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Abstract

The task of Multi-Object Tracking (MOT) largely con-
sists of locating multiple objects at each time frame, and
matching their identities in different frames yielding to a
set of object trajectories in a video frame. There are sev-
eral cues used for representing the individuals in a crowded
scene. We demonstrate that in general, fusing appearance,
motion, and interaction cues together can enhance the level
of performance on the MOT task. In this paper we combined
appearance, motion and interaction cues in one deep uni-
fied framework. An important contribution of this work is
a generic scalable MOT method that can fuse rich features
from different dynamic or static models.

1. Introduction

Multiple Object Tracking (MOT), or Multiple Target
Tracking (MTT), plays an important role in computer
vision and is a crucial problem in scene understanding.
The objective of MOT is to produce trajectories of objects
as they move around the image plane. MOT covers a
wide range of application such as pedestrians on the street
[26} [19]] sports analysis (e.g. sport players in the court
[14] 17, 24], bio tracking (birds [15], ants [9], fishes
[20L 21L 15]], cells [16} 12], and etc), robot navigation, or
autonomous driving.). In crowded environments occlu-
sions, noisy detections (false alarms, missing detections,
non-accurate bounding), and appearance variability (Same
person, different appearance or different people, same
appearance) are very common. As a result, multi object
tracking has become challenging task in computer vision.

Recent works have proven that tracking objects jointly
and taking into consideration their interaction in addition
to their appearance can give much better results in crowded
scenes. The focus of this paper is to marry the concepts of
appearance model, object motion, and object interactions
to obtain a robust and scalable tracker than works in
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crowded scenes. We propose an online unified deep neural
network tracker that jointly learn to reason on a strong
appearance model, strong individual motion model, and
object interactions (dynamic scene knowledge). In this
project we will not study the interaction model and only
focus on appearance and motion model.

Our strong appearance model is a Siamese convolutional
neural network (CNN) that is able to find occlusions and
similarity of objects in different time frames in addition to
object bounding box prediction in next time frame. We also
use two seperate Long Short-Term Memory (LSTM) model
for our motion prior and interactions model that tracks
the motion and trajectory of objects for longer forecasting
period (suited in presence of long-term occlusion). These
models extract appearance cues, motion priors, and inter-
active forces which are critical parts of the MOT problem.
We then integrate these parts into a coherent system using
a high-level LSTM that is responsible to reason jointly
on different extracted cues. We show our model is able
to fuse and use different data modalities and get a better
performance. The magic is this scalability, one can add
another cue component (e.g. exclusion model) to the model
and finetune the model to reason jointly on the new cue and
previous cues.

2. Related Work

In recent years tracking has been successfully extended
to scenarios with multiple objects [18, [11} (8} [23]]. Differ-
ent from single object tracking approaches which have been
constructing a sophisticated appearance model to track sin-
gle object in different frames, multiple object tracking does
not mainly focus on appearance model. Although appear-
ance is an important cue but in crowded scenes relying only
on appearance can lead to a less accurate MOT system. To
this end, different works have been improving only the ap-
pearance model [6, 3], some works have been combining
the dynamics and interaction between targets with the tar-



get appearance.

2.1. Appearance model

Technically, appearance model is closely related to vi-
sual representation features of objects. Depending on how
precise and rich the visual features are, they are grouped
into three sets of single cue, multiple cues, and deep cue.
Because of efficiency and simplicity single cue appearance
model is widely used in MOTs. Many of single cue mod-
els are based on raw pixel template representation for sim-
plicity [25} 12, 22} [19]], while color histogram is the most
popular representation for appearance modeling in MOT
approaches [4} [11}, 28]]. Other single cue approaches are
using covariance matrix representation, Pixel comparison
representation, or SIFT like features. The multi cues ap-
proaches combines different kinds of cues to make a more
rebust appearance model. The final appearance cue used in
tracking is the deep visual reperesentation of objects. These
high-level features are extracted by deep neural networks
mostly convolutional neural networks trained for a specific
task [[7]. Our model shares some characteristics with [[7],
but differs in two crucial ways: first, we are learning to han-
dle occlusion and solve the re-identification task in addition
to David’s work that is bounding box regression only. We
output the similarity score (same object or not) and bound-
ing box. Second, there are differences in the overall archi-
tecture, e.g. the number of fully connected layers on top
of two networks for fusing, loss function, inputs and out-
puts and hence the training and testing procedure is different
since we want to address re-identification as well as bound-
ing box to help tracking.

2.2. Motion model

Object motion model describes how an object moves.
Motion cue is very important for multiple object tracking
since knowing the potential position of objects in the fu-
ture frames will reducing search space and help the appear-
ance model on better detectation of similar objects. Popular
motion models used in multiple object tracking are divided
into linear motion models and Non-linear motion models.
As the name “linear motion” indicates objects following the
linear motion model move with constant velocity. This sim-
ple motion model is the is the most popular model in MOT
[3]. There are many cases that linear motion models can not
deal with, in this cases non-linear motion models are pro-
posed to produce a more accurate motion model for objects
[277]. We present a new Long Short-Term Memory (LSTM)
model which jointly reasons based on the past movements
of an object and predicts the future trajectorys of that object
(L]

3. Multi Object Tracking Framework

As shown in Figure [T MOT involves three primary com-
ponents. Our model includes modeling of appearance, mo-
tion, and interaction. These components will be described
in more details.
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Figure 1. MOT components
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3.1. Appearance

In this section, we now describe the appearance model
that we integrate into our framework for multi-object track-
ing. As we recall, our problem is fundamentally based on
addressing the challenge of data association: that is, given a
set of targets T} at time step ¢, and a set of candidate detec-
tions Dy, at timestep ¢ 4 1, we would like to compute all
of the valid pairings that exist between members of 7} and
Dt+ 1-

The idea underlying our appearance model is that we can
compute the similarity score between a target and candi-
date detection based on purely visual cues. More specif-
ically, we can treat this problem as a specific instance of
re-identification, where the goal is to take pairs of bound-
ing boxes and determine if their content corresponds to the
same person. We thus desire our appearance model to rec-
ognize the subtle similarities between input pairs, as well as
be robust to occlusions and other visual disturbances.

To approach this problem, we construct a Siamese Con-
volutional Neural Network (CNN), whose structure is de-
picted in Figure 2} Let BB; and BB; represent the two
bounding boxes we wish to compare — in our case, BB;
might be a target bounding box at frame ¢, and BB; would
be a candidate detection at frame ¢+ 1. We first crop the im-
ages containing BB; and BB; to contain only the bound-
ing boxes themselves, while also ensuring that we include
some amount of the surrounding image context. The net-
work then accepts the raw content within each bounding
box and passes it through its layers until it finally produces
a 500-dimensional feature vector for each of the two inputs.

Let ¢; and ¢; thus be the final hidden activations ex-
tracted by our network for bounding boxes BB; and BB;.
In order to compute the similarity, we then simply con-
catenate the two vectors to get a 1000-dimensional vector
¢ = ¢i||¢;, and pass this as input to a final fully-connected
layer. We lastly apply a Softmax classifier, which outputs
the probabilities for the positive and negative classes, where
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Figure 2. Our appearance model

positive indicates that the inputs match, and negative indi-
cates otherwise.

The actual network structure we use for this challenge
consists of the 16-layer VGG net, which won the ImageNet
2014 localization challenge. In our case, we begin with
the pre-trained weights of this network, but remove the last
fully-connected layer so that the network now outputs a
500-dimensional vector.

We then fine-tune this network by training the overall
network on positive and negative samples extracted from
our training sequences. For positive pairs, we use instances
of the same target that occur in different frames. For neg-
ative examples, we use pairs of different targets that may
span across all frames.

We trained this model on MOT3D dataset which con-
tains 2 scenes with more than 950 frames that contain more
than 5500 objects. We extracted more than 100k of pos-
itive and negative samples. We did the training on one
scene and validated on the other scene. The result was
84 percent accuracy on the binary classification problem of
positive/negative pairs. We used CUHKO3 dataset [13] as
the sanity check for our prediction. This dataset contains
13164 images of 1360 pedestrians and contains 150k pairs.
FPNN method which got rank 1 of identification MAP rate
were able to achieve 19.89 percent accuracy. Our method
achieves 18.61 percent of accuracy and outperforms several
other methods such as LDM, KISSME, SDALF.

3.2. Motion

The second component of our overall framework is the
inclusion of an independent motion prior for each target.
The intuition is that the previous movements for a particular
target can strongly influence what position a target is likely
to be at during a future time frame.

Additionally, a nuanced motion prior can help our model
when tracking objects that are occluded or lost, since it pro-
vides a heuristic as to where these objects might generally
be located. Thus, formulating a sophisticated model for the
motion prior of a target will be valuable in achieving robust
performance during tracking.

We can therefore use this information to aid us in the

task of data association, in which we can match members
of T; and D, ; based on which detections are closest to the
motion prior’s next predicted location for each target.

To thus incorporate this information, we construct
a Long Short-Term Memory (LSTM) network over the
3D velocities of each target.  More concretely, let
(xh, b, 2), (w8, yt, 28), ... (xk, i, 2¢) represent the 3d tra-
jectory of the ¢-th target from the timestep O through
timestep ¢. Assuming a point (1, Y, 1, #{, 1), We want to
see whether this point belongs to the trajectory of i-th target.
Let use define the velocity of target ¢ at the j-th timestep ¢ to
be vi = (va}, vy}, vz)) = (T5—2%_1, Y5 —Yj_1, 2;—25_1)-
This can be done by assigning an score to this point and see-
ing whether it is large enough or not. For this purpose, we
train our LSTM to accept as inputs the velocities of a single
target for timesteps 1,...,¢ and produces H-dimensional
outputs. We also pass the ¢ 4+ 1 velocity vector (which
we wish to determine whether it corresponds to a true tra-
jectory or not) from a fully-connector layer that brings it
to H-dimensional vector space. The last LSTM output is
then concatenated with this vector and the result is passed
to another fully connector layer which brings the 2H di-
mensional vector to the space of k features. Finally, another
fully connector layer, reduces the dimension to 2 which will
be used as the 0/1 classification problem during the train-
ing.
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Figure 3. Our 3D motion prior model

Note that training occurs from scratch, and weights are
shared across all targets. Once we train the network, then
given a query target 4 at timestep ¢’, the LSTM will output
a predicted velocity v}, 41- We can then simply add the ve-
locity to the query target’s position at ¢’ in order to compute
the motion prior’s predicted position for frame ¢’ + 1. That
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We therefore obtain the predicted position from the motion
prior, and can use this to filter out candidate detections that
are not sufficiently close to the prior.

For training this model, we used MOT3D dataset, which
only consists of true trajectories. We considered trajecto-
ries of length ¢ + 1 = 7 and we assumed H = 128. For
each true trajectory, we changed the last element of it by a
randomly chosen object among all other objects that exist at
the same frame. By doing this we were able to reach to the
same number of invalid trajectories as the valid trajectories
(it is not good to have unbalanced distributions for train-
ing). After training this model, we were able to achieve the
accuracy of 95 percent for the 0/1 classification problem.

3.3. Integration

Given these three components of our framework for
Multi-object Tracking, we now describe the method by
which we integrate these parts into a coherent system. To
recall, we have identified appearance cues, motion priors,
and interactive forces as critical parts of the MOT problem.
We believe a sophisticated framework should merge these
pieces together in an elegant way. You can find the graphi-
cal model of our approach in figure ] Each human has an
appearance edge and motion edge, and between every pairs
of humans there is an interaction edge.

Appearance Edges

Figure 4. The graphical model of our approach

Our overarching model is a Long Short-Term Memory
network which we construct over the already pre-trained
appearance, motion, and interaction modules. This LSTM
is trained to perform the task of data association: once
again, suppose we are at timestep ¢ and wish to deter-
mine whether target ¢ is matched to a detection d found
in timestep ¢ + 1. We then train the LSTM to output the

probabilities of whether the ¢ and d correspond to the same
object.

The inputs to the LSTM are feature vectors that we ex-
tract from our individual models. Let ¢ 4 represent the hid-
den activations extracted from our appearance model before
the final fully connected layer of the network, where we in-
put the bounding boxes surrounding target 7 and detection
d. Let ¢as; be the hidden state of the Motion Prior LSTM
extracted at timestep j, and likewise let ¢r; be the hidden
feature vector of the Interaction model extracted at timestep
7. Then, the input to our integrator is given by

&5 = dallom;llor;

where we thus concatenate the individual feature vectors
output by the modules. Therefore, when we set up the
model we use these features as inputs to the LSTM and
train it to output either a positive or negative label for each
timestep (indicating whether there is a valid match) using a
standard Softmax classifier and cross-entropy loss.

An important point to note is that we train this LSTM
without fine-tuning the weights of the individual compo-
nents of the framework, which are each in fact trained sep-
arately. The overall model, composed by the previous com-
ponents is illustrated by figure[5|and the output of the model
is a similarity score which is used as a weight for the edges
of matching graph for matching the detections between time
frames.
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Figure 5. Our overall model

For training this model, we used the pretrained compo-
nents described in previous sections and fine-tune the whole
model end to end using MOT3D dataset.

4. Experiments

In this section, we now describe our various experiments
and results, and then later peform a qualitative analysis on
model’s performance.

4.1. Baselines

We first discuss the various baselines that we use to es-
tablish a standard for comparison against our more nuanced
model.



e Markov Decision Process Tracker

In [23], authors demonstrated success on 2D Multi-
object tracking by formulating the tracking problem as
a Markov Decision Process (MDP). They represented
every target as being in either an active, tracked,
lost, or inactive states, and learned the appropriate
transition probabilities and rewards based on extracted
features. In order to evaluate this method on the 3D
challenge, we project the bottom-midpoint of the
predicted 2D bounding boxes to the ground plane
(using the provided calibration parameters given in the
data sequences).

e MDP Tracker with Linear Motion Prior

Though the MDP described above can obtain reason-
able results on the problem of multi-object tracking,
we additionally incorporate a simple linear 3D motion
prior into the feature vectors associated with each state
in the MDP. More specifically, we use the normalized
distance between a candidate detection and the motion
prior prediction as a feature in that state.

e MDP Tracker with LSTM Motion Prior

As a final baseline experiment, we realize that incorpo-
rating a simple linear motion prior may be too simplis-
tic of an approach to accurately model the movements
of a target. A more reasonable method is to use an
LSTM similar to our own motion model to output the
predicted 3D coordinates for every target, and then use
these values in the feature vectors as described above.

We report the results using the proposed method on the
3D MOT 2015 Benchmark which includes the PETS09-
S2L.21 and the AVG-TownCentre2 sequences. The sensi-
tivity of the method to the omission of single variables is
evaluated on the PETS09-S2L1 dataset (available for train-
ing in the 3D MOT 2015 Benchmark). The corresponding
results of an evaluation in 3D image space (correct detection
requires at least 50% intersection-over-union score with the
reference) and in 3D world coordinates (correct detection
requires at most 1m offset in position) are reported in fol-
lowing section, respectively.

4.2. Datasets

We test our tracking framework on the Multiple Ob-
ject Tracking Benchmark [[10] for people tracking. The
MOT Benchmark collects widely used video sequences in
the MOT community and some new challenging sequences.
We evaluate the proposed algorithm on MOT3D challenge
which provides the 3D coordinate of position of the feet of

people into the 3D world. It consists of two publicly avail-
able datasets: a crowded town center, and the well known
PETS2009 dataset.

4.3. Results

The accuracy and results of each component of our sys-
tem is described at each of the experimental sections. Here
we see the final results of the tracker in table[@lfor results of
our tracker compared to other baselines on MOT3D chal-
lenge. The last 3 rows are our cross validation on MOT
challenge training set.

o vomi momR)  MIk) M)
DBN (State of art) - 1st 51.1 61.0 28.7% 17.9%
KalmanSFM (Baseline) - 5th 25.0 53.6 6.7% 14.6%

Yu's 3D 45.5 61.0 6% 3%
Appearance only (Cross validation) 38.1 54.1 15% 20%
LSTM only (Cross validation) 28.9 48.3 9% 28%
Appearance and LSTM (Cross validation) 40.3 57.1 16% 19%
Appearance and LSTM (MOT Challenge) 28.3 51.7 29.1% 21.8%

Figure 6. Primary Results on MOT3D challenge

5. Conclusion

This paper proposes a deep neural network designed for
multi object tracking. Quantitative results show that the
tracking performance is superior to the baseline tracking
methods. Our tracker can also be fine-tuned for various
applications by providing more training videos of certain
types of objects. Overall, our real-time neural network
tracker opens up many possibilities for different applica-
tions and extensions, allowing us to learn from several cues
used for representing the individuals in a crowded scene.
We demonstrate that in general, fusing appearance and mo-
tion cues together can enhance the level of performance on
the MOT task. We show our model is able to fuse and use
different data modalities and get a better performance. One
of the main advantage of our tracker to others is the scala-
bility, one can add another cue component (e.g. exclusion
model) to the model and finetune the model to reason jointly
on the new cue and previous cues.
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