
A Fast, Intuitive and Accurate Correspondence Method

Jan Dlabal
Stanford University

California
dlabal@alumni.stanford.edu

Abstract

The correspondence problem is an important one in com-
puter vision, because it lets you extract depth information
from two images taken from slightly different viewpoints,
much like how the human brain figures out depth informa-
tion given the input from our two eyes. There are many
methods to solve this problem, such as normalized cross
correlation, which starts with two rectified images, and
scans across the corresponding line in the second image
and roughly speaking picks the most similar pixel (in terms
of its value and the value of the pixels around it) as the
correspondence for a given input pixel. This method works
well on images with lots of diverse pixels but is notoriously
error-prone on images that have continuous similar or re-
peating regions, which is a huge fraction of real world im-
ages. Therefore, while the NCC method is very intuitive
and easy to implement, it is lacking in accuracy. It also re-
quires to score each pixel against the full line in the second
image, which is quite slow. In my project I show that we
can do much better in terms of accuracy and speed, without
sacrificing the intuitiveness of cross correlation. The novel
method I present uses normalized cross correlation metrics
as a way to score correspondences, but it doesn’t neces-
sarily always pick the local maximum. My method thus
significantly improves on the results of NCC by incorpo-
rating non-local constraints that preserve logical ordering
between two correspondences, while also improving run-
time from the very slow O(n3) by doing some divide and
conquer.

1. Introduction
The correspondence problem is an important problem

in computer vision. It is basically the problem that our
brain has to solve when it gets the input from our two eyes
and figures out 3D depth information that lets us interact
with the world around us. Naturally, computers need to
do something similar to be able to really understand what
they’re seeing. There are of course different solutions to

understanding depth such as lasers/radars, however such
solutions are usually expensive and not always practical.
Solving the correspondence problem essentially gives you
depth information from just two normal cameras, which are
nowadays extremely cheap and easy to use in almost any
application.
In class, we’ve seen a few ways of solving this problem,
but none of them took into account non-local information,
and thus many of them are prone to getting stuck in very
contrived solutions that a human would immediately see as
errors.
In this project, I try to come up with a novel algorithm that
does incorporate some non-local information so that the
results obtained make sense, while also steering clear of
using an overly complicated solution for this problem that
has such a nice intuitive interpretation.

2. Problem Statement

2.1. General problem

The correspondence problem in itself is straightforward
to state. We start with two rectified images of the same
scene, from slightly different viewpoints. An example
of such two images follows. Note that the image on the
right is taken from a viewpoint slightly to the right of the
original one as the gray container now almost touches the
left side of the frame while in the original picture there is a
noticeable border.

I obtained a dataset of such images from the Middle-
bury vision group web site, as cited later.

1



2.2. Dictionary result representation

Now, given a pair of such images, the problem is to
match each pixel coordinate in the first image with a pixel
coordinate in the second image, where a ”match” is defined
as the location of the same physical point in the second im-
age. So, for example, the pixel corresponding to the up-
per left corner of the letter R in the first image should be
matched with the same upper left corner of the letter R in
the second image.
Given this definition, a correspondence method takes in a
pair of images and produces a dictionary as its result, where
the dictionary’s keys are the pixel coordinates in image 1,
and the dictionary’s values are the pixel coordinates in im-
age 2. This is done for every pixel in the first image. Note
that some pixels of the first image may not match to any-
thing, such as the leftmost columns of the first image in the
above example, since they simply do not appear in the sec-
ond image. Similarly, not all pixels in the second image
might not be matched for the same reason.
Our goal is thus to come up with an intuitive, fast and accu-
rate method to construct this mapping dictionary.

3. Algorithm description

3.1. Overview

In broad strokes, our algorithm starts by getting the pair
of images to compute correspondences on. It then picks
NUM CORRESPONDENCES initial points to compute corre-
spondences for, where NUM CORRESPONDENCES is a pa-
rameter of the algorithm (see discussion in last algorithm
section for more details on parameter settings). It then uni-
formly distributes the desired number of correspondences
throughout the initial correspondence image (essentially,
a grid with NUM CORRESPONDENCES points is created).
The algorithm then computes the correspondences for these
grid points as best as it can, using NCC as its basis but also
using non-local constraints as described in the next section.
Finally, based on the correspondences, the algorithm splits
up the original images and recursively calls itself on the split
up parts of the original images, reconstructing the full cor-
respondence result along the way.

3.2. Convex optimization formulation

This is the core of the algorithm. As described in the
overview, the goal of this step is to compute the best
possible correspondence result for a given subset of pixel
locations distributed on a grid in the first image. An
example of the grid distribution of points to compute
correspondences for is given below:

Note that intuitively, there are non-local ordering properties
that hold for these grid points. For example, the yellow
point in the first line must appear first in the corresponding
line in the second image, the black point must follow it,
and the blue point must follow both the yellow and the
black point. The normal normalized cross correlation
algorithm of course does not take this into account and thus
sometimes does very poorly. An example of this is shown
below:

In the above output the of the original normalized
cross correlation algorithm, you can see for example that
there are large errors with the pink point in the second
line and the yellow dot in the last line, as they are on the
complete opposite side compared to where they should be
given the physical distribution of the objects/points.

To combat this issue we formulate the problem as
follows. For each grid point in the original image, we
create n binary variables (n being the width in pixels of
the images), where setting one of them to true means that
that’s the column the grid point was matched to. We create
constraints such that at least one and at most one of these
variables can be set to true, which correspond to picking a
unique column.
Next, we use the normal cross correlation algorithm to
compute the similarity scores of all pixels in the corre-
sponding row for each grid point. The problem can then
be formulated as maximizing the total similarity score by

2



assigning the variables we’ve just created.
The one remaining issue is how to formulate the constraint
that the points have to be in order. This can be done as
follows.
Note that the first pixel in a given line will have a set of
binary variables associated to it like [0,0,1,0,0,...],
and the second pixel might have a set of binary variables
associated to it like [0,0,0,0,1,0,...], and so on.
We basically need to make sure that the second pixel
doesn’t set a variable to 1 before the first pixel has already
set a pixel to 1. Thus, we simply create a constraint for each
1 ≤ i ≤ n that says that the sum of the first i elements of
pixel 1’s choice variables is larger than the corresponding
sum of the first i elements of pixel 2’s choice variables, and
so on, for all pixels in a given line.
This setup is exactly equivalent to having an ordering
constraint. The one issue with it is that it requires creating
(k − 1)n constraints where k is the number of pixels in a
given row. However, this can be sped up quite easily by
doing an approximation where we simply skip over some
of the constraints (i.e. instead of i going from 1 to n in the
formulation above, i goes from 1, to for example 11, to 21,
adding SKIP each time). This approximation works very
well in practice and the skip parameter will be discussed
more in detail in the parameter settings section.
One final thing to mention is that of course using binary
choice variables is infeasible to do in practice, because
to find the correct result we would have to enumerate all
possibilities which would be extremely slow. Instead, we
simply relax the problem, making the choice variables take
real values. Then, once the convex problem is solved, we
recover the final (binary-valued) solution by setting the
argmax for a given pixel’s choice variables to 1 and setting
all others to 0. Again, this approximation is widely used
and works quite well in practice as we’ll see in the results
section.

3.3. Recursive step

As described in the previous section, the convex opti-
mization part can give us a very good result for a small
number of points. However, it is not tractable to simply
run all of the pixels through this system, as the number of
constraints, as described before, is (k− 1)n2 total, where k
is the number of pixels to compute corresondences for per
line and n is the width of the image.
To avoid this issue, then, we simply split up the image
based on the correspondences we obtained into rectangles,
and then recursively run the original algorithm on the
subimages, until we got to such a point that there are few
enough points to just solve via brute force.
An example of the subgrid idea is shown below:

In the picture above, intuitively the pixels in the white
rectangle in the left image must have correspondences in
the rectangle in the white rectangle of the image on the
right.
Note that of course in some cases the alignment will
not be perfect, and the subgrid might not necessarily be
a rectangle. In such cases we simply take the smallest
rectangle containing the true subgrid we obtain as the
subgrid to use.

3.4. Speed saving approximations and parameter
settings

There are a couple of parameters of my algorithm that
can be adjusted; we will discuss them here.

3.4.1 NUM CORRESPONDENCES

Where this parameter comes into play was described in sec-
tion 3.2. I tested a few values of this parameter and found
that setting it to 25 works well. In theory, increasing or de-
creasing it should not have much of an effect on accuracy;
however, if it is set too small or too large it will have the
effect of slowing down the computation. This is because if
it is set too large, the number of points we will be attempt-
ing to solve by convex optimization will be too large, and
if it is set too low, the grid will not be split up enough and
unnecessarily many recursive calls will occur.

3.4.2 SKIP

Again, this parameter’s use was described in section 3.2.
Basically, a higher SKIP means that the convex optimiza-
tion code will run faster, but it will possibly be less accurate
because it might skip enforcing an important ordering con-
straint. Generally, I found that even a very high setting such
as 20 (i.e., only every 20th correspondence constraint is be-
ing enforced) actually works quite well. In practice, I wrote
a function that starts by setting SKIP to a high value, then
takes a result of the convex optimization part and checks
that all the points are ordered correctly. If they are ordered
correctly, no further work is needed and the generated solu-
tion is returned.
On the other hand, if the returned result has some points out
of order, the current value of the SKIP parameter is halved,

3



and the convex optimization part is rerun. This entire pro-
cess is repeated up until we get a valid result (there is guar-
anteed to be such a result if we enforce all the constraints,
i.e. once we get to SKIP = 1).

4. Experimental Setup
4.1. Dataset

As mentioned earlier, I am using the Middlebury vision
dataset, which is made up of a large number of pairs of rec-
tified images and corresponding depth information.

4.2. Gold correspondence generation

For each pair of images, we use the depth information
provided to generate a gold correspondence result. We
know that:

disparity ∝ Bḟ

z

where z is the depth (this is given by the dataset), the
focal length is given as well in the metadata of the dataset
and so is the distance between camera centers. With some
calibration, then, we can use the depth information to recon-
struct the correspondence locations in the dictionary format
specified in the problem statement section.

4.3. Evaluation metrics

Given that we can compute a gold correspodence result
as described in the previous section, we can use a simple
evaluation metric, consisting of computing the average ab-
solute error in the column assigned to all correspondences
(note that since the images are rectified the row is always
equal – and correct – in between the two images so it is ig-
nored when computing accuracy statistics).
I also wrote a Python script that takes a given pair of images
and a dictionary result from a correspondence method, ran-
domly samples a set number of points from the dictionary
result, and creates a color coded plot, where if two points
have the same color they are a correspondence. This method
was implemented mostly as a debugging aid and a sanity
check to see that the results are making sense. However, the
plots are also very useful in seeing the huge advantage in
accuracy that this method presents over using the standard
correlation based correspondence algorithms.

5. Results
I ran my algorithm on the dataset from Middlebury men-

tioned earler. Since this dataset consists of very high reso-
lution images (2820 x 1920), regenerating every single cor-
respondence for all pixels takes a long time on a laptop, but
I have nevertheless obtained full results on a few images,
and I also ran many more images by just getting a subset

of the pixels’ correspondences. Both of these gave me very
encouraging results especially when comparing against nor-
malized cross correlation, which was my target – essentially
this algorithm is not much more complicated than normal-
ized cross correlation yet gets much better results.

5.1. Example image results

I will now show examples of several images’ computed
correspondences, so that it is clear even by visual inspection
that my algorithm performs quite well. For each of the
results shown in figures 1,2,3, a randomly selected subset
of correspondences is shown and color coded so that it is
easy to see which location maps to which other location.
The reason for doing this randomized selection plotting is
simply so that the resulting image is not too cluttered with
points so that the results are still clear.
Note that upon visual inspection, the results are of course

not perfect but they are nevertheless very good. Especially
interesting are the results on fairly uniform surfaces that
we nevertheless get correct. For example, if running
just normalized cross correlation, you would expect the
following points in the piano image to have many errors;
however our algorithm gets them almost exactly right, and
the general physical layout of the points is preserved for
sure, which will result in a more accurate depth result:

A similar pattern can be seen in the other images as
well, for example in the flowers image there are several
groups of pixels that are simply all on the same background
wall; again, these would be hard to get correctly using the
traditional methods:

Note that, again, while the result is not perfect, the
correspondences are certainly in the approximately correct
physical location, and there are no pixels that are mis-
aligned. Again, this will much improve the depth result
obtained from our method compared to using normalized
cross correlation.

4



Figure 1. Piano image result

Figure 2. Motorcycle image result

Figure 3. Flowers image result

5.2. Statistics

In addition to doing some visual inspection I computed
some statistics on the results we obtain both through our

5



new improved algorithm and through the legacy normalized
cross correlation version to see how they compare – I used
the metrics as described in section 4.3. This computation
was only done on the grid points as described in 3.2,
because it was not feasible to get the old algorithm to return
a full result given its large O(n3) complexity and the large
size of our pairs of images in the dataset. See figure 4 for
the graph.
There are several interesting things to note here. First, it is

clear that we are much better in basically every case. The
only image in which we do very slightly worse (Shelves)
was one which happened to have a lot of differently colored
pixels, so one that was easy for the normalized cross
correlation algorithm as well. Another interesting image
was Jadeplant, where we reduced the average error by
around 3x. Upon closer inspection of this image, it can
be seen that its background is very uniform and almost
completely black, which is a hard case for the normalized
cross correlation and provides a good reason to use our
improved algorithm instead.
Finally, I also computed the total average improvement of
my method as compared to normalized cross correlation
and found that on average the error my method makes is
about 36% lower than the error the NCC method makes,
which certainly is a significant improvement.

6. Conclusions and future directions
Based on the results that can be seen in section 5, clearly

we see that this algorithm is a significant step up from the
previous work of normalized cross correlation. It is also
much faster, given its use of divide and conquer, and there-
fore is just more suitable to use in practice in general. It is
also still a fairly intuitive method, giving us the confidence
that the model is a good one and not just a coincidental re-
sult of a complicated model performing well due to overfit-
ting the input data. I therefore believe that my goal of cre-
ating an intuitive, fast, and accurate correspodence method
was achieved.
In the future, there are several further directions that we
could take to keep improving on the algorithm. For ex-
ample, even though the algorithm performed well in all of
my practical tests, it does have one theoretical weakness
which could be remedied if it becomes an issue (again, I
have not seen this being a problem but to make the algo-
rithm more robust this could be one thing to look into). At
each step of the recursion, the decision the algorithm makes
about where an individual point goes is essentially not re-
versible – this means that if the initial grid gets solved really
badly, all points within the resulting subgrids will probably
get a pretty bad result as well, if the subgrid that was de-
cided on turned out to be wrong in the first place. To rem-
edy this, one could imagine that instead of having an evenly

spaced grid, one could make the algorithm look at a line,
pick out the most unique pixels in it (i.e. if all pixels are
blue except one that is red, pick the red one) and compute
the correspondence grid based on those. Given this process,
it would be less likely we accidentally subdivide the image
into bad grids since the pixels we’d be computing the corre-
spodences on would hopefully be characteristic enough to
get a very precise result on them. This would also help ad-
dress any occlusions; presumably this would filter the initial
points such that if any of them were not present in the other
image, those points would be ignored. Currently, occlusions
are not really addressed; however, I have not seen this to be
an issue in practice, most likely given that the dataset I was
using was from camera pictures taken quite close together
so it is unlikely to have many occlusions.
Nevertheless, the key take home message is that this method
works very well in practice – there are some small improve-
ments and robustness additions that could be made but I
think the results section shows clearly that the core idea is a
good one.
Finally, the full implementation is available for you to try
and play with – see the first link in the references section.

7. References
1. The implementation is available in full on my Github

profile: https://github.com/houbysoft/
correspondence-231a

2. The class lecture describing prior methods like
NCC: http://web.stanford.edu/class/
cs231a/lectures/lecture6_affine_SFM.
pdf

3. The Middlebury dataset: http://vision.
middlebury.edu/stereo/data/
scenes2014/

4. Python library used to solve convex problems: http:
//www.cvxpy.org/

5. chpatrick’s library for reading PFM matrix files
into Python: https://gist.github.com/
chpatrick/8935738

6

https://github.com/houbysoft/correspondence-231a
https://github.com/houbysoft/correspondence-231a
http://web.stanford.edu/class/cs231a/lectures/lecture6_affine_SFM.pdf
http://web.stanford.edu/class/cs231a/lectures/lecture6_affine_SFM.pdf
http://web.stanford.edu/class/cs231a/lectures/lecture6_affine_SFM.pdf
http://vision.middlebury.edu/stereo/data/scenes2014/
http://vision.middlebury.edu/stereo/data/scenes2014/
http://vision.middlebury.edu/stereo/data/scenes2014/
http://www.cvxpy.org/
http://www.cvxpy.org/
https://gist.github.com/chpatrick/8935738
https://gist.github.com/chpatrick/8935738


Figure 4. Error statistics

7


