean and covariance of the ith cluster, and πi is the frac-
tion of the model’s pixels assigned to the cluster. The fore-
ground GMM is used to calculate the edge weights to the
background terminal node, and vice versa. For any certain
background pixels p (outside the original bounding box),
we set WT (p) = 0 for the edge to the foreground node
and WT (p) = 8γ + 1 for the edge to the background node,
which ensures these pixels are assigned to the background
set by the min-cut algorithm.

Once all edge weights are defined, a minimum s-t cut
may be made between the terminal nodes to define the new
background and foreground sets for that iteration. The min-
imum graph cut was found using the PyMaxflow Python
library built on top of Vladimir Kolmogorov’s C++ Graph-
Cut implementation [4].

Since GrabCut assumes that the pixels outside of the
bounding box are certainly background pixels and pixels
within the bounding box are potentially foreground or back-
ground pixels, we must modify the bounding box found in
face detection. To ensure the bounding box includes all face
pixels but excludes some hair pixels (so that hair will be
considered as background), a bounding box that was 80% of
the original box width and 120% of the original box height
worked well as input to GrabCut.

2.3. Heart Rate Detection

Once we have an ROI for each frame, we can begin to
extract the heart rate from the color image data. The first
step is to average the pixels in the ROI across each color
channel to get three signals xR(t), xG(t), and xB(t) corre-
sponding to the average red, green, and blue facial pixels at
time t. We then normalize these signals across a 30-second
sliding window with a 1-second stride (so the heart rate is
re-estimated every second).

We then use ICA to extract the independent source sig-
nals from the observed mixed color signals. ICA assumes
that the number of source signals is no more than the num-
ber of observed signals, so we assume there are three source
signals s1(t), s2(t), and s3(t) contributing to the observed
color changes in the three channels. ICA assumes the
observed mixed signals are a linear combination of these
source signals. Although this assumption may not be valid
as changes in blood volume and the intensity of reflected
light in skin tissue over distance may be nonlinear, for the
30-second time window it should be a reasonable approx-
imation. With this linear approximation for signal mixing,
we have

x(t) = As(t)

s(t) = A−1x(t)

where x(t) = [xR(t) xG(t) xB(t)]T , s(t) =
[s1(t) s2(t) s3(t)]T , and A is a 3x3 matrix of coefficients.

3



Figure 2. Experimental setup. One-minute videos of a subject’s
face were captured with a Samsung camera, and a reference PPG
signal was recorded using the Easy Pulse fingertip PPG sensor and
an Arduino Uno.

Then ICA attempts to find an approximation of A−1 that
maximizes the non-Gaussianity of each source. We can use
FastICA from the scikit-learn library to recover the approx-
imate source signals s(t) [7].

Once we have the source signals, we can apply a Fourier
transform to the data to examine their power spectrum and
determine the prominent signal frequencies. We can iso-
late frequency peaks in the power spectrum within the range
0.75 to 4 Hz, which corresponds to physiological heart rate
ranges of 45 to 240 bpm. The measured heart rate will be
the frequency within the acceptable range corresponding to
the peak with the highest magnitude.

3. Experimental Setup

One-minute videos were collected of 10 subjects with
varying skin-tones and in varying lighting conditions, in-
cluding both natural and artificial light. Videos were taken
with a Samsung SGH-i437 phone front-facing camera and
saved in mp4 format. Video frames had a resolution of 480
x 640 pixels and were captured at 14.99 fps. At least two
videos of each subject were taken, one with the subject re-
maining as still as possible and one in which the subject
moved slightly (tilting, turning, and shifting their facial po-
sition within the frame).

The recording setup is shown in figure 2. During
video recording, subjects wore a finger PPG sensor so that
the heart rate results from the video could be compared
to a ground truth. The PPG sensor used was an Easy
Pulse hobbyist sensor from Embedded Lab [2]. It uses an
HRM-2511E sensor to measure infrared light transmission
through the fingertip and output the analog PPG signal. This
signal was fed into the analog-to-digital convertor on the
Arduino Uno micro-controller and sampled at 200 Hz. The
sampled signal was then processed in the same manner as

Figure 3. A facial bounding box.

the ICA source signals from the video heart rate detection
approach. The highest peak within the power spectrum of
the signal was taken to be the reference heart rate for each
30-second window.

In addition to determining the robustness of the algo-
rithm to subject movement, we also examine the robustness
to bounding-box noise. Although the bounding box was
usually well centered on the face in each frame, we could
imagine that in a noisier environment in which there is more
movement of either the camera or subject, poorer lighting,
facial occlusions, or more background clutter, there could
be more error in the location of the facial bounding box. To
simulate this, we can add artificial noise to the bounding
box corner locations found with the Haar cascade classifier.
In each frame, corners of the bounding box were shifted
horizontally and vertically by percentages of the width and
height, where the percentages were chosen uniformly at
random up to a maximum noise percentage. This maximum
noise percentage varied from 0 to 50% of the bounding box
size.

4. Results
The sections below detail the experimental results. Sec-

tion 4.1 shows some qualitative results from each step of
the algorithm. Section 4.2 shows the algorithm accuracy as
compared to the reference signal for video of both still and
moving subjects. Section 4.3 discusses the heart rate accu-
racy when varying amounts of noise is added to the facial
bounding box.

4.1. Algorithm Step Results

Once the facial bounding box(es) found using the Haar
cascade classifiers were narrowed down to a single bound-
ing box on the subject’s face, the box accurately located the

4



Figure 4. Various ROIs used to calculate heart rate including a
narrower bounding box, a box with the eyes removed, the forehead
region, and segmented facial pixels.

face in nearly all video frames, as in figure 3.
Results of various ROI selection options, including a nar-

rower box, a box with the eyes removed, a box around the
forehead, or a segmented face, may be seen in figure 4.
The simplest ROI, namely the narrower bounding box that
was used by Poh et al., usually contained mostly skin pixels
for frontal images, although there was also sometimes hair
or background appearing at the corners. When the subject
tilted or turned their head, more background pixels become
part of the ROI, as shown in figure 6.

Figure 5 shows the original bounding box, adjusted
bounding box, and segmentation results for a straight face
using the reimplementation of GrabCut. As can be seen,
the segmentation excludes most hair and background pix-
els within a couple iterations. This seems especially useful
when the subject twists or turns as in figure 6 as it removes
the variability in background pixels that was present using
the simple narrow bounding box ROI.

The next step of the algorithm is to find the heart rate
from the selected ROI pixels. As described in the technical
approach, this process includes finding the mean RGB pixel
values within the ROI for each frame and then normaliz-
ing across a 30-second window, ICA to extract independent
source signals, and power spectrum analysis to determine
the prominent frequencies.

Figure 7 shows the normalized mean pixel intensity for
the three color channels as well as the three source signals
found through ICA for a 10-second portion of a window.

Figure 5. The original bounding box in red and adjusted bound-
ing box that was input into the GrabCut segmentation algorithm in
blue (top) as well as the first two iterations of the GrabCut imple-
mentation (bottom).

Figure 6. Comparison of ROI selection for tilted and turned faces
using a narrower bounding box (left) versus facial segmentation
(right). The segmentation does a better job of eliminating the back-
ground pixels.

Figure 8 shows the power spectra for the three source sig-
nals within the physiological heart rate range. The strongest
frequency in this range corresponds to the heart rate reading
for this time-step.

5



Figure 7. Example mean RGB color channel pixel values within
the ROI (top) and associated source signals found through ICA
(bottom). The source signal shown in green appears to oscillate at
approximately 1 Hz and corresponds to the subject’s pulse.

4.2. Heart Rate Accuracy

For videos of still faces, the calculated heart rate error
was 3.4 ± 0.6 bpm. For videos of subjects tilting, turning,
and shifting their faces, the calculated heart rate error was
2.0 ± 1.6 bpm. These errors were calculated using only in-
lier measurements, which were defined to be measurements
within 10% of the reference heart rate. Any outliers indicate
that the algorithm most likely failed to pick up the pulse as
one of the ICA source signals and thus chose some other
signal as the dominate frequency. These outlier measure-
ments may be any random frequency within the allowable
range and thus including them in the mean and standard de-
viation calculations does not indicate how closely the algo-
rithm matches the reference heart rate. Using only inlier
measurements, the errors were consistent for all ROI selec-
tion methods, as seen in figure 9.

Figure 8. Example power spectra for three source signals over the
physiological heart-rate range. The prominent frequency (0.97 Hz)
corresponds to the heart-rate measurement of 58 bpm for this time-
step.

Figure 9. Heart rate error for videos of still faces and videos with
movement, calculated using inlier measurements (within 10% of
the reference measurement) for each of the four ROI choices.

The number or percentage of outlier measurements,
however, does provide a good indicator of the robustness
of the algorithm as any outlier indicates a failure of the al-
gorithm to find the heart rate in that window. For each one-
minute video, 30 heart rate measurements were calculated
(30-second windows with a 1-sec stride). The percentage
of these 30 measurements that were outliers may be seen in
figure 10. Approximately 4% of measurements are outliers
for videos of still faces and 17% are outliers for videos with
movement. The simple narrower bounding box ROI, a box
with the eyes removed, and a segmented ROI all perform
about equally, whereas we see that just using the forehead
increases the number of outliers. This is likely because if

6



Figure 10. Percentage of heart rate measurements that are outliers
for videos of still faces and videos with movement, calculated us-
ing each of the four ROI choices. More outliers are seen for videos
with movement and when only the forehead region is used as the
ROI.

Figure 11. Percentage of measurements that are outliers as a func-
tion of the maximum bounding box noise introduced in each frame
(as a percentage of the true bounding box size) for a video of a
still face. As expected, the number of outliers increases with the
amount of noise, but a segmented ROI is more robust to handling
this noise than a narrow box ROI.

only the forehead region is used, there are fewer facial pix-
els to diminish the effects of any hair pixels that may be
included in the ROI.

4.3. Robustness to Noise

We can also measure robustness of the algorithm to
bounding box noise by artificially introducing random noise
of varying magnitude to the facial bounding box found in
the first step of the algorithm. Figure 11 shows the percent-
age of measurements that were outliers as a function of the
maximum magnitude of introduced noise. As can be seen,
using a segmented ROI rather than simply the narrower box

helps to mitigate the effects of increasing bounding box
noise. A narrow box ROI has over 50% outliers with less
than 20% bounding box noise, while the segmented ROI is
still near zero outliers at 20% and does not climb above 50%
outliers until near 40% bounding box noise.

5. Conclusion
We have seen that heart rate may be measured in regu-

lar color video of a person’s face. We observed heart rate
errors of 3.4 ± 0.6 bpm for videos of still faces and 2.0 ±
1.6 bpm for videos with movement. Since the calculated
heart rate was consistently lower than the reference in all
videos and with small standard deviation, it is possible that
the base error is due to a miscalculation in video frame rate
or finger pulse sensor sample rate. If the Samsung cam-
era had a frame rate that was 5% higher than the reported
frame rate, or if the Arduino sample rate was actually 5%
lower than desired, or if there were a smaller error in both
rates, this would account for the observed heart rate calcula-
tion errors. Future studies could use a medical-grade pulse
monitor to ensure that the reference heart rate is as accurate
as possible. If it is determined that there is truly always a
consistent offset between the reference and the calculated
heart rate as observed in this study, a calibration step could
be used to remove the bias. Such a system could potentially
measure heart rate in still video to within 0.6 bpm.

Although sample rate errors could cause a consistent bias
in heart rate measurements, the standard deviation and per-
centage of outlier measurements provide a better indication
of the robustness of the algorithm to changes in the video.
We observed under 5% outlier measurements for still faces
and under 20% for videos of moving faces. Since these
are both well under 50%, outliers could be easily identified
and removed from heart rate calculations even if there were
no reference heart rate to use as a basis. We also found
that as bounding box noise increased, choosing an ROI by
segmenting out facial pixels helped to diminish the noise
effects and keep the outliers low.

Overall we find that for clean videos of subjects’ faces
in good lighting, using a simple ROI defined by 60% of the
width and the full height of the facial bounding box works
just as well as removing the eye region or segmenting out
facial pixels, and outperforms a box only around the fore-
head region. Since this simple box ROI is much faster than
performing GrabCut to segment out the facial pixels (more
than 12 times as fast), the simple box would be the sug-
gested method for such videos.

However, if the bounding box is expected to be noisy,
segmentation is a good method to remove some of this noise
and maintain accurate measurements. Future studies could
involve taking video in low-light and with a cluttered back-
ground or with occlusions or multiple subjects in the frame
to quantify how much bounding box noise is realistically

7



present in such situations. This could help to determine if
segmentation is necessary.

Another future study could attempt to do video heart
rate calculations in real-time rather than with pre-recorded
videos. Currently, using a simple box ROI, a one-minute
video may be processed on a MacBook Pro (2.6 GHz) in
under two minutes, processing about 8 fps. This may in
fact already be fast enough for real-time if a camera with a
frame rate under 8 fps were used to record the videos. Since
the maximum physiological heart rate expected by the algo-
rithm is 4 Hz, the sample rate would be just enough to avoid
aliasing at 8 fps (8 Hz is the Nyquist frequency). Since 4 Hz
is a highly unlikely heart rate especially for a person at rest,
the frame rate could likely be decreased even further and the
algorithm max heart rate adjusted accordingly. If segmenta-
tion is required (for example if there is significant bounding
box noise), other adjustments would be required to speed
up the algorithm processing time.

Source code for implementations of the algorithms dis-
cussed in this paper may be found at https://github.
com/ibush/231A_Project.

References
[1] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse

from head motions in video. CVPR, 2013.
[2] R. Bhatt. Embedded lab.
[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in n-d images.
International Conference on Computer Vision, 2001.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Transactions of PAMI, 26(9):1124–1137, 2004.

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[6] R. Leinhart, A. Kuranov, and V. Pisarevsky. Empirical ana-
lyis of detection cascades of boosted classifiers for rapid ob-
ject detection. MRL Technical Report, 2002.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[8] M.-Z. Poh, D. McDuff, and R. Picard. Non-contact, auto-
mated cardiac pulse measurements using video imaging and
blind source separation. Optical Society of America, 2010.

[9] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut” – inter-
active foreground extraction using iterated graph cuts. SIG-
GRAPH, 2004.

[10] W. Verkruysse, L. Svaasand, and J. S. Nelson. Remote
plethysmographic imaging using ambient light. Opt Express,
2008.

[11] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. Accepted Conference on Com-
puter Vision and Pattern Recognition, 2001.

[12] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and
W. Freeman. Eulerian video magnification for revealing sub-
tle changes in the world. SIGGRAPH, 2012.

8

https://github.com/ibush/231A_Project
https://github.com/ibush/231A_Project

