
Study of Viola-Jones Real Time Face Detector

Kaiqi Cen
cenkaiqi@gmail.com

Abstract

Face detection has been one of the most studied topics
in computer vision literature. Given an arbitrary image, the
goal of face detection is to determine whether or not there
are any faces in the image and, if present, return the image
location and extent of each face. While this appears to be a
trivial task for human beings, it is a very challenging task
for computers. The difficulty associated with face detection
can be attributed to many variations in scale, location, view
point, illumination, occlusions, etc. Although there have
been hundreds of reported approaches to face detection, if
one were asked to name a single face detection algorithm
that has the most impact in recent decades, it will most likely
be the Viola and Jones face detection, which is capable of
processing images extremely rapidly and achieve high de-
tection rates. This project is going to study and understand
the Viola-Jones algorithm by implementing the whole detec-
tion framework and based on the implementation, conduct
experiment to hopefully further improve the performance.

1. Introduction

This report is going to cover the details of implement-
ing the 3 key components of the Viola-Jones detection al-
gorithm: first is the introduction of a new image representa-
tion called ”Integral Image” which allows the features used
by our detector to be computed very quickly; the second
is a learning algorithm, based on AdaBoost, which selects
a small number of critical visual features from a larger set
and yields extremely efficient classifiers; the last core com-
ponent is a method for combining increasingly more com-
plex classifiers in a ”cascade” which allows background re-
gions of the image to be quickly discarded while spending
more computation on promising face-like regions. The re-
port then analyzes the performance limitation of our own
implementation and introduce an experimental solution by
utilizing HOG features with SVM classifier. The Experi-
ment Setup & Result shows the actual results of running
and testing our own classifiers on the standard testing set.

2. Technical Content
The Viola-Jones face detector contains three main ideas

that make it possible to build a successful face detector that
can run in real time: the image integral, classifier learning
with AdaBoost, and the attentional cascade structure.

2.1. Image integral and feature extraction

The first step of the Viola-Jones face detection algorithm
is to turn the input image into an integral image. Integral
image, also known as a summed area table, is an algorithm
for quickly and efficiently computing the sum of values in
a rectangle subset of a pixel grid. The integral image at
location x, y contains the sum of the pixels above and to the
left of x, y, inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′),

where i(x, y) is the pixel value of the original image and

Figure 1. Example of integral image [2]

ii(x′, y′) is the corresponding image integral value. Using
the integral image to compute the sum of any rectangular
area is extremely efficient, as shown in Figure 2. The sum
of pixels in rectangle ABCD can be calculated with only
four values from integral image:∑

(x,y)∈ABCD

i(x, y) = ii(D) + ii(A)− ii(B)− ii(C).

The base resolution of a sub-window in our implementa-
tion is 19 by 19 pixels. The main reason is that the data set
we are going to use are all preprocessed to be 19 by 19 pixel
face or non-face images so that we don’t have to spend extra
time on data preparation. Also the 19 by 19 pixels resolu-
tion is relatively close to the 24 by 24 pixels sub-window

1

Figure 2. Illustration of the integral image and 6 types of Haar-like
rectangle features

used in [5]. In our implementation, for each image sam-
ple, we extract two types of Haar-like features: the vertical
feature and the horizontal feature (type (a) and (b) in figure
2). Given a image input which is 19 by 19 pixels, we com-
pute all possible Haar-like vertical and horizontal features.
Therefore the total number of features we extract from one
image input is:

(18 + 16 + ...+ 2) ∗ (19 + 18 + ...+ 1) ∗ 2 = 34200

These features can be efficiently computed by first com-
puting the integral image I . Note the integral image I cal-
culated is 20 by 20 pixels as I starts with a row and column
of zeros. As a Haar-like feature value is calculated by the
pixel sum of the darker rectangle minus the pixel sum of the
lighter rectangle, each Haar-like feature can then be com-
puted as the sum of 6 values from I:

f = −I(x1, y1) + I(x2, y2) + 2I(x3, y3)

− 2I(x4, y4)− I(x5, y5) + I(x6, y6).

Figure 3. Computing two-rectangle Haar-like features

The extractFeature function implements all the
feature extraction logic. It takes in imgNum number
of images, computes all possible vertical and horizontal
Haar-like features, which is 34200, and save them to a
34200×imgNum matrix. The groupFeature function
later divides the matrix into several 5000×imgNum smaller
matrices which are used in training phase and make debug-
ging easier.

2.2. AdaBoost Learning

Given a feature set and a training set of positive and neg-
ative images, any number of machine learning approaches

could be used to learn a classification function. The Viola-
Jones uses a variant of AdaBoost to both select a small set
of features and train the classifier. A single AdaBoost clas-
sifier consists of a weighted sum of many weak classifiers,
where each weak classifier is a threshold on a single Haar-
like rectangular feature. The weight associated with a given
sample is adjusted based on whether or not the weak classi-
fier correctly classifies the sample.A single weak classifier
is defined as:

h(x, f, p, θ) =

{
1 pf(x) < pθ

0 otherwise
,

where f denotes the feature value, θ is the threshold and p
is the polarity indicating the direction of the inequality.

In our implementation, the AdaBoost learning procedure
is as follows:

1. Given training sample images (x1, y1), ..., (xn, yn),
where yi = 0, 1 for negative and positive examples
respectively.

2. Initialize the classifier count t = 0 and the sample
weights wi = 1

2m ,
1
2l for yi = 0, 1 respectively, where

m and l are the number of negative and positive sam-
ples.

3. While the number of negative samples rejected is less
50%:

(a) Increment t = t+ 1.

(b) Normalize the weights wi = wi∑
j wj

.

(c) Select the best weak classifier with respect to the
weighted error

εt = min
f,p,θ

∑
i

wi|h(xi, f, p, θ)− yi|.

(d) Define ht(x) = h(x, ft, pt, θt) where ft, pt and
θt are the minimizers of εt.

(e) Update the weights as

wi = wiβ
1−ei
t ,

where βt = εt
1−εt and ei = 0 if example xi is

classified correctly, ei = 1 otherwise.

(f) Compute the strong classifier

H(x) =

{
1

∑T
t=1 αtht(x) ≥ γt

0 otherwise
,

where αt = log 1
βt

and γt is chosen such that all
positive training samples are correctly classified.

2

Figure 4. Cascade work flow

(g) Evaluate negative samples by the newly com-
puted strong classifier H and update the number
of rejected negative samples

To calculate the minimum error in step (c), we have to
search over every possible feature for every single training
sample. However, for a given feature, we can pass through
a sorted list of the training images once to find the optimal
θ. This can be accomplished by maintaining four sums: the
total sum of positive sample weights T+, the total sum of
negative sample weights T−, the sum of positive sample
weights below the current sample w+, and the sum of neg-
ative weights below the current sample w−. The error for
a threshold which splits the range between the current and
previous sample in the sorted list can be computed as

e = min(w+ + (T− − w−), w− + (T+ − w+)).

Note that the first error in the min function is the error as-
sociated with labeling all samples below the current sample
negative and labeling the samples above positive. In this
case, the polarity of the weak classifier should be p = −1.

2.3. Cascade Classifier

The cascaded classifier is composed of stages each con-
taining a strong classifier from AdaBoost. The job of each
stage is to determine whether a given sub-window is defi-
nitely not a face or maybe a face. When a sub-window is
classified to be a non-face by a given stage it is immediately
discarded. Conversely a sub-window classified as a maybe-
face is passed on to the next stage in the cascade. It follows
that the more stages a given sub-window passes, the higher
the chance the sub-window contains a face.

The AdaCascade script contains the implementation
of AdaBoost learning under Cascade structure. In our im-
plementation the first stage trains a strong classifier by the
AdaBoost procedure explained in section 2.2. with features

from all training samples. Then we use the strong classifier
to classify training samples and calculate false positive and
false negative counts for this stage. The second stage will
train a strong classifier using only the samples classified as
positive by the first stage. Use the strong classifier to clas-
sify the remaining samples and calculate the false positive
and false negative count for this stage. Repeat the stages
until one stage achieves zero false positive and false nega-
tive. All strong classifiers threshold in each stage are saved
to form the final Cascade classifier. Figure 4 has the illus-
tration of the Cascade process.

2.4. HOG with SVM Alternative

Our implementation of the Viola-Jones face detector
yields good performance with frontal faces from the MIT
face database. However, when testing with the subset of
CMU test set, the detection rate drops significantly. One
of the major possible reason is that unlike the training set
which mainly are frontal faces, the CMT test set contains
more multiview variations and illumination changes. Ac-
cording to [5] and [6], the original Haar-like feature set has
limitation for multi-view face dection and lack robustness
in handling faces under extreme lighting conditions, despite
that the Haar features are usually normalized by the test
window’s intensity covariance.

In this case, Histogram of Orientated Gradient(HOG)
becomes a great alternative feature option as it is largely
invariant to global illumination changes and is capable of
capturing geometric properties of faces that are difficult to
capture with linear edge filters such as Haar-like features.
Unlike the Haar-like features, the HOG feature space is rel-
atively small for a 19 by 19 images. Therefore, the idea to
improve detection rate is to quickly extract HOG features
and train a very simple SVM classifier and combine it with
the Cascade classifier. Function extractHOGFeature
computes the HOG features in a similar manner to what

3

we did in problem set 3: it calls computeHOGFeature
function to compute the gradient and magnitude and create
histogram of gradient orientations; All block features are
bi-linearly interpolated and binned to N orientations and
finally being concatenated together. After tuning the pa-
rameters, cell size of 6 pixels, block size of 2 cells with 9
bins yield the best performance For a 19 by 19 pixels win-
dow. Finally, the simple SVM classifier is trained by using
vl svmtrain() of the vl feat library. The testSVM
script contains the code for training and testing simple SVM
classifier on the testing data set. The Cascade classifier and
SVM classifier are combined as

H(x) =

{
1 C(x) = 1 or S(x) = 1

0 otherwise
,

where C is the Cascade classifier, S is the SVM classifier
and H is the final classifier.

3. Experiment Setup and Results

Figure 5. training images (left) v.s. testing images (right)

The data set used for training and testing comes from
MIT CBCL Face Database.Click here for accessing the data
set. The training set face were generated for [4]. The train-
ing set non-faces were generated for [1]. The test set is a
subset of the CMU Test Set 1 [3], information about how the
subset was chosen can be found in [1].All samples are 19
by 19 pixels Grayscale PGM format images. The training
set has 2,429 faces and 4,528 non-faces. The test has 472
faces and 23,573 non-faces. All the source code is written
in Matlab and the only external library we used is vl feat
library.

The final Cascade classifier is trained on 2000 faces and
2000 non-faces from the training set and the final Cascade
classifier has 9 stages. When testing on 429 remaining faces
and other 1000 non-faces from the training set, the detec-
tor successfully detects 425 faces and mis-classifies 0 non-
faces. The false negative rate is below 1% and the false
negative rate is zero. The result is shown at Figure 6.

However, when testing on the CMU Teset Set with 472
faces and 1000 non-faces, 17 non-faces are classified as
faces, which yields a pretty low false positive rate of 1.7%,

Figure 6. Result of testing on training data

but the detector fails to detect 275 faces which indicates a
false negative rate of 58.4% and 41.6% detection rate. The
result is shown at Figure 7.

Figure 7. Result of testing on subset of CMU Test set

For the HOG + SVM classifier, after tuning the HOG
hyper parameters, the best performance achieved on the
same 471 faces and 1000 non-faces data sets is 37%-
42% detection rate and 2.9%-3.5% false positive rate,
with cellsize = 6, blocksize = 2 (12 by 12 pixels) and
binnumber = 9.

When testing the final classifier by combining the cas-
cade classifier and SVM classifier on the same 471 faces
and 1000 non-faces data sets, the detection rate increases
from 41.6% to 62.8% (296 faces) while the false positive
rate also increases from 1.7% to 5.9% (59 non-faces).As
shown in Figure 8, the final results, the combination of Ad-
aBoost + Cascade and HOG + SVM successfully improves
the performance by a 20% increase in detection rate but
also with a trade off of a 5% increase in false positive rate,
which is relatively acceptable. The testClassifier
script contains the code for testing all the classifiers.

4

http://cbcl.mit.edu/software-datasets/FaceData2.html
http://cbcl.mit.edu/software-datasets/FaceData2.html

Figure 8. Result of testing combined classifier on CMU Test set

4. Conclusion
The purpose of this project was to implement the Viola-

Jones face detection algorithm and obtain reasonable per-
formance. The results we tested meet our expectations and
the experimental solution proposed effectively improves the
performance of the final implementation. In terms of the
processing time of our final detector, surprisingly the time
bottle neck was not at the AdaBoost learning phase but the
Haar-like rectangular feature extraction phase. It took me
over 2 hours to extract 34200 features for 2000 training
samples while the total learning time on 2000 positive sam-
ples and 2000 negative samples is within 1 hour. This fact
indicates that firstly the attentional cascade applied in Viola-
Jones algorithm indeed effectively speeds up the training
process. Secondly Haar-like feature space is actually pretty
huge and time consuming to compute. It is also likely that
our code for feature extraction can be re-factored in a more
time-efficient manner.

Besides, there are many other aspects that can be im-
proved. First of all, data preparation seems to be a ma-
jor source of performance limitation. Given more image
data sets with more ideal image size (around 24 by 24 pix-
els), we are able to train a more solid classifier. With sub-
window larger than 19 by 19 pixels a lot more feature values
can be extracted for both Cascade and SVM classifier and
thus more details of the face can be well captured. Sec-
ondly, in terms of feature extraction, our implementation
only extracts 2 types of Haar-like features. To improve per-
formance, many more types of Haar-like features actually
can be applied for training. Especially, the type c feature
in figure 2 seems to be a representative feature as nose oc-
cupies significant part of a 19 by 19 pixel face. The SVM
classifier can also be incorporated into the cascade structure
to speed up if learning time scales up with increasing data
samples.

The source code of the project can be found at https:
//github.com/JackCen/CS231A

References
[1] B. Heisele, T. Poggio, and M. Pontil. Face detection in still

gray images. A.I. memo 1687, Center for Biological and
Computational Learning, MIT, Cambridge, MA, 2000.

[2] O. H. Jensen. Implementing the Viola-Jones face detection al-
gorithm. PhD thesis, Technical University of Denmark, DTU,
DK-2800 Kgs. Lyngby, Denmark, 2008.

[3] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-
based face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(1):23–38, 1998.

[4] K.-K. Sung. Learning and Example Selection for Object
and Pattern Recognition. PhD thesis, MIT, Artificial Intel-
ligence Laboratory and Center for Biological and Computa-
tional Learning, Cambridge, MA, 1996.

[5] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pat-
tern Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on, volume 1, pages I–
511. IEEE, 2001.

[6] C. Zhang and Z. Zhang. A survey of recent advances in face
detection, 2010.

5

https://github.com/JackCen/CS231A
https://github.com/JackCen/CS231A

