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Abstract

Caption generation has long been seen as a difficult
problem in Computer Vision and Natural Language Pro-
cessing. In this paper, we present an image captioning
model based on a end-to-end neural framework that com-
bines Convolutional Neural Network and Recurrent Neural
Network. Critical to our approach is a ranking objective
that attempts to add discriminatory power to the model. Ex-
periments on MS COCO dataset shows that our model con-
sistently outperforms its counterpart with no ranking objec-
tive, both quantitatively based on BLEU and CIDEr scores
and qualitatively based on human evaluation.

1. Introduction

Several methods have been proposed for the task of im-
age caption generation. Most of these methods are based on
Recurrent Neural Networks, inspired by the successful use
of sequence-to-sequence training with deep recurrent net-
works in machine translation [[1} 12} [14].

The first deep learning method for image captioning was
proposed by Kiros et al. [8]]. The method utilizes a multi-
modal log-bilinear model that is biased by the features from
the image. Kiros et al. [9] extends this work by proposing
a method that allows both ranking and caption generation.
Mao et al. [[11] replaces the feed-forward neural network
with a recurrent neural network. Vinyals et al. [[15] used a
LSTM (Long short-term memory) network, which is a re-
fined version of a vanilla recurrent neural network. Unlike
Mao et al.’s and Kiros et al.’s models, which feed in im-
age features at every time step, in Vinyals et al.’s model the
image is fed into the LSTM only at the first time step.

Unlike the above works that represent image as a single
feature vector, Karpathy et al. [5] learn detectors for sev-
eral visual concepts and train a model that generates natural
language descriptions of images and their regions. Xu et
al. [16] propose approaches to caption generation that at-
tempt to incorporate a form of attention with either hard”
or ’soft” attention mechanism.

Contributions Aiming to generate more discriminatory
captions, we propose a novel ranking objective (elaborated
in[3.2) on top of the end-to-end neural framework for im-
age caption generation, which enforces alignments between
images and generated captions.

2. Related Work
2.1. Previous Work

Several methods have been proposed for the task of im-
age caption generation. Most of these methods are based
on Recurrent Neural Networks, inspired by the successful
use of sequence-to-sequence learning with deep recurrent
neural networks in machine translation [[1} 2, [14].

The first deep learning method for image captioning was
proposed by Kiros et al. [8]]. The method utilizes a multi-
modal log-bilinear model that is biased by the features from
the image. Kiros et al. [9] extended this work by proposing
a method that allows both ranking and caption generation.
Mao et al. [[I1] replaces the feed-forward neural network
with a recurrent neural network. Vinyals et al. [[15] used a
LSTM (Long short-term memory) network, which is a re-
fined version of a vanilla recurrent neural network. Unlike
Mao et al.’s and Kiros et al.’s models, which image features
are fed in at every time step, in Vinyals et al.’s model, the
image is fed into the LSTM once only at the first time step.



a surfboard.

A man riding a wave on top of

Figure 1: Examples of repetitive captions for different images.

2.2. Contributions

Aiming to generate more discriminatory and non overly
general captions, we propose a novel ranking objective
(elaborated in [3.2) on top of the sentence generator in an
end-to-end fashion of neural framework for image caption
generation, which enforces alignments between images and
generated captions.

3. Technical Approach
3.1. Overview

In this project, we propose a novel ranking objective on
top of the end-to-end neural framework for image caption
generation. We leverage an encoder-decoder approach: The
Convolutional Neural Network encoder transforms the im-
ages into some fixed-length image feature vectors, which
is then fed into the Recurrent Neural Network decoder to
generate the image captions. Aiming to generate more dis-
criminatory captions, we introduce a ranking objective that
enforces the alignments between images and generated cap-
tions and penalizes misaligned pairs. The overall architec-
ture of our model is shown in Figure 2]

3.2. Model Architecture

Image Model We use a Convolutional Neural Network
(CNN) to extract image features. The 16-layer VGGNet[13]]
pre-trained on ImageNet [3] is used as our image feature ex-
tractor. It was the state-of-the-art model in ImageNet Chal-
lenge 2014, featuring relatively small (3 x 3) convolutional
filters and simple configurations. We changed the last 4096-
dimensional fully connected layer into K-dimensional and
then extract features from the last layer, where K is the size
of word embeddings that are used as inputs to our language
model. Each image is thus representing a K -dimensional
feature vector I, € R¥.

Language Model We use a Long Short-Term Memory
(LSTM) network [4] as the building block of our language
model. As a particular form of Recurrent Neural Networks,

LSTM is able to deal with vanishing and exploding gra-
dients, which is the most common drawbacks for vanilla
RNNE.

The core of the LSTM is a memory cell ¢ that encodes
knowledge at every time step of what inputs have been ob-
served up to this step. The behavior of the cell is controlled
by gates” — layers which are applied multiplicatively and
thus can either keep a value from the gated layer if the gate
is 1 or zeros this value if the gate is 0. More specifically,
three gates are being used that control whether to forget the
current cell value (forget gate f), if it should read its input
(input gate ¢) and whether to output the new cell value (out-
put gate o). The definition of the gates and cell update and
output are as follows:

i® = a(W(i)x(t) + U(i)h(t—l))

fO =owWNz® 4y pt=1)

ot = U(W(O)az(t) + U@ plt=1)

¢ = tanh (W@ z® 4 U©@pt-1)

D = O o7t 4 () 5 &0

r® = 0® o tanh(c?)
where o represents the product with a gate value, and h(*) is
the output hidden state at time step ¢.
The LSTM takes the image feature vector I; as its first hid-

den state and a sequence of input vectors (z1,...,zp). It
outputs a sequence of log probabilities at each time step:

y=1{41.95,....yb}. 0 € RM

where M is the size of the vocabulary and D is the length
of the sentence.

Ranking Objective During training, at each forward pass,
our model takes a mini-batch of N image-sentence pairs.
We use the dot product I}'s; to measure the similarity be-
tween the i-th image and the j-th sentence. Intuitively, I s;
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Figure 2: Diagram of our discriminatory image captioning model. It consists of three modules: image model, language

model, and ranking model.

should be larger than any I/'s;(i # j) by a margin, as we
want to ensure that the generated sentence uniquely’ cor-
responds to the image, and thus add discriminatory power
to our model. The ranking model takes a batch of image
features I € RN*X and corresponding log probabilities
Y ={V1,Ys,...Yp},Y; € RN*M_ We first transform log
probabilities into probabilities, as probabilities naturally ex-
press distribution over outputs:

P =exp(Y) € RP*N*M

We then use the probabilities as “’soft indices” to index into
the same word embedding table as in the language model to
find each word embedding, and use another LSTM to learn
corresponding sentence embeddings:

S ={si,...s%},8 € RNV*K

where the LSTM takes each word embedding at each time
step, and the sentence embedding is represented as the out-
put from the LSTM at the last time step (encoded all the
temporal information). With a batch of image features and
corresponding sentence embeddings, we compute the simi-
larity matrix as follows:

Sim(I,8) =S -IT € RNV

We then define the ranking objective over one mini-batch as
the sum of max-margin loss over both columns and rows:
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This objective encourages aligned image-sentence pairs to

have a higher score than misaligned pairs, by a margin.

Training Our language model is trained to combine a word
embedding (z;) and the previous hidden state (h;_1) to pre-
dict the next word (y;). We set hg to be the image feature
vector and x; to a special START token. On the last step
when xp represents the last word, the target label is set to
a special END token. The cost function is to minimize the
negative log probability assigned to the target labels (Soft-
max classifier):

1 N
=1

max(0, Siml[i, j] — Sim[i, ] + 1)+

max(0, Siml[i, j| — Sim[i, i) + 1)
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Figure 3: Quantitative Results (model0 stands for baseline model, model4 stands for our model)

The total loss during training is defined as the weighted sum
of the ranking objective and Softmax loss:

Loss = wyJ(Sim(1,S)) + wr, L(1,Y)

Test time At test time, we extract the image representation
1, set hg to I, x1 to the START token and compute the dis-
tribution over the first word y;. We pick the argmax from
the distribution, find its word embedding as x5, and repeat
this process until the END token is generated.

4. Experiments
4.1. Dataset

We train and test our model on the Microsoft COCO
(Common Objects in Context) [10] dataset, a large image
dataset designed for object detection, segmentation, and
caption generation. There are 5 written caption descrip-
tions for each image in MS COCO. For our task, we use
the 2014 release of the dataset, which contains 82,783 train-
ing, 40,504 validation, and 40,775 testing images. All the
words that occur less than 5 times are mapped to a special
<UNK> token.

4.2. Evaluation Metric

The most reliable metric for image captioning is based
on human evaluations, which can take months to finish
and involve human labor that cannot be reused. Moreover,
choosing a human-like evaluation matric is a challenging
problem for image captioning. In this work, we perform
extensive experiments on our model with several metrics to
evaluate the effectiveness of our model. The BLEU Score
[12] is one of the most common metrics in image descrip-
tion tasks, which is a form of precision of word n-grams be-

tween generated and reference sentences. We report BLEU-
4 as it is the standard in machine translation (note that
BLEU-n is a geometric average of precision over 1- to n-
grams). Besides BLEU, we also use METEOR and Cider,
which are two popular metrics that are deemed to be appro-
priate for evaluating caption. [[14].

4.3. Baseline Model

We use the model from NeuralTalk2 [[6] as our base-
line model. NeuralTalk2 is a Torch implementation of the
”Show and Tell” model [15] which shares the same image
model and language model as ours but does not apply the
ranking objective. The pretrained 16-layer VGGNet [13] is
used as the image model, with a learning rate of 1 x 107°.
For the language model, both word embeddings and LSTM
hidden states have 512 dimensions. The initial learning rate
for the LSTM is 4 x 10~4, which decays every 50000 it-
erations. We clip gradients when they exceed 0.1, and use
a dropout of 0.5. For both the image model and the lan-
guage model, the batch size is set to 16. We use the Adam
optimizer [7] with & = 0.8 and § = 0.999. The model is
trained for 10 epochs (around 75000 iterations).

4.4. Our Model

We train our model for 10 epochs with the same set
of hyperparameters for the image model and the language
model. For the ranking model, we use a learning rate of
10~° and the RMSProp optimizer with o = 0.8. In partic-
ular, we initialize the weight w for ranking loss to 106
(Softmax loss weight is set to 1), and double w ; every 5000
iterations. Intuitively, captions generated at initial stages are
mostly random. We make w larger and enforce the rank-
ing loss more strongly when the generated captions start to
make more sense.



Baseline: a man in a suit
and tie standing in front of
a building.

Baseline: a man and a
woman are sitting on a
bench.

Our model: a man is
sitting on a bench with a
laptop.

Our model: a man sitting
on a bench with a dog.

Baseline: a man is sitting
on a bench.

Baseline: a group of
people standing on top of
a snow covered slope.
Our model: a woman
sitting on a bench in a
park.

Our model: a man riding
a skateboard down a
street.

Figure 4: Qualitative results. Green text indicates discriminatory captions, and red text indicates errors.

4.5. Results

To show the effectiveness of the ranking model, we train
our model and the baseline model (which does not include
the ranking loss) using the same set of hyperparameters.
We trained both models for 10 epochs (around 75,000 it-
erations). The loss and the validation scores have not fully
converged due to the limitation of computing power. We
also cross-validate these models with different set of hyper-
parameters, and our model outperforms the baseline model
consistently.

Quantitative Results Most of the existing models fail to
capture the subtle differences of similar images, and this is
due to the lack of discriminatory power in evaluation met-
rics. Therefore, we do not expect a significant boost in val-
idation scores on these flawed metrics. We visualize the
results in the following graphs: figure [3a shows the train-
ing and validation cross entropy loss, and figure 3B shows
BLEU/METEOR/Cider scores on validation results. Note
that there is an 8% increase (from 0.6 to 0.65) in CIDEr
score, which indicates that the ranking model not only helps
generate more discriminatory captions, but also increases
the overall performance.

Qualitative Results As seen in figure[d our model gen-
erates more descriptive and differentiable captions com-
pared to those from the baseline model. In particular, our
model is able to capture less salient objects and context such

as “’laptop”, “skateboard”, and “dog”.

5. Conclusion

From the qualitative results, we can see that our rank-
ing objective does add discriminatory power to the model.
However, our model doesn’t show significant improvement
quantitatively. Things we would like to explore in the fu-
ture:

e In the ranking model, replace the LSTM net with a
Bidirectional LSTM net for learning sentence embed-
ding.

e Instead of having randomly selected images in each
batch, we can put similar images in the same batch.
The ranking objective should be more effective in this
case because there is no need to further push down the
misaligned image-sentence pairs if all the images are
very different.

e Add an adversarial objective that enables the model to
generate captions with a distribution closer to ground
truth captions.

Code for this project can be found at https://github.
com/telin0411/CS231A_Project.

6. Miscellaneous

This is a joint project with CS224D (Deep Learning
for Natural Language Processing). The image model (im-
age feature extraction with Convolutional Neural Networks)
is more relevant to this class, while the language model
(LSTM model) is more relevant to CS224D.


https://github.com/telin0411/CS231A_Project
https://github.com/telin0411/CS231A_Project
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