Modeling and Packing Objects and Containers through Voxel Carving

Alex Adamson

aadamson@stanford.edu

Abstract

This paper describes a system which attempts to deter-
mine whether it is possible to pack a set of objects into a
container. This is done by using multiple photos of each
object on a calibration grid to generate 3D models of the
objects and containers plus a bin packing algorithm to find
a working arrangement of the objects. We found that by us-
ing the CIELab colorspace it was possible to use K-Means
clustering to reliably silhouette many pictures of the object
with minimal user interaction, which allowed for the cre-
ation of reasonably accurate voxel models through carving.
We also found that the number of frames used for each ob-
Jject impacted the size of the voxel models and the efficiency
of the bin packing algorithm. More frames made the num-
ber of voxels in the objects decrease and thus allowed more
of them to be packed. It also decreased the number of vox-
els in the container, which decreased the number of objects
that the algorithm said could be packed.

1. Introduction

We create a semi-supervised system to create 3D models
from photographed objects and containers, and then deter-
mine how to fit the objects in the containers. For example,
one could take pictures of toys and pictures of a box and
the system would determine if those toys could be fit into
the box. Our method relies on determining the pose of the
camera (camera parameters), silhouetting the object from
the background, creating a 3D model from the photos, and
determining the way to pack the objects.

1.1. Review of Previous Work

Previous work in image segmentation and silhouettes use
a variety of different methods. For example, there are sim-
ple threshold methods, clustering methods using K-Means,
EM, and mean shift [4] [7], the watershed method [2]], and
graph based methods such as normalized cut [9].

There are a number of methods to do 3D model gener-
ation from views. These include space carving for voxel
models [6] and mesh acquisition from stereo imagery [8]].

Bin packing is a problem with implications for a variety

Nikhil Lele

nlele@stanford.edu

Maxwell Siegelman

maxsiegl@stanford.edu

of industries, so a number of heuristics exist. The heuristic
we chose to base our algorithm on moved from the bottom
of the container to the top, creating levels and trying to fill
each level with objects of the appropriate size [3l.

We were also inspired by the project from March 2014:
“Counting jelly beans: voxel carving and segmentation of a
container of heterogeneous objects.” [5]

1.2. Key Contributions

Our first key contribution is showing that a system com-
bining silhouetting, voxel carving and a packing heuristic
with minimal supervision can output reasonable estimates
for how many objects can be packed into a container as well
as arrangements of a variety of objects in a container. An
important sub-point of this contribution is the usage of k-
means along with the CIELab colorspace and minimal hu-
man interaction in order to quickly form silhouettes from
input photos. Another key contribution from this paper is
the investigation of how the number of frames used as input
effects the results of the process, specifically the bin pack-
ing efficiency.

2. Technical Solution
2.1. Determining Camera Pose

In order to extract the camera extrinsics for each view-
point around an object and to get the camera intrinsics, we
use Matlab’s camera calibration toolbox and then transform
the parameters so that we can left-multiply world coordi-
nates by the projection matrix in order to recover image
points. This necessitates having the camera calibration grid
in each picture. The camera calibration toolbox assumes
that we are right-multiplying:

2T = XTpT

T
[l

so in order to be able to recover image points via left-
multiplication, we simply take the transpose of all the com-

ponent matrices:

=K[R T]X

2.2. Silhouette Generation

Our method to mask out the silhouette of the object relies
on having a contrasting color with the background. We use
the K-Means algorithm, which iteratively partitions data by
assigning every data point to one of K clusters, where K is
chosen before hand. In our case, the data points are every
pixel in the image, and the clusters correspond to the most
prominent colors in the image.

To mask out the silhouette of the object, we select all
pixels that correspond to a particular cluster chosen by the
user. For example, for a blue bowl we select the pixels from
the cluster with the most blue centroid. See figure[Tb where
each pixel is colored black, gray, or white corresponding to
which cluster it has been assigned to. Then in figure [Ic| we
mask out only the pixels from the most blue centroid. Note:
We choose a low value of K such as 3 or 4 to ensure that
we end up with a conservative estimate of the silhouette that
will later be carved down by other views.

Lastly we refine the mask by morphologically closing
the holes in the image with circles of a small radius. We use
the Matlab imclose function, which uses methods based
on morphological reconstruction [10]. See figure[Id]

2.2.1 CIELab Color-Space

Before finding the silhouette, we first convert the image
from RGB color-space to the CIELab color-space. The
CIELab color-space consists of a lightness axis ‘L’ and two
color channels ‘a’ and ‘b’. The ‘a’ channel runs from green
to red and the ‘b’ channel runs from blue to yellow [[1]. See
figure 2] for a visualization of the axes of the color-space.
This color-space is more useful for separating images on
the basis of color because it more faithfully represents the
way humans see color at the expense of not corresponding
to pixels on our screens. Grays, browns, and other dull col-
ors are harder to reason about in CIELab because they all
lie near the origin, but our example objects have stronger
colors that are especially suited to this color-space. In addi-
tion, because the lightness value is orthogonal to the color
information, we can choose to only use the color axes for
K-Means. This makes the clustering robust to changes in
lighting and shadows.

(a) Original photo of blue bowl (b) Color-coding of clusters

(c) Mask of just the blue bowl (d) Refining mask with infill-
ing

Figure 1: Pipeline for silhouette acquisition using K-Means
and infilling.

Figure 2: Axes of the CIELab color-space [1]]

In figure [3] we can clearly see that in RGB space and
with the full CIELab space that the blue bowl is in the same
cluster as parts of the checkerboard and the wall-mounting
apparatus. By removing the lightness value and only con-
sidering the color channels ‘a’ and ‘b’, we are able to easily
separate the blue bowl from the background and distinguish
it from the other items in the picture.

2.3. 3D Model Generation

For 3D model generation, we use a standard voxel carv-
ing approach. Given a set of tuples F' where F; =
(P;, S;, I;) containing the camera projection matrix P;, the
silhouette of the object S; in the image, and the image from

(a) K-Means in RGB space

space

(b) K-Means using full CIELab (c) K-Means without lightness

from CIELab space

Figure 3: Comparing silhouette quality using different color-spaces. K-Means using only the color channels from CIELab
space performs much better than either using RGB space or using the full CIELab space.

the ¢th viewpoint I;, we form a voxel model for the object as
follows: Using the camera parameters and silhouette of the
first tuple (here we assume that all images contain the entire
object within their frame), we construct an initial bounding
voxel prism. On successive iterations, for each voxel that
has not been cut out yet, we remove it from the carving ei-
ther if it projects outside of the frame of the image (since
we are assuming that for each image, the entire object is
contained in the frame) or if it projects into a pixel in the
silhouette that was not considered part of the object by the
silhouette-forming algorithm.

function CARVE(c, P, S, I)

X<+ Pxc
packings < 0
for X; € X do
if S(X;) = 0 then
C —=2¢;
end if
if X; ¢ I then
C —=¢;
end if
end for
return c

end function

Our use of a straightforward voxel carving algorithm is
justified by the fact that we are assuming that our contain-
ers are hollow and hence we in general do not care about
concavities since they will not affect how many objects we
can place in them later in the pipeline. Additionally, our
bin packing algorithm is not advanced enough to allow ob-
jects within the container to interlock within each other’s
concavities, so there is no potential gain from the perspec-
tive of getting more efficient packings (less approximation
error) by improving the carving routine.

2.4. Bounding Boxes

It greatly simplified the bin packing algorithm to put the
object models in bounding cuboids rather than trying to
pack them immediately. While algorithms exist which find
the smallest bounding box of an object using the convex
hull of the object’s point cloud, we decided it would be pru-
dent to save time on this aspect and simply bound the voxel
model by its smallest and largest X, y and z coordinates.
This approach results in some inefficiency, both because a
bounding box is strictly larger than the object it bounds and
because the boxes we chose to use were not minimal, but it
provides sufficiently good performance to allow us to exam-
ine the viability of our overall setup as well as how chang-
ing our silhouetting algorithms and their inputs affects the
efficiency of our bin-packing algorithm.

2.5. Bin Packing

The bin packing algorithm we used greedily attempts to
fill the container with the objects, at this point surrounded
with bounding rectangles, by going from the bottom of the
bin to the top, filling one level at a time. All of the bounding
rectangles are first sorted by their z coordinates, then placed
into the container. The first location where a fit is attempted
is determined by first finding the smallest z coordinate in the
container, then the smallest y coordinate with that z coordi-
nate, then the smallest x coordinate with that y coordinate
and z coordinate. Then the objects are then placed from
largest z coordinate to smallest, trying to use the initial z
coordinate for as long as possible by fitting objects in the x
direction and then in the y direction. Once no more objects
can be fit on that level a new level is started based on the z
coordinate of the first object placed (since the first one had
the largest z coordinate) and the process starts again. This
heuristic is fairly simplistic and could certainly be improved
upon, for example by trying to fill lower levels with objects
rather than giving up on them. However, just like in the case
of the bounding boxes we determined that writing a highly
complex packing heuristic was not necessary to examine the

viability of our overall setup or for evaluating the impact of
our silhouetting algorithms on efficiency. This bin packing
heuristic will work for any convex container, but it works
best for containers that are close to being boxes. The heuris-
tic will report whether it found a workable arrangement for
a set of objects and a container, or with minor tweaking can
also report how many of a single kind of object it can fit in
a container.

Object arrangement

Figure 4: An example packing result, showing bounding
boxes

3. Experiments
3.1. Experimental Setup

To analyze the effectiveness of our pipeline, we run
it from start to finish on images taken of a small plastic
bowl and a macadamia nut cluster and compare how many
macadamia nut clusters our algorithm can pack into the
bowl compared to how many we can pack into the bowl
manually. We seek to analyze how the number of clusters
that can be packed into the bowl by our bin packing algo-
rithm scales with the number of frames used to carve the
bowl and the number of frames used to carve the macadamia
nut cluster.

Intuitively, as we add more frames to carve the bowl, we
should be getting a progressively tighter upper bound on
the actual expanse of the bowl, so increasing the number
of frames used to carve the bowl should decrease strictly
(assuming we are only adding frames, not removing and
adding) decrease the number of clusters that we can pack.
On the other hand, increasing the number of frames used
to carve the nut cluster should also progressively slim the
output voxel carving to the expanse of the real cluster, so
using more frames to carve the nut cluster should strictly
increase the number of clusters that our algorithm can fit
into the bowl.

We began with 20 images of the macadamia nut cluster
and 16 images of the small bowl, all with the calibration
grid in the background. The camera angles are distributed
roughly evenly on a spherical cap around the object (our rig
involved mounting the object on a small pole that extended
about a foot from a wall, so we were obstructed by the wall
from taking pictures from the reverse). We construct sil-
houettes of the respective object from all images and store
them. Then, to find the number of objects that we can pack
using carvings formed from n frames of the bowl and m
frames of the nut cluster, we sample as follows:

function MEANNUMBERPACKINGS(cy, iters, fn, [p)
> ¢g is the initial voxel box
> f,, is an array containing the frames (silhouettes and
camera parameters) of the cluster
> fp is an array containing the frames (silhouettes and
camera parameters) of the bowl
packings < 0
for iter € [1,iters] do
Cp < Co
Cp < Co
for i € SAMPLEW/OREPLACEMENT(20, m) do
¢n < CARVE(Cy, fn (7))
end for
for i € SAMPLEW/OREPLACEMENT(16,7) do
¢p < CARVE(cp, fp(1))
end for
packings += NUMPACKINGS(cp, ¢;,)
end for
return packings/iters
end function

3.2. Results

Figure[5|shows a sample progression of the carving as we
use successively more frames to carve the cluster. Of par-
ticular note is that for a low number of frames, the oblong
protrusion along the top of the cluster is especially large
and the base of the cluster is broader and flatter than it is
in reality. Figure[/|shows the effect on the volume that us-
ing additional frames has on the number of voxels: moving
from four to eight frames eliminates over a quarter of the
voxels used for the cluster. The effect on the deformations
of adding the frames is demonstrated visually in figure [5}
adding the additional frames substantially smooths out the
base and shaves away the protrusion along the top.

Number of sampled frames | Mean number of voxels
4 3982.8
8 2909
14 2285

Figure 7: Voxels as we vary the number of frames used to
form the carving for the macadamia nut cluster

Result after all carvings

+

Result aftor al

Il carvings Result aftor all carvings.

(a) Example carving of the macadamia nut (b) Example carving of the macadamia nut (c) Example carving of the macadamia nut

cluster using four frames

cluster using eight frames

cluster using fourteen frames

Figure 5: Carvings using sampled subset of images of macadamia nut cluster

Result after all carvings

Result after all carvings

0 7 °
3 7
x]

Result after al carvings

12
A > 10
6 s x

1

v

(a) Example carving of the small bowl using (b) Example carving of the small bowl using (c) Example carving of the small bowl using

four frames eight frames

twelve frames

Figure 6: Carvings using sampled subset of images of small bowl

We should expect that refining these protrusions would
have an out-sized impact on the number of objects that we
are able to pack using our bin packing algorithm since we
effectively consider the bounds of the object to be its extent
in any direction. This effect can be seen in figure[8} as we
increase the number of frames used to carve the macadamia
nut cluster, the number of clusters that we can fit in the bowl
increases without clear diminishing gains regardless of the
number of frames used to carve the bowl.

4 8 12
4 1238 158 1.58
8 | 288 233 2.08
14 | 3.50 3.17 2.67

Figure 8: Number of clusters that our algorithm is able to
pack into the bowl. Number of frames used to carve bowl
varies over columns, number of frames used to carve cluster
varies over rows

We can contrast with the effect that using more frames
to carve the bowl has on the number of objects that we
are able to pack into the bowl. Looking at figure [8] when
using four or eight frames to carve the cluster, there is a

clear limit to the gains (i.e. decrease in clusters packed)
made from using additional frames to carve the bowl. This
can largely be accounted for by the simplicity and lack
of deformations present in the bowl. Looking at figure [6]
we see that the carving produced by using twelve frames
is nearly identical to that produced by using eight frames.
There simply are not any interesting features on the bowl
that necessitate the use of additional frames to get a proper
carving of. This is reflected in figure [0} Adding additional
frames only slightly reduces the number of voxels that we
use to represent the bowl.

It is also a noteworthy result that our silhouetting al-
gorithm never caused a failure of the voxel carving method
by not marking enough of a picture as part of the object,
regardless of the number of frames used.

Number of sampled frames | Mean number of voxels
4 6250.3
8 5677
12 5320

Figure 9: Voxels as we vary the number of frames used to
form the carving for the bowl

4. Conclusions

We create a semi-supervised system that uses pho-
tographs of objects and containers and determines how
many objects can be packed.

First we use a calibration target in each photograph to
determine camera parameters. Then by using K-Means in
the CIELab color-space without lightness values, we cre-
ate very robust silhouettes that are improved by infilling.
From these silhouettes we use voxel carving to create a 3D
model that is iteratively improved. Lastly we use a simple
bounding-box method to greedily pack the 3D models of
the objects inside the container.

We found that more complex objects such as the
macadamia nut cluster require more photos to create a tight
model while simple objects like the bowl show that there
are diminishing returns from more photos of the object.

Future work could greatly improve usability of the sys-
tem by providing a GUI to select the color of object to be
silhouetted, or even have the program determine which clus-
ter to use automatically. Ideally, the method would be made
to not require the calibration checkerboard or necessitate the
user taking lots of photos. Also, the bin packing system can
be greatly improved to allow for rotations of objects in the
containers as well. If it is improved to allow for objects’
concavities to intersect, then perhaps voxel carving will be
too simple of a method to generate the 3D models.

References

[1] Adobe Systems Incorporated. Adobe technical guides, 2000.

[2] S. Beucher and F. Meyer. The morphological approach
to segmentation: the watershed transformation. OP-
TICAL ENGINEERING-NEW YORK-MARCEL DEKKER
INCORPORATED-, 34:433-433, 1992.

[3] J.Bialek. Packaging optimization in supply chain. Logistyka,
(6), 2014.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(5):603-619, 2002.

[5] A. Cope and M. O’Meara. Counting jelly beans: voxel carv-
ing and segmentation of a container of heterogenous objects.
CS231A Final Project Report.

[6] K. N. Kutulakos and S. M. Seitz. A theory of shape by
space carving. International Journal of Computer Vision,
38(3):199-218, 2000.

[7] D. Liu, B. Soran, G. Petrie, and L. Shapiro. A review of
computer vision segmentation algorithms.

[8] L.-P. Morency, A. Rahimi, and T. Darrell. Fast 3d model
acquisition from stereo images. In 3D Data Processing Vi-
sualization and Transmission, 2002. Proceedings. First In-
ternational Symposium on, pages 172-176. IEEE, 2002.

[9] J. Shi and J. Malik. Normalized cuts and image segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888-905, 2000.

[10] P. Soille. Morphological image analysis: principles and ap-
plications. Springer Science & Business Media, 2013.

