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Abstract

In this project, we jointly solve the problem of indoor ob-
ject recognition and scene classification. The joint problem
is modeled by a Conditional Random Field (CRF). Specif-
ically, we implement unary potential on scene appearance,
unary potential on object appearance, and binary potential
on geometry between objects. The two appearance poten-
tials are obtained by training two neural networks respec-
tively and extracting features from them. Binary potential
on object-object geometry relationship is inferred by pro-
jecting one object onto the other one’s surface and perceiv-
ing the overlap. Other potentials include object cuboid ge-
ometry, binary potential on scene-object concurrence, and
binary potential on object-object concurrence.

Experiments on the challenging NYU-RGBD v2 dataset
show that the approach of jointly solving object detection
and scene classification problems by integrating several
feature representations achieves better performance than
vanilla classification. Meanwhile, improving the poten-
tials on scene appearance and object-object geometry rela-
tionship achieve fairly satisfactory improvements compared
with the performance in [12]. We achieve object recog-
nition precision of 0.3859 and scene classification accu-
racy of 0.6208 among 21 classes of objects and 13 classes
of scenes. Both improve obviously comparing to 0.3829
and 0.6086 in baseline [12]. This result is also compara-
ble to the state-of-art method implemented on the identical
dataset [18].

1. Introduction
One core vision problem in indoor robotics is 3D recog-

nition. Accurate object detection as well as classification
is essential for robot to navigate and interact with the in-
door environment. Towards solving this problem, we start
our project by implementing the object detection system in
[12].

Classification of indoor objects is not an easy task in
that indoor objects usually have very similar local features.
Most classes have cube-like shape and are very similar in

surface textures. Classification of indoor scenes also suf-
fer similar problems. However, these two problems can be
solved jointly, in hope that the interaction of these two mod-
els could solve some ambiguities in both object and scene
classification problems. The idea is to utilize object-object
and object-scene relationships. For example, the probability
of a lamp placed next to a bed should be much higher than
the probability of a microwave oven placed next to a bed
(object-object relationship). Also, the probability of a bed
appearing in a bedroom scene should be much higher than
it appearing in a living-room scene (object-scene relation-
ship). Thus, when the classifier makes mistakes on the class
of one object, these relationship constraints might save the
day by slightly modifying the distribution of scores.

Meanwhile, depth information is helpful especially in in-
door settings because it helps us capture the geometric fea-
tures of an object and the scene. In the holistic model, it also
helps capture the geometric relationship in object-object or
object-scene. Indoor objects are not placed randomly in
space. Beds are usually on the floor and against the wall.
Utensils appear more often in the same image with refriger-
ator than television. Considering the physical and statistical
interactions between the objects and the environment, we
should be able to label objects in agreement with the scene.

We develop our model on the labeled portion of NYU-
RGBD v2 dataset[13], which consists of RGB-D images
with dense labels. The dataset is split into 795 training im-
ages and 654 dev/test images. The model detects 3D cuboid
candidates at first, and then labels them via joint reasoning
with Conditional Random Field (CRF).

2. Related Work
Indoor 3D object recognition from multi-view RGB-

D images has achieved quite a success in the past few
years [10][8][4]. However, scanning objects generally takes
longer time needed for real-time applications [6], or the per-
formance just deteriorates as the camera moves faster [11].
There are also circumstances where we might not have ac-
cess to multiple cameras observing the same object. There-
fore, recognition from single-view is still worth exploration.
Context information is usually essential to boost recognition
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performance for indoor scenarios [12][18].
The pipeline is usually to propose object candidates and

classify scene at first. Then we decide the object categories
accordingly. A most recent work [7] skips the proposal
step by predefined 3D scene template, but the scenes are
restricted to merely 4 categories. We review three major
parts of this problem as follows.

2.1. Previous Work

1. 3D object proposal:
We want to generate object candidates as cubes for
recognition. In this way, it is easier to force the sur-
faces parallel to walls and ground. One typical ap-
proach is to generate bottom-up region candidates and
sorts them by ”objectness” scores [2]. Segmentation is
made by computing similarities between adjacent pix-
els [1]. In particular, depth information is also consid-
ered [14][16][15].

Another option is to utilize sliding window algorithm.
We can thus observe the whole object [17] instead of
only part of it due to bottom-up nature. The state-of-
the-art result is achieved by 3D ConvNets, which re-
places hand-crafted features.

2. Scene understanding:
Human beings can recognize different kinds of scenes
even by glancing blurred images. Although essentially
we do not need much information to understand the
scene category of an image, it is quite helpful for object
recognition since scene-object are often related sta-
tistically. The published state-of-the-art scene under-
standing was implemented by neural network trained
by SUN database. This was first proposed in [21] and
improved in [20]. After that, a 60 times larger database
came along, namely Places [23]. To the best of our
knowledge, the latest work (also trained on Places),
which was released just 3 weeks ago (with paper com-
ing soon), is even more powerful [22].

3. Contextual object classification:
Contextual models mainly focused on segmentation
with RGB-D datasets. [15] reasons about spatial tran-
sitions between superpixels based on RGB-D informa-
tion. Our baseline model [12] reasons at higher levels,
i.e. object-object and object-scene, by combining var-
ious potentials in CRF. [18] combines object features
and scene understanding by neural network, yet their
test result on NYU-RGBD v2 dataset is comparable to
ours.

2.2. Our Contributions

Just to clarify, we were not able to improve the object
detection performance from [12]. Instead, we get better

performance by modifying the CRF model. In particular,
we implement transferable training based on the pretrained
network for better scene understanding [22]. We also try
to extract segmentation features from fine-tuned CNN [9].
Geometric context is further reasoned by considering more
complex spatial relationship between object pairs.

3. Methods
3.1. Problem Description

This problem takes an input of an RGB-D image in the
NYU-RGBD v2 dataset. The goal is to perform 3D ob-
ject recognition and indoor scene classification. These two
tasks are tackled jointly in our holistic model, that is, some
constraints are placed among scenes and these objects when
reasoning about object label, which helps boost the perfor-
mance of scene classification and object recognition.

The problem can be divided into two parts. The first part
mainly generates 3D region candidates in a bottom-up man-
ner, and then fits cuboids (analogies to bounding boxes in
2D) around the candidate regions. The second part is the
incorporation of several features, either extracted from the
image/semantics/cuboid geometry or from the output score
of other classifiers, e.g. SVM. We then define a Conditional
Random Field (CRF) and use these features as potentials of
the CRF model. This has made a possible holistic under-
standing of the scene, which will likely boost recognition
performance than state-of-art detection methods including
part-based models[3] and exerting elaborate constraints that
are obtained via depth information[19].

We use the same framework (cuboid fitting - feature ex-
traction - CRF) as [12]. However, the feature extraction part
is different where we focus on the power of deep structures
and more geometric information. We explore more features
as well as features from more powerful classifiers, in hope
of further boosting performance.

3.2. 3D Detection

3.2.1 Generating 3D region candidates bottom-up

The model [2] we used for generating candidates uses para-
metric min-cut to generate a wide variety of foreground can-
didates from equally spaced seeds. The objective is to min-
imize the energy E over pixel labels {x1, x2, ..., xN}:

Eλ =
∑
u∈V

Cλ(xu) +
∑

(u,v)∈ε

Vuv(xu, xv)

with λ ∈ R, V the set of all pixels, ε the edges between
neighboring pixels, and Cλ the unary potentials.

3.2.2 Fitting cuboids

After generating region candidates, we then generate
cuboids from the candidate results [2]. Specifically, top k
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candidate regions ranked by the objectness [2] scores are
selected after performing non-maxima suppression. Then
each candidate cuboid is fitted by a 3D cube around candi-
date region.

3.3. Holistic scene model using CRF

After obtaining cuboids of interest, we assign class la-
bels to the detected cuboids, which would been our main
focus for this project. Many feature-based approaches exist
that extract features of each cuboid and use them as input to
some classifiers to predict class labels. However, such ap-
proaches suffers occlusion and viewpoint change. More im-
portantly, they discard contextual information which might
be helpful to recognition. The CRF model, on the other
hand, learns scene configuration in a holistic manner. Apart
from appearance (which is obtained via image features),
it models geometry, object relations and spatial configura-
tions, in hope of achieving better recognition accuracy by
incorporation these additional information.

3.3.1 Model

Conditional random fields are depicted by potentials. The
probability of an assignment x

p(x) =
1

Z
ΠCψC(xC),

where xC is a clique in the graph, and Z is the partition
function for normalization.

The potentials ψC is depicted by energy E(·) of an as-
signment

ΨC(xC) = exp(−E(xC)).

In a given image, denote the present objects as yi ∈
0, 1, ..., C and scene variable (e.g. kitchen, bathroom) as
s ∈ 1, 2, ..., S. There are C + 1 classes of objects, where
class 0 is ”other”, i.e. false positives. There are S classes of
scenes. In our scenario, the probability of an assignment of
yi, s is

p(yi, s) =
1

Z
exp

(
wsψs(s) +

∑
t

wt
∑
i

ψt(yi)

+
∑

wm
∑
i

φm(s, yi) +
∑

wp
∑
i,i′

φp(yi, yi′)
)
.

There are four kinds of potentials. ψs(s) is unary potential
of scene s. {ψt(yi), t = 1, 2, 3...} is a set of unary poten-
tials for object yi. {φm(s, yi),m = 1, 2, 3...} is a set of
binary potentials capturing the contextual relationship be-
tween scene s and object yi. {φp(yi, yi′ , p = 1, 2, 3...} is a
set of binary potentials capturing the relationship between
objects yi, yi′ .

The CRF structure is illustrated in Figure 1.
For CRF learning, we will be using the primal-dual ap-
proach as described in [12].

Figure 1. Illustration of conditional random field model on indoor
scene

3.3.2 Potentials

As the CRF model shown in Figure 1, we have defined six
different kinds of potentials to capture the relationships be-
tween scenes, objects, objects and objects, as well as objects
and scenes. We would introduce the details of each poten-
tial in this section.

1. Scene appearance:

This is a unary potential defined over a scene, which
models the likelihood of a scene s of being class u by
defining

ψs(s = u) = σ(tu),

where tu is the classifier score for the scene of being
class u and σ is the sigmoid function to normalize the
scores to probability space. While [12] takes the out-
put score from an SVM using SIFT/GIST features as
input, we believe a more powerful description might
be obtained using fine-tuned CNN or stacked fully-
connected layers.

2. Scene context:

This is a binary potential defined over a scene and an
object modeling the likelihood of a particular object
appearing in a particular scene. The intuition is that
an oven is more likely to appear in a kitchen than in
a bedroom. In [12], it takes in the predicted label of
the scene and an object and outputs the potential, and
finally takes a weighted summation over all objects.
However, we believe that because we are not fully con-
fident with the object label, taking the most probable
two or three labels might be more sensible than merely
taking the most-likely predicted label.

3. Object context:
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This is a binary potential defined over two objects,
modeling the likelihood of them appearing together in
a scene. The intuition is similar to the previous po-
tential. For every pair of predicted labels of objects, it
outputs the potential and finally takes a weighted sum-
mation over all pairs.

4. Segmentation potential:
Segmentation potentials are used as unary potentials
for cuboid hypotheses. The approach trains a classifier
on the kernel descriptors aggregated over superpixels
[14] and obtain a classification score for each super-
pixel. The cuboids are then projected to a image plane,
and using a convex hull we can derive the potential for
each cuboid.

5. Object geometry:
Geometric properties of a 3D cuboid are represented
using a vector with ten dimensions, which describe not
only the inner characteristic of objects, but also their
relation between the object and the scene. We train
a SVM classifier with RBF kernel with these features,
and the geometry unary potential is defined as the score
of each class.

6. Geometric context:
Geometric context models the geometric relationship
between objects. [12] models two kinds of relation-
ships ”close to” and ”on top of”. We believe increas-
ing the types of relationships might help capture more
information.

3.4. Improved Potentials

We focus on three potentials, scene appearance, segmen-
tation potentials and geometric context, where we consider
deep structures as classifiers and take specific geometric in-
formation into account to boost the performance of the over-
all scene model.

The improvement can be summarized in Figure 2.

Figure 2. Illustration of Improved CRF

1. Scene Appearance:
In [12], unary scene appearance potentials are de-
fined using normalized classification scores where we
obtained by modified SVM classifier. Based on the
strength of the internal data patterns, neural network
have been widely explored in many scenarios, includ-
ing scene understanding.

Among many different deep structures, the perfor-
mance of AlexNet [9] have outperformed many state-
of-the-art methods on image classification. The struc-
ture of AlexNet[9] is shown in Figure 3. The net
contains eight layers with weights, among them the
first five are convolutional layers and the remaining
three are fullyconnected layers. Each convolutional
layer consists of the combination of convolutional, relu
and max-pooling layer. The output of the last fully-
connected layer can be considered as the probability
of each class. AlexNet maximizes the multinomial lo-
gistic regression objective, which is equivalent to max-
imizing the average across training cases of the log-
probability of the correct label under the prediction
distribution, and by minimizing the loss we can train
all the parameters using back propagation.

Figure 3. The structure of AlexNet

Thus we perform fine-tune on AlexNet [9] using the
pre-trained caffe model[5] on a largescale database
called Places. [22] has constructed Places that con-
tains more than 10 million images comprising 400+
unique scene categories, and 5000 to 30,000 training
images per class.

Using the pre-trained weights of places database, we
fix the weights from conv1 layer to fc6 layer, and fine-
tune fc7 layer and output layer on our training set. We
have re-sized the images in our dataset from 480 ∗ 640
to 227 ∗ 227 to fit into AlexNet. The dimension of
output layer has reduced from 365 classed to 13 classes
as well.

2. Segmentation Potentials:
[12] computes segmentation potentials using six types
of RGB-D kernel descriptors: gradient, color, local bi-
nary pattern, depth gradient, spin/surface normal, and
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KPCA/self-similarity. [12] thinks that training a good
classifier is not likely because the number of training
samples is limited. However, we think this problem
could be tackled via transfer learning, that is, fine-
tuning a trained model of neural network will require
much fewer training samples than other methods to
achieve competitive results. We performed fine-tune
on AlexNet [9], using its parameters and training the
final fully-connected layer from scratch. The train-
ing/test loss and test accuracy over iterations is shown
in Figure 4 and 5. The model seems to begin to over-
fit from iteration 6000, at which point we cut off the
training process.

The training samples are obtained by cutting out the
objects with its detection bounding box, adding a
padding of 25 pixels, and resizing the cropped image to
227x227. In this way we obtain our own training and
test set for deep network. The deep network is trained
and tested using Caffe framework[5].

The improved segmentation potential is defined as fol-
lows:

ψseg(o = v) = Pr CNN(o = v),

where ψseg(o = v) denotes the segmentation potential
of object o being of class label v. Pr CNN(o = v) de-
notes the probability of object o being of class label v
given its appearance feature (i.e. RGB image), which
is exactly the output of the softmax layer of CNN be-
cause softmax layer maps output scores to probability
space.

Figure 4. Training and test loss versus iterations

3. Geometric context:
Instead of ”close to” relationship reasoned in [12], we
believe that objects are more relative if their surfaces
are parallel. For example, sofas usually face to tea ta-
ble no matter which side of wall they are facing to.
Moreover, that ”close to” relationship might overlap

Figure 5. Test accuracy versus iterations

with the object-object potential. Therefore, we only
consider objects that are neither too close nor too far.
In other words, we are implementing a stricter standard
in terms of related object pairs.

We need to tune hyperparameters for distance range
and angle range. In practice, we identify surfaces to
”parallel” when their angle of intersection is at most 15
degrees. Objects that are close to 0.2 or farther than 2
are ruled out from this relationship, because we believe
that they should be in appropriate distance if they are
related. As a matter of fact, this pair of parameters
works best on validation set.

4. Experiments
4.1. Dataset

We divide our dataset [13] into 381 training samples, 414
validation samples and 654 test samples. We also prepro-
cess them into 13 different scene categories and 21 different
object categories.

4.2. Dataset Visualization

To better understand the NYU-RGBD v2 dataset [13],
we have visualized depth map for different scenes. Figure 6
shows the visualization for the raw data of the bathroom
scene.

Figure 6. Visualization of the RGB-D image in NYU-RGBD v2
dataset[13]
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We also visualize the generated object bounding boxes
obtained by models proposed by [2] to better understand the
object detection results. Comparing to groundtruth bound-
ing boxes, we can clearly see some false positives in the
generated ones in Figure 7.

Figure 7. Visualization of the generated object bounding box (left:
groundtruth, right: k=8 candidates per image)

Figure 8. Class-specific analysis of each scene category (upper:
[12] using sce. + seg. + geo. + cpmc + sce.-obj. + obj.-next. +
obj.-top, lower: our best CRF model using new-sce. + seg. + geo.
+ cpmc + sce.-obj. + new-obj.-next + obj.-top)

Figure 9. Class-specific analysis of each object category (left: [12]
using sce. + seg. + geo. + cpmc + sce.-obj. + obj.-next. + obj.-top,
right: our best CRF model using new-sce. + seg. + geo. + cpmc
+ sce.-obj. + new-obj.-next + obj.-top)

Figure 10. Precision, Recall and F-score with our best CRF model
under six different configurations same as the configuration in Ta-
ble 1

4.3. Detection Recall and Classification Accuracy

We first set up and run the CRF model with potentials
proposed by [12]. Then using their model as baseline, we
incorporate more powerful potentials. The results and anal-
ysis are provided in this section. For both baseline model
and our improved model, we report classification perfor-
mance on both ground truth detection and k = 8 best de-
tected candidate cuboids per image, using detection frame-
work described in Section 3.2. Testing on ground truth de-
tection tells us the capability of potentials and the classifier
model, while testing on cuboid candidates is closer to real-
life scenarios.

4.3.1 Notation

We denote experiments using eight best cuboid candidates
per image as k = 8 situation. We denote experiments using
ground truth detection as ground-truth situation. A recall is
defined as more than half of the detected object overlaps the
ground truth bounding box in the same label, which means
both detection and classification have to be good enough.
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configuration object scene
scene appearance + segmentation 0.5446 0.5520

sce. + seg. + geometry 0.5921 0.5520
sce. + seg. + geo. + sce.-object 0.6039 0.5841

sce. + seg. + geo. + sce.-obj. + obj.-next 0.6085 0.5856
sce. + seg. + geo. + sce.-obj. + obj.-next. + obj.-obj. 0.6089 0.5872

sce. + seg. + geo. + sce.-obj. + obj.-next. + obj.-obj. + obj.-top 0.6134 0.5917
Table 1. Classification performance on ground truth detection, testing potentials proposed by [12]

configuration object scene recall
scene appearance + segmentation 0.3440 0.5520 0.2028

sce. + seg. + geometry 0.3498 0.5520 0.2068
sce. + seg. + geo. + cpmc 0.3842 0.5520 0.2470

sce. + seg. + geo. + cpmc + sce.-object 0.3830 0.6040 0.2494
sce. + seg. + geo. + cpmc + sce.-obj. + obj.-next 0.3828 0.6101 0.2396

sce. + seg. + geo. + cpmc + sce.-obj. + obj.-next. + obj.-top 0.3829 0.6086 0.2401
Table 2. Classification performance taking eight cuboid candidates (k = 8) from detection results, testing potentials proposed by [12]

4.3.2 Baseline and analysis

First, we run the CRF model on ground truth cuboids to
evaluate the joint classification performance only. Then we
add the 3D detection part, and all results are shown in Table
1, 2. Notice that the number of candidates per image, i.e. k,
is a parameter of the model. For now, we are demonstrating
only one circumstances where k = 8.

For ground-truth situation, the classification results are
shown in Table 1. Accuracy becomes higher as we take
into account more kinds of potentials. With all potentials,
the best classification accuracy is reached, i.e. 0.6134 for
object classification and 0.5917 for scene classification.

For k = 8 situation (see 4.3.1 for meaning of notation
k = 8), recall is also shown in Table 2 (see 4.3.1 for defini-
tion of recall). The existence of many false positive cuboids
during detection brings down the recognition accuracies a
lot. But still, we test our CRF in the same way, where
potentials are added one by one to model. Since we have
more cuboids, the runtime is significantly longer than that
of ground truth. The choice of k is still under exploration.
More candidates means higher noise. Since our detection is
sometimes noisy, larger k does not guarantee better results.
Also, since we have even less data due to wrong detection,
the accuracies do not essentially get higher when the model
contains more potential. We assume that it is because of
over-fitting. Considering object precision, scene accuracy
and detection recall all together, we think that the last row in
Table 2 represents the best performance for baseline model.

4.3.3 Improved object-object geometry relationship

Implementation details for improved binary potential of ge-
ometry context is elaborated in 3.4. The performance with
this improved potential is shown in Table 4 and 5, denoted

as new-obj.-next.
For ground-truth situation, the best model obtains accu-

racy of 0.6123 for object classification and 0.5971 for scene
classification, with scene classification accuracy better than
baseline model. For k = 8 situation, the best model ob-
tains accuracy of 0.3850 for object classification, 0.6040
for scene classification, and object classification recall is
0.2492, with object classification accuracy and recall both
higher than baseline model.

4.3.4 Improved scene classification potential

After fine-tuning on our training dataset with AlexNet struc-
ture and [22]’s pre-trained weights, we obtain a 1 ∗ 13 vec-
tor for each input sample, using normalized classification
scores of 13 scene categories. Denoted as new-sce., the per-
formance of the new scene appearance potentials are shown
in Table 4 and 5. For the ground truth bounding boxes, we
obtain 0.6174 for object classification accuracy and 0.6055
for scene classification accuracy. For k = 8 situation, we
obtain 0.3846 for object classification accuracy and 0.6208
scene classification accuracy, and object classification recall
is 0.2414, all of which are higher than baseline model. In
particular, scene classification accuracy is gaining a signifi-
cant leap.

4.3.5 The two improvements above combined together

When combine improved object-object geometry binary po-
tentials and improved scene classification potentials, we are
able to obtain the best performance. In the rest of paper, we
would denote this combination as our best CRF model.
When using the configuration new-sce. + seg. + geo. +
cpmc + sce.-obj. + new-obj.-next + obj.-top, we obtain the
object precision to be 0.3859 and the recall to be 0.2492.
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configuration object scene
scene appearance + nn.obj. 0.5387 0.5520
sce. + nn.obj. + geometry 0.5682 0.5520

sce. + nn.obj. + geo. + sce.-object 0.5708 0.5581
sce. + nn.obj. + geo. + sce.-obj. + obj.-next 0.5754 0.5581

sce. + nn.obj. + geo. + sce.-obj. + obj.-next. + obj.-obj. 0.5793 0.5749
sce. + nn.obj. + geo. + sce.-obj. + obj.-next. + obj.-obj. + obj.-top 0.5703 0.5800

Table 3. Classification performance on ground truth detection, using segmentation potentials obtained from fine-tuned Alexnet using pre-
trained ImageNet weights (denoted as nn.obj.)

configuration object scene
sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next 0.6072 0.5872

sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next + obj.-top 0.6123 0.5971
new-sce. + segmentation 0.5446 0.5902

new-sce. + seg. + geometry 0.5921 0.5902
new-sce. + seg. + geo. + sce.-object 0.6118 0.6024

new-sce. + seg. + geo. + sce.-obj. + obj.-next 0.6170 0.6009
new-sce. + seg. + geo. + sce.-obj. + obj.-next. + obj.-obj. 0.6164 0.6024

new-sce. + seg. + geo. + sce.-obj. + obj.-next. + obj.-obj. + obj.-top 0.6174 0.6055
new-sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next 0.6134 0.5979

new-sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next + obj.-top 0.6144 0.5963
Table 4. Classification performance on ground truth detection, using improved object-object geometry relationship implemented by us
(denoted as new-obj.-next) and improved scene appearance obtained from fine-tuned Alexnet using pre-trained model from [22] (denoted
as new-sce.)

The scene classification has boosted from 0.5902 to 0.6208
after sampling the CRF model, which illustrates that object
potentials and binary potentials could in turn improve scene
recognition.

To better understand our classification results for object
and scene to further improve our model, we visualize the
confusion matrix in Figure 8 and 9. The confusion matrix is
defined with two dimensions, actual label and predict label.
Our best CRF model outperforms baselines for most of the
classes. The ambiguity between several classes may lead
to the low accuracy on specific class, where we can further
explore how to distinguish these classes.

We illustrate the power of potentials using our best CRF
model in Figure 10. As the number of potentials increases,
we can see the precision increases as well, which indicates
the potentials in the CRF structure can boost the final perfor-
mance by considering the inner relationships among scene
and objects within the scene. The more we capture the rela-
tionships, the better we would have for our scene model.

4.3.6 Improved segmentation potential

Improved segmentation potential is obtained by taking the
softmax score from a Convolutional Neural Network ini-
tialized by AlexNet parameters [9] and fine-tuned on the
images in our dataset cropped by bounding boxes. The per-
formance with this modified potential is shown in Table 3
(denoted as nn.obj.). [12] states that because the training

set is relatively small, training a 21-class classifier on ob-
jects might not be a good idea. We tackled the data limi-
tation problem with the idea of transfer learning, i.e. fine-
tuning instead of training from scratch. The learning rate of
newly-trained final fully-connected layer is set as 10 times
the learning rate of previous layers. Experiments on the
ground-truth situation shows that the CNN model is able to
achieve results comparible with results obtained by origi-
nal segmentation potentials proposed by [12], but slightly
lower. Therefore, we choose not to incorporate this modi-
fied potential in our final model.

5. Conclusions
Three major conclusions from this project are:

1. Jointly solving scene classification and object classi-
fication problem by embedding them in an inference
model such as CRF can help boost performance. This
is because this type of models capture a holistic under-
standing for the scene, making it possible to correct
some mistakes by reasoning, which would not have
been possible to correct in vanilla classification mod-
els.

2. More powerful potentials lead to better performance
of the system. Improved representations of geomet-
ric relationship, as well as better potentials obtained
via Convolutional Neural Networks, can both further

8



configuration object scene recall
sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next 0.3831 0.6040 0.2492

sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next + obj.-top 0.3850 0.6086 0.2497
new-sce. + segmentation 0.3441 0.5902 0.2028

new-sce. + seg. + geometry 0.3498 0.5902 0.2068
new-sce. + seg. + geo. + cpmc 0.3838 0.5902 0.2470

new-sce. + seg. + geo. + cpmc + sce.-object 0.3845 0.6177 0.2492
new-sce. + seg. + geo. + cpmc + sce.-obj. + obj.-next 0.3844 0.6269 0.2406

new-sce.. + seg. + geo. + cpmc + sce.-obj. + obj.-next. + obj.-top 0.3846 0.6208 0.2414
new-sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next 0.3854 0.6147 0.2499

new-sce. + seg. + geo. + cpmc + sce.-obj. + new-obj.-next + obj.-top 0.3859 0.6208 0.2492
Table 5. Classification performance taking eight cuboid candidates (k = 8) from detection results, using improved object-object geometry
relationship (denoted as new-obj.-next) and improved scene appearance potential obtained from fine-tuned CNN (denoted as new-sce.)
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14 199 34 108 28 174 36 527 316 679 238 875 179 48 35 51 161 141 56 153 40
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0 30.6 41.9 35.2 0 37.7 33.3 33.9 31.1 39.2 37.4 34.6 22.1 3.2 22.2 55.6 32.8 35.6 26.1 37.0 0

be
st

0 39.2 47.2 36.3 0 42.2 50.0 43.3 35.6 36.9 39.2 38.1 41.9 25.0 40.0 57.1 33.3 32.5 53.3 50.7 20.0

Table 6. Class-specific performances using potentials proposed by [12] (k = 8)

boost performance.

3. Transfer learning makes it possible to fit good models
without massive dataset. The labelled NYU-RGBD v2
dataset we have for this project is relatively small, but
the idea of transfer learning makes it possible to obtain
a much better scene classifier than in [12] (59.02% vs.
55.20% accuracy), and an almost-as-good object clas-
sifier (53.9% vs. 54.4% accuracy, specifically, the ob-
ject classifier on [12] is not trained on the NYU-RGBD
v2 dataset, but on some larger datasets [14]).

5.1. Bottleneck and future work

The bottleneck for this framework appears at detection.
As is shown in Figure 7, there are many spurious detec-
tions which correspond to none of our object categories. Im-
provements in detection is possible via deep networks such
as [7]. However, [7] is based on templates of four indoor
scene settings, which does not cover all 13 scene classes
in our database. One future work would be training more
scene templates, which requires considerable training time
and thus we were not able to do it in this project. Never-
theless, approaching scene understanding directly via deep
network would be an interesting topic.

5.2. Repository

Code for our project is available at https://
github.com/STZhang/cs231a_project.
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