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Abstract

Virtual reality and augmented reality systems are cur-
rently entering the market and attempt to mimic as many
naturally occurring stimuli in order to give a sense of im-
mersion. Many aspects such as orientation and positional
tracking have already been reliably implemented, but an im-
portant missing piece is eye tracking. VR and AR systems
equipped with eye tracking could provide a more natural
interface with the virtual environment, as well as opening
the possibility for foveated rendering and gaze-contingent
focus. In this work, we approach an eye tracking solu-
tion specifically designed for near-eye displays via con-
volutional neural networks, that is robust against light-
ing changes and occlusions that might be introduced when
placing a camera inside of a near-eye display. We create
a new dense eye tracking dataset specifically intended for
neural networks to train on. We present the dataset as well
as report initial results using this method.

1. Introduction

Immersive visual and experiential computing systems
are entering the consumer market and have the potential
to profoundly impact our society. Applications of these
systems range from entertainment, education, collaborative
work, simulation and training to telesurgery, phobia treat-
ment, and basic vision research. In every immersive experi-
ence, the primary interface between the user and the digital
world is the near-eye display. Thus, developing near-eye
display systems that provide a high-quality user experience
is of the utmost importance. Many characteristics of near-
eye displays that define the quality of an experience, such as
resolution, refresh rate, contrast, field of view, orientation
and positional tracking, have been significantly improved
over the last years. However, an important missing inter-
face is gaze tracking.

Although the area of gaze tracking has been studied for
decades, they have been studied in the context of tracking
a user’s gaze on a screen placed a distance away from the
eyes. Many such techniques are not suitable for near-eye
displays where the imaging of the eye is restricted to a small
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area, and might be subject to occlusions and only partial
views of the pupil and iris. Currently, one company, SMI,
offers to hack a an Oculus DK?2 for a large cost (roughly ten
thousand dollars). We seek a more elegant and cost effective
solution for providing the benefits of gaze tracking for near
eye displays.

Gaze tracking not only provides a new intuitive interface
to near-eye displays, but also allows for important tech-
niques increasing immersion and comfort in foveated ren-
dering and gaze contingent focus.

Applications Depth of field, the range of distances
around the plane of focus that still appear sharp, is a cue
that humans use to detect depth of objects in a scene. Given
a user’s gaze position on the screen, a depth of field can be
rendered into a scene, creating an adaptive depth of field
system. As the gaze moves around the scene, different ob-
jects come into focus and other objects fall out of focus, cre-
ating a more realistic experience than an all-in-focus image
that current VR and AR displays present. Such as system
has been shown to reduce image fusion times in stereo sys-
tem in [8], as well as increasing subjective viewing experi-
ences [4,19]. In a first person environment, rendering a depth
of field effect showed an increased sense of immersion [5]].
Because the area of real-time depth of field rendering is well
studied [3} 118 [17], an adaptive depth of focus system could
be immediately created with the implementation of a robust
gaze tracking system suitable for near eye displays.

A second potential use of gaze tracking in near-eye
displays is gaze contingent focus, which improves com-
fort of VR and AR displays by reducing the vergence-
accommodation conflict. When we look at objects our eyes
perform two tasks simultaneously when looking at an ob-
ject: vergence and accommodation. Vergence refers to the
oculumotor cue created by the muscles in our eyes rotat-
ing our eyeballs so that they verge to the point we look at.
Accommodation is the oculomotor cue created by the mus-
cles in our eyes bending the lenses in our eyes such that
the object of interest comes into focus. In normal, real-
world, conditions our eyes verge and accommodate to the
same distance. However, in near-eye stereoscopic display,
the user the user is able to verge at any distance in the



scene but is forced to focus to a fixed distance. This dis-
tance is a function of the distance between the lenses and
the display in the head-mounted display, as well as the fo-
cal length of the lenses themselves. This forces a mismatch
between vergence (able to verge anywhere) and accommo-
dation (only able to accommodate to one distance), known
as the vergence accommodation conflict. When exposed to
such a conflict for extended periods of time, users develop
symptoms of headache, eye strain, and, in extreme cases,
nauseal13].A system capable of determining the distance
to which the user is verged at, through gaze tracking, can
either use focus-tunable optics or an actuated display to re-
duce the vergence accommodation conflict by changing the
distance to which users focus to, as explained in [7].

2. Related Work

A variety of remote eye gaze tracking (REGT) algo-
rithms have been reported in literature over the past couple
of decades. For our purposes, the general body of knowl-
edge can be divided into two categories: ones which assume
a model of the eye and ones which learns an eye tracking
model.

2.1. Model Assumed REGT

Methods assuming a model of the eye generally extract
features from an image of the eye and map them to a point
on the display. This type of work generally either uses in-
tensity images captured from a traditional camera as seen in
[[19]], or uses illumination from an infrared light source and
captures the eye with an IR camera.

Infrared-Based REGT IR illumination creates two ef-
fects on the eye. Firstly, it creates the so-called bright-eye
effect, similar to red-eye in photography, which results from
the light “lecting off of the retina. The second effect, a glint
on the surface of the eye, is caused by light reflecting off the
corneal surface, creating a small bright point in the image.
This glint is often used as a reference point, because if we
assume that the eye is spherical, it does not move as the eye
rotates in its socket.

After grabbing an image of the eye, the glint and pupil an
be extracted via image processing algorithms described in
[6]. A glint pupil vector can be calculated, and mapped to a
2-D position on the screen via some mapping function. Al-
though many have been proposed, [20, [19]], the most com-
monly used function is the 2nd order polynomial defined in
[10], defined as :

Sge = ap + a1x + agy + asry + a4x2 + a5y2
Sy = by + b1z + by + by + by’ + b5y2

Year #subjects #targets  #headposes  Calibration Resolution Dataset size

UUlm 2007 20 2-9 19 Yes 1600 x 1200 2,200 imgs.

HPEG 2009 10 Continuous 2 Yes 640 x 480 20 videos (~6.6 k imgs.)
Gi4E 2012 103 12 1 No 800 x 600 1,236 imgs.
CAVE 2013 56 21 5 Yes 5184 x 3456 5,880 imgs.

cve 2013 12 12-15 4 Yes 1280 x 720 48 videos (~20 k imgs.)
EYEDIAP 2014 16 Continuous Continuous Yes 1920 x 1080 94 videos
Multiview 2014 50 160 (+synﬂ§:esized) Yes 1280 x 1024 64,000 imgs. (+synth.)
MPIIGaze 2015 15 Continuous Continuous No 1280 x 720 213,659 imgs.
OMEG 2015 50 10 Continuous No 1280 x 1024 44,827 imgs.

TabletGaze 2015 51 35 Continuous No 1280x 720 816 videos(~120k
imgs.)
Figure 1. Table of existing gaze tracking datasets, which are

mostly tailored towards model assumed methods.

where (s, s,) are the screen coordinates, and (z,y) are
the pupil-glint vector components. A calibration procedure
is performed to estimate the unknown variables ag, a1, ...b5
via least squares analysis by asking a user to looking at (at
least) 9 calibration targets. The accuracy of the best IR-
based methods fall somewhere between 1°to 1.5°accuracy.

View-Based REGT In view-based REGT, only intensity
images from traditional cameras are used without any ad-
ditional hardware. These techniques rely more on image
processing techniques to extract features from the eyes di-
rectly, which can then be mapped to 2D pixel coordinates.
Tan et. al [16] uses an image as a point in high dimensional
space and through an appearance-manifold technique is able
to achieve a reported accuracy of 0.38°. Zhu and Yang [19]
proposed a method for feature extraction from intensity im-
ages and using a linear mapping function are able to achieve
a reported accuracy of 1.4°.

2.2. Model Learned REGT

Model learned REGT techniques use some sort of ma-
chine learning algorithm to learn an eye tracking model
from training data consisting of input/output pairs, i.e. 2D
coordinates of points on the screen and images of the eyes.

In the work by Baluja and Pomerleau [2], an artificial
neural network (ANN) was trained to model the relation-
ship between 15x40 pixel images of a single eye and their
corresponding 2D coordinates of the observed point on the
screen. In their calibration procedure the user was told to
look at a cursor moving on the screen along a path made of
two thousand positions. They reported a best accuracy of
1.5°.

Similar work by Xu et. al. [12] was presented, but in-
stead of using raw image values as inputs, they segmented
out the eye and performed histogram equalization in order
to boost the contrast between eye features. They used three
thousand points for calibration and reported an accuracy of
around 1.5°.

2.3. Our Approach

A key motivation behind this work is that gaze tracking
systems lack the required robustness for commercial ap-
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Figure 2. Image of setup, sample captures, and path of point on screen. The left image depicts our setup comprising of an LCD monitor,
webcam, and chin rest to keep the head roughly stable. The upper right images show samples images from what the webcam captures. The
bottom right image displays a part of the path that the moving target follows during its trajectory.

plications. High variability in the appearance of the pupil
and lack of a clear view cause accuracy issues with detec-
tor based tracking systems. Deep learning performs well
on problems with high intra-class variability. The intuition
behind this work was to use a CNN model instead of the
parametric calibration since it would probably be more ro-
bust to variations in skin/eye color, HMD fixation etc.

In particular the key contributions of this work are:

e Introduction and implementation of an end-to-end
CNN based approach to gaze tracking

e Creation of a new gaze tracking dataset with a near-eye
camera covering five different subjects and dense po-
sition sampling of the screen based on smooth pursuit

e Performance evaluation of the chosen method, conclu-
sions and suggestions for improvement that can be in-
corporated in future work

3. Dataset

Many eye-gaze tracking datasets exist [14], as seen in
Figure [1] however they are mostly tailored for model as-
sumed REGT systems. The majority of the datasets use
target based calibration with large spacing between targets.
Neural networks are not able to train on such few, and
sparsely, sampled points and learn a good relationship be-
tween image data and pixel coordinates. The few datasets
that used continuous targets also allowed for continuous
head movement, which is not a good representation for a
near-eye display where the display is strapped to the user’s
head (with the camera rigidly fixed inside of it).

Instead of using one of the above datasets, we decided
to create our own dataset suitable for neural network train-
ing. Our strongest criteria was to have a large number of
calibration points densely sampling the entire screen, with
corresponding images of the eye. With such training data,
we would expect the CNN to learn the fine differences be-
tween points on the screen.

In our setup, as seen in Figure 2| we placed a user with
his/her head resting on a chin rest 51 cm away from a 1080p
24 inch monitor. A webcam was placed very close to the
chin rest imitating what a camera placed inside of a near-
eye display would see.

Asking a user to fixate on a series of targets is infeasi-
ble for the large number of calibration points we wanted
to collect. Instead we used the fact that humans are able
to track moving objects well, up to some angular velocity.
This is the notion of smooth pursuit. We moved a point
about a screen at 7.5°/s in a winding pattern from left to
right, top to bottom, as seen in Figure[2]and were able to col-
lect 7316 calibration points during a single 4 minute sitting.
At this angular velocity the eye is able to smoothly track the
point as it moves about without sacades (which occur when
the eye attempts to ’catch up’ when a point is moving very
quickly). We chose this particular angular velocity based on
[L1], which introduced the concept of a pursuit based cali-
bration and found that points moving about between 3.9°/s
and 7.6°/s resulted in best accuracy.

In order to achieve a smoothly moving point, we dis-
played four points per angular degree, giving us a total of
7316 points. We captured webcam video frames at approxi-
mately 30 fps, which roughly corresponded to one frame per



1/4 angular degree point shift. Because our goal was around
1°of accuracy, we binned the calibration points into 1°bins.
For example, points displayed between 0.5°and 1.5°would
be considered the same as 1°. We found that with a 4x re-
duction in classes, and a corresponding 4x increase in points
per class, the CNN was able to better learn.

The cropped and downsampled captured dataset can be
found at [[1]

4. CNN Learning Approach

In this work we explore the use of Convolutional Neural
Networks (CNN) for gaze tracking in an end-to-end fash-
ion. Traditional approaches like the one mentioned in the
previous section rely on hand-engineered feature detectors
and then use a parametric model to track the gaze direction
of a user.

Recently CNNs have outperformed traditional feature
engineering-based computer vision methods in a variety of
tasks. This work explores their use for gaze tracking. The
key benefit is that this approach is fully data driven. We
train the CNN model to take images of the users eye (taken
from a camera very close to their face) as input and estimate
the gaze direction in terms of x and y pixel coordinates on
the screen.

4.1. Description of CNN

CNN s are a class of artificial neural network algorithms
with multiple hidden layers that are built using convolu-
tional layers. In this work we treat the gaze tracking prob-
lem as a multi-class classification problem, where each
class is a specific point on the screen, and use a simple CNN
(i.e. LeNet) to learn the mapping from images to gaze posi-
tion.

LeNet consists of two convolutional layers and two pool-
ing layers followed by a fully connected layer at the end.
For our implementation, we modify the fully connected
(FC) layer to the desired number of output classes for the
gaze tracking problem.

5. CNN Implementation
5.1. Caffe

The CNN implementation was performed in both Caffe
and Tensorflow for comparison. Caffe has LeNet in the
model repository implemented for MNIST digit classifica-
tion. The .prototxt file was reconfigured to point to the
Imdb file for our dataset. The image files and binary with
class labels are converted to the Caffe compatible Imdb file
and then training is performed. The figure below shows the
setup workflow for the Caffe implementation.

Inputs  32@
28x28 28x28 14x14 14x14 7 %

51
Conv. iax-pnn Conv. Max-pool  Conv. Flatten Fully

3x3 2x2 3x3 2%2 3x3 connected

2@ 64@ 64@ 64@ Hidden  Outputs
7 2 10

Figure 3. LeNet Architecture

Parsing Script (Augment,

Normalize etc.) Augmented Dataset

. -
Splitting Script & LMDB

B80% 20%

Configure .prototat

Run Caffe training script

Caffe training pipeline for eye-tracking with LeNet

Figure 4. Caffe Model Architecture

As the results were not very promising and training was
suspending abruptly, we later focused on the TensorFlow
implementation to complete the project.

5.2. TensorFlow

Tensorflow also consists of the LeNet model as an ex-
ample trained for MNIST. The example was reconfigured
by changing the number of classes to train on, size of con-
volutional kernels etc. to work with the CAVE and captured
gaze tracking dataset. The figure below shows a visualiza-
tion of the TensorFlow model.

Some of the parameters that were explored were the size
of the convolutional kernels and number of convolutional
layers. Unfortunately, due to limited computing power, it
remained difficult to add too many layers to the network.

6. Data Organization

Due to the large size of the data captured and the limited
computational power available, a few steps were taken to
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Figure 5. TensorFlow Model Architecture

make the data manageable while not compromising the data
available for the CNN.

6.1. Dataset Augmentation

The dataset consisting of cropped images of the eye and
their respective pixel coordinates for the gaze was aug-
mented before training the CNN. The augmentation con-
sisted of adding different types of noise (Poisson, speckle,
Gaussian etc.) to make the model more robust to variations
in the image during inference. The augmentation extends
the dataset which is very useful as many samples are needed
to fully train the CNN model. The augmented dataset is then
spit into training, test and cross-validation sets depending
on the requirements.

6.2. Image Preprocessing

The pipeline to feed both the CAVE and the captured
dataset were as follows:

1. Convert Images to Grayscale
2. Downsample Images to 28x28 (for efficiency)

3. Crop out eye region from each image

Figure 6. Augmented Images

4. Save images and respective labels

The size 28x28 matched the dimensions of the MNIST
dataset. More importantly, we found that downsampling to
a slightly large size, like 50x50, did not necessarily lead to a
better classification accuracy. Similar results were found in
[] where a larger image did not mean better neural network
performance.

Cropping out the eye region was done differently for the
CAVE and captured dataset. For the CAVE dataset, a very
basic estimation of the bounding box around both eyes was
formed. The same bounding box was applied to all images
for a particular pose. This was an error-prone methodology
but did better than using eye recognition software, which of-
ten failed on subjects with glasses. For the captured dataset,
we manually selected the region around the eyes per sub-
ject and then applied the same crop region to the rest of the
images for that particular subject. This manual processing
was also not perfect, since subjects moved slightly between
frames.

The labels were created using one-hot vectors - the
length of the vector was equal to the number of classes per
experiment and the index of the class the image belonged
to was a 1 while the rest of the entries were 0. The images
and the label vector pairs were converted to Tensors/Imdb
format for ease of processing.

7. Results

The CNN was initially tested with the CAVE dataset to
ensure the model learned something. Next, the same model
was applied to the captured dataset, where the images were
significantly better (they were focused just on the eyes) but
the number of classes was significantly greater (21 classes
for the CAVE dataset and 1829 classes for the captured
dataset).
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Figure 7. CAVE Dataset Downsampled Images

Figure 8. Captured Dataset Downsampled Images

7.1. CAVE Dataset

Our initial gaze tracking implementation was based on
the CAVE (Columbia Gaze Data Set) [15]] dataset. The
dataset has 5,880 images collected for 56 subjects for 21
gaze directions for 5 distinct head poses. To simulate the
near-eye display conditions we only use one head pose
i.e. the subject directly facing the screen. Even though
the dataset was not built for fine-grained tracking and the
captured images are highly inconsistent, the results were
promising.

The problem was framed as a gaze localization problem
where the screen is divided into 21 (7X3) grids which form
the 21 output classes for the CNN model. We show results
obtained on the CAVE dataset with 3 output classes (one of
the three horizontal bands on the screen) and with 21 out-
put classes. The graphs show how the classification accu-
racy (measured as the fraction of gazes correctly classified)
changed across iterations of training the CNN. Each train-
ing batch was 100 images and the CNN was trained for 500
iterations. The figures [9]and [I0] show the training accuracy
increasing across iterations. The red dotted line shows the
baseline classification accuracy - ———-———.

While the accuracy for the 21 class case isn’t significant,
the model does learn a mapping and performs better than
a random guess over the output classes. From the CAVE
dataset images, it is easy to see why the model does not
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Figure 10. CAVE Classification Accuracy with 3 Classes

learn as well as it would be expected to. Out of the 28x28
pixels, a very small fraction actually comprises of the eyes
and the pupils. In the results, we look at training accuracy
which can be interpreted as the inverse of the loss functions
and shows the progress of the model as it learns a better
model. The trained model is then tested on a batch from the
test set to get an accuracy which represents the percentage
of correctly classified images. For the 3 and 21 class case,
the final test accuracy was 0.893 and 0.236.

7.2. Captured Dataset

Since the number of classes with the real dataset was
significantly large, the classification accuracy is not a good
measure of how well the model does. If the true and esti-
mated classes are next to each other, that is a misclassifi-
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Figure 11. Correctly and Incorrectly Classified Images from
CAVE Dataset

cation and measured the same as if the true and estimated
classes were on opposite corners of the viewing screen.

Since our goal is to track the user’s gaze as accurately as
possible, we also look at angular error i.e. actual difference
in angle between the inferred gaze and the actual gaze of the
user. Looking at this particular metric, we can see that the
gaze can be localized to a few degrees in accuracy but there
is scope for improvement. Looking at confusion matrix or
classification accuracy is not appropriate for this problem
as it does not capture the degree of misclassification or how
far the inferred gaze is from the actual gaze direction.

The testing classification accuracy was 0.003. Even
though this is ridiculously low, the testing angular error is
only 6.7 degrees. And in the gaze tracking sense, the angu-
lar degree matters much more than the classification accu-
racy.
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Figure 12. Captured Classification Accuracy with 1829 Classes

Figure 13. Captured Average Angular Error

8. Conclusion and Future Work

We explored an end-to-end deep learning approach for
gaze tracking in a highly constrained environment (camera
very close to the eye) and obtained promising results with a
vanilla implementation. This demonstrates the viability of
this approach and also highlights some of its shortcomings.

CNN needs a lot of data to be properly trained and lack
of publicly available datasets for fine gaze tracking was a
major impediment. We implemented our own data capture
setup and created an appropriate dataset for this purpose but
given the severe time constraints were only able to gather
data for 5 subjects. This dataset will be extended in the
future for more subjects and made publicly available for fu-
ture experiments.

The model used for this work was the simplest instanti-
ation of a CNN and the eye images had to be significantly
downsampled even with the simple model to facilitate quick
training. This is one of the limitations of using CNNs and
prevents quick iterations or cross-validation.

We believe a higher quality input image of the users eye
that also has support features (fixed in the image irrespec-
tive of the subject) will help improve the gaze tracking ac-
curacy. This is also the situation that will be useful when
doing tracking in a near-eye display. Given that the HMD is
fixed to the user’s head, the camera should see a consistent
images across different users. The model can also be more
complex but due to lack of training data, it did not make
sense to increase model complexity in this work.

To conclude, the work shows promise in using a deep
learning approach for gaze tracking and has potential to
outperform the feature based methods based on parametric
models. However, further exploration is needed to achieve
state of the art results.
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