
CS231A Final Project: Body Pose From Optical Flow

Winnie Lin
Stanford University

winnielin@stanford.edu

Boris Perkhounkov
Stanford University
secondauthor@i2.org

1. Introduction

1.1. Overview

Given videos with human movement as input, we wish to
track the position and velocities of body joints for each ex-
tracted frame. We experiment with various methods involv-
ing combining optical flow and other visual cues, producing
results that are less than satisfactory, but gaining quite a bit
of insight in the process.

1.2. Motivation

The joint tracking problem is one that was initially mo-
tivated by applications within markerless motion capture,
and it can also be further considered as a subcase of the hu-
man pose estimation problem, which has been widely stud-
ied and researched but mostly in the context of estimation
from single images. Only in recent years have there been
more work focused on techniques involving video input and
temporal data, and a few pieces of literature that have been
valuable to us are briefly outlined below.

2. Existing work

2.1. Review of previous work

We were initially inspired by the Fragkiadaki et al. [3]
paper on human pose prediction, where temporal data was
utilized in the form of recurrent neural networks. Origi-
nally intending on utilizing neural networks in our method,
[8] provided a solution for temporal data extraction via rep-
resentation as optical flow.

Romero et al. [6] presented a method of human pose
tracking through optical flow, utilizing flow differences of
various positions as a feature vector to perform body part
segmentation on sequential images. Other papers such as
[7] [9] also utilize motion for pose tracking by the track-
ing of rigid body parts, but operate under stricter limitations
where the body moves relatively parallel to the image plane
and does not change direction.

Figure 1. Joint positions overlaid on optical flow (visualized with
hue-coded angles and corresponding magnitudes)

2.2. Comparison

We explore different possibilities of utilizing optical flow
in joint position tracking, using no prior knowledge of hu-
man bone structure. Similar to [6] we devise a method
highly dependent on optical flow, and attempt to combine
it with other visual cues such as image patch similarity and
feature detection via Support Vector Machines trained on
Histogram of Oriented Gradients.

3. Technical description

3.1. Technical Background

Following is a description of the techniques and algo-
rithms we experimented with within this project.

1



3.1.1 Farneback Optical Flow

Optical flow describes the motion of pixel values through-
out the image, and extractions can be classified as

1. Sparse feature-tracking flow that is Lagrangian in
nature, where feature points of interest are tracked
through time, and

2. Dense position-based flow that is Eulerian in nature,
where flow vectors are calculated for each pixel posi-
tion for every frame.

In this project, we obtain the dense optical flow per im-
age using an implementation of Farneback Optical Flow[2],
where the flow field is generated first via approximating the
neighborhood of a fixed pixel using a quadratic approxi-
mation for consecutive frames, then by approximating the
difference between two quadratic equations as some linear
translation.

Mathematically, this implementation is given as follows:
Given pixel position p, its neighborhoodN (p), and the cor-
responding image rgb values It(N (p)) at frame t, we ap-
proximate

It(N (p)) ' [ft(x)]x∈N (p) = xTAtx+ bTt x+ ct

It+1(N (p)) ' [ft+1(x)]x∈N (p) = xTAt+1x+ bTt+1x+ ct+1

[ft+1(x)]x∈N (p) ∼ [ft(x+ dt)]x∈N (p)

Solving for this and setting A to be symmetric with the
property xTAx = xt

1
2 (A+AT )x), we get

ft+1(x) =xTAt+1x+ bTt+1x+ ct+1

=(x+ dt)
TAt(x+ dt) + bTt (x+ dt) + ct

=xTAtx+ ((At +AT
t )dt + bt)

Tx

+ dTt Atdt + bTt dt + ct

⇒ At =At+1 , dt = (2At)
−1(bt+1 − bt)

At 6= At+1 in most practical cases, therefore dt is com-
puted as

dt = (At +At+1)−1(bt+1 − bt).

Additional constraints on flow field smoothness are added
via a weighting of neighborhood pixel translations, and
coarse to fine multiscale computations are required to cap-
ture large scale translations.

3.1.2 Histogram of Oriented Gradients

As described in class, a image patch’s HOG descriptor is a
high dimensional feature vector, created by concatenating
normalized histograms of binned gradients for subpatches
within the image patch. Combined with classification tools
such as support vector machines, it can be used to detect
objects of a particular appearance.

3.1.3 Linear Kalman Filtering

In the most general sense, Kalman filters [5] are effective
in dealing with measurement error in updates of an object’s
physical state through time, by combining knowledge from
prior timesteps and data from current measurements to ar-
rive at the most likely state. In our case, the state of the
object will be represented as a 4D vector representing 2D
position and velocity.

A Gaussian random variable represents the probability
distribution of a state at each timestep, and is used to gen-
erate a prediction for the next state via a given transforma-
tion. Given some measured observation for the next state,
we convert that to another Gaussian random variable us-
ing empirically estimated/observed measurement error, then
multiply the 2 probability distributions together to get the
final distribution for the next timestep. The next timestep’s
state is then set to the peak of that final distribution, which
happens to be the mean of the Gaussian.

At each timestep, the object’s previous state s(t) is de-
scribed with a probability distribution in the state space via
a mean state vector µ(t) = (µ

(t)
p , µ

(t)
v )T and a Covariance

Matrix C(t). We predict the next state µ = (µp, µv)T by a
simple linear relationship

µp = µ(t)
p + µ(t)

v ·∆t

µv = µ(t)
v

Or

µ = Pµ(t) with P =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


And the estimated Covariance matrix would thus be

C = Cov(Ps(t)) + Errp = PTC(t)P + Errp

where Errp is an empirically found distribution smooth-
ing covariance matrix that models potential noise in the pre-
dicted distribution.
Now given a measured observation sm and covariance ma-
trix Errm corresponding to our belief about measurement
noise, we get our final distributions by multiplying the two
Gaussian probability density functions, arriving at a new
Gaussian distribution with

µ(t+1) = (Errm(Errm + C)−1µ+ C(Errm + C)−1sm)

= (I −K)µ+Ksm

C(t+1) = Errm(Errm + C)−1C

= (I −K)C

K = C(C + Errm)−1 is commonly referred to as the
Kalman Gain, which corresponds to the weight/importance

2



Figure 2. A comparison of joint trajectories via flow-based propa-
gation and ground truth. 400 frames of 9 different joints are plot-
ted, and ground truth is labeled in red, while our trajectories are
labeled in blue.

of the measurement relative to the prediction. In practice,
the matrices Errp and Errm need to be carefully chosen
through parameter search or empirical observations, so that
K eventually reaches a steady state.

3.2. Methods and Results

3.2.1 Propagation via Optical Flow

The first method we attempted was a direct flow propaga-
tion with

pj
(t+1) = pj

(t) + vj
(t) ·∆t

vj
(t+1) = G ∗ F (t+1)(N (p

(t+1)
j ))

where the position pj of each joint j is estimated directly
using the current state’s velocity, and the velocity vj is ob-
tained by convolving a 2D Gaussian Kernel G scaled to sum
to 1 with the optical flow F(N (pj)) of the updated joint
position’s neighborhood. With a larger Gaussian Kernel
and corresponding neighborhood, joints are less sensitive
to noise but more easily influenced by flow of neighboring
pixels, and we empirically found that a neighborhood of 32
pixels works fairly well.
Main issues with this approach was that it performed well
only under the condition that no joints cross over. It is
ambiguous how flow should propagate joints when one
joint crosses over another, and introducing artificial velocity
damping does not effectively solve this issue. Furthermore,
overly large movements cause errors that propagate through
time.
We then revised our approach with intentions of addressing
these problems.

Figure 3. Optical flow based propagation does not accurately han-
dle fast hand movements and crossing joints.

3.2.2 Patch Similarity Calculations

The first thing we tried was to adjust and refine the joint
positions by comparing the image patch centered at the pre-
vious frame’s joint position to image patches in the neigbor-
hood of the predicted position.

We started with a simple patch similarity metric

G ∗ abs(It(N (pj))− It+1(N (p̃j)))

Which is the sum of absolute pixel differences weighted by
a centered gaussian kernel. The weighting is to focus on the
joint and reduce difference caused by the translation of the
surroundings. However, this algorithm turns out to work
less well than directly propagating via optical flow. We
think that it is due to fact that extra error is introduced when
there are non discrete translations of joints (ex. translations
that are not of dicrete pixel units,) which causes drifting
when there is small motion in the joints. This error again
propagates throughout the timesteps.

Algorithm 1 Pseudocode for image patch differences
1: Initialize image patch and position for first frame, set velocity to 0
2: for frame do
3: for joint do
4: predicted position = previous position + previous velocity * timestep

size
5: Calculate similarities between previous image patch and image patches

in predicted positions neighborhood
6: Position = center of best fitting image patch
7: Velocity = optical flow in the neighborhood of position
8: Image patch = cropped subimage centered at current position
9: end for

10: end for

3.2.3 Kalman Filtering with HOG

Our next approach was to attempt to resolve ambiguities by
tracking each major joint with a Kalman filter, getting our
measurements from first predicting where the joint would
next be, then searching for the optimal joint position within
a neighborhood of the prediction via Support Vector Ma-
chines individually trained on HOG features of each joint.

3



Figure 4. Example of our flow propagated joint tracking method

Figure 5. A comparison of joint trajectories via optical flow+image
patch matching and ground truth. 100 frames of 9 different joints
are plotted, and ground truth is labeled in red, while our trajec-
tories are labeled in blue. A lot of drifting occurs initially when
joints are relatively static, which we think is due to ambiguity in
small non-discrete motion.

Measured velocity would then be the Gaussian convolved
neighborhood optical flow identical to our first approach,
and in the case of no HOG detection we would just use the
predicted position and update accordingly.

Figure 6. Simple image patch similarity calculations

Algorithm 2 Pseudocode for HOG+Kalman Filtering
1: Initialize 1 Kalman Filter, load 1 SVM per joint
2: for frame do
3: for joint do
4: initPos = KalmanFilter.PredictPosition
5: Search for positively classified HOG descriptor in init-

Pos.Neighborhood
6: if descriptor found then
7: measuredPos = descriptor.Position
8: else
9: measuredPos = initPos and do HOG search in entire image for next

frame
10: end if
11: measuredVelocity = optical flow in the neighborhood of measured posi-

tion
12: KalmanFilter.Update(measuredPos, measuredVelocity)
13: finalPos = KalmanFilter.CurrentState
14: end for

15: end for

After implementing the pseudocode as described above,
we used ground truth joint positions of various videos to
crop image patches centered at joints for training our SVM,
and pruned occlusions and repeating images out. However,
we soon realized that the SVMs trained were too low quality
for use, as attempting to train a single SVM on the many

4



Figure 7. Head detection (left) and foot detection (right)

poses and angles of the corresponding joint resulted in a
large number of false positives. This was rather sad.

3.3. Experimential setup

We implemented everything in Python, utilizing
OpenCV [1]’s optical flow and video processing functions.
We utilized the Human3.6M dataset [4] that includes videos
of human movement and ground truth 2D joint positions
captured via motion capture.

4. Conclusions and Future Work
Despite less than satisfactory results, this was an intrigu-

ing project to work on. Furthermore, through talking to an-
other group working on body pose estimation via an exten-
sion of [10], we think combining optical flow with a similar
pose-angle aware HOG detector system seems promising,
and we’d like to explore similar possiblities in the future.

5. Acknowledgements
We’d like to thank the teaching staff for their help and

guidance this past quarter, and to particularly thank Profes-
sor Savarese for his suggestions on existing literature, and
Kevin Chen for his advice on Neural Networks.

References
[1] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[2] G. Farnebäck. Two-frame motion estimation based on

polynomial expansion. In Image analysis, pages 363–370.
Springer, 2003.

[3] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent
network models for human dynamics. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4346–4354, 2015.

[4] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014.

[5] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Journal of basic Engineering, 82(1):35–45,
1960.

[6] J. Romero, M. Loper, and M. J. Black. Flowcap: 2d human
pose from optical flow. In German Conference on Pattern
Recognition (GCPR), 2015.

[7] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic track-
ing of 3d human figures using 2d image motion. In Computer
VisionECCV 2000, pages 702–718. Springer, 2000.

[8] D. Teney and M. Hebert. Learning to extract motion
from videos in convolutional neural networks. CoRR,
abs/1601.07532, 2016.

[9] Y. Yacob and L. Davis. Learned temporal models of image
motion. In Computer Vision, 1998. Sixth International Con-
ference on, pages 446–453. IEEE, 1998.

[10] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages
1385–1392. IEEE, 2011.

5


