Virtualized Reality Using Depth Camera Point Clouds

Jordan Cazamias
Stanford University

jaycaz@stanford.edu

Abstract

We explored various ways to achieve Virtualized Real-
ity, the technique of scanning a user’s real-world surround-
ings and reconstructing it as a virtual scene. Using the
Kinect and Intel RealSense depth cameras, we attempted
both real-time and offline techniques to construct virtual
scenes from real-world scenes, such as KinectFusion, point
cloud stitching, and raycasted point clouds. In particular,
the Kinect live depth feed and RealSense live depth feed
were both rather effective as prototypes. In addition, we
tested point cloud reconstructions of a complex object given
various capture angles and found that point clouds closest
to 0 or 180 degrees tend to work best. Given the opportunity
to pursue the topic of virtualized reality further, we would
ideally like to create a system that can capture parts of a
scene in real-time, automatically stitch their point clouds
together, and pipe this reconstruction into a game engine
like Unity for instant visualization and the opportunity for
interaction.

1. Introduction
1.1. Motivation and Problem Definition

The promise of Virtual Reality lies mainly in its ability to
transport a user into a totally different world and make them
feel present and immersed within it. That generally implies
a total separation from the real world, and as such, a user’s
real-world surroundings are rarely (if ever) used as part of
the virtual world. In contrast, Virtualized Reality captures
a user’s real-world surroundings and reconstructs it in 3D
to use as the user’s virtual world. It differs from traditional
VR in that the worlds are not entirely fictional and a user’s
real-world surroundings matter. Likewise, while it sounds
similar to Augmented Reality, Virtualized Reality differs in
that everything is reconstructed from scratch. With these
distinctions, a designer of Virtualized worlds has the oppor-
tunity to create powerful, personal experiences that would
be difficult to replicate in either VR or AR. As an indirect
benefit, most of the technology and techniques required for

Abhilash Sunder Raj
Stanford University

abhisr@stanford.edu

Virtualized Reality would also aid in the creation of higher-
fidelity VR and AR experiences.

Our ideal system would be one that can continuously
gather information about a scene, in real-time, as the user
navigates about it while wearing a VR head-mounted dis-
play. As they interact with the virtualized objects, they will
have real-time input through a positionally accurate recon-
struction of their hands. Furthermore, the reconstruction
of the entire scene should also be properly registered so
that the virtualized objects are in the same position as they
would be in the real world.

2. Related Work

The paper most relevant to our work is the paper on
KinectFusion [3]. KinectFusion is a real-time 3D recon-
struction algorithm and pipeline that uses the Kinect’s depth
camera to create a mesh of a static scene. It will be touched
on in more detail later.

In the line of Virtualized Reality-specific work, Kanade
and Rander experimented with virtualization by building a
dome of 51 cameras that record synchronously at 60 frames
per second. Any objects within the dome can be rendered
at any different viewpoint using an interpolation algorithm,
and even reconstructed in 3D. However, this system does
not compute a reconstruction in real-time; it only stores the
video data in real-time, and even the bandwidth required for
this real-time storage is rather extreme [4].

By contrast, Vitelli et. al. use a server-based computer
vision AR system to estimate the layout and lighting of a
room from a smartphone camera in real-time, allowing for
the augmentation of floors and walls as well as placement of
virtual objects. This works quite well on a phone or tablet,
but without true depth information of the scene, would not
translate well to a VR display since stereo rendering would
be impossible [6].

3. Our Approaches

We saw several different approaches to tackling this
problem, each with its pros and cons, and explored each
of them in turn.

3.1. Kinect

One of the depth cameras we used was a Kinect for Win-
dows V2. It uses an infrared time-of-flight procedure to cap-
ture a depth map of a scene (effective range 50 - 450 cm), as
well as an RGB camera to capture color information. Us-
ing these two pieces of information, one could easily cre-
ate a point cloud or mesh that approximates the 3D scene
as seen from the Kinect. With one such device, of course,
any occluded regions will not be captured, resulting in ar-
tifacting such as holes or phantom surfaces (this happens
in a naive mesh reconstruction when the holes caused by
occluded regions are filled in with triangles). With a head-
mounted sensor, this is not as much of a problem since the
regions occluded to the sensor would be roughly equivalent
to the regions occluded to the eyes. However, in the case of
the Kinect, it is rather impractical to make it head-mounted
due to its bulky form factor.

Figure 1: Kinect for Windows v2 sensor

3.2. RealSense

We also experimented with an Intel RealSense SR300
depth sensor. With its short-range depth capture (effective
range 20 - 150 cm) and much smaller form factor than the
Kinect, the RealSense is perfect for mounting on the front
of a VR headset and tracking the user’s hands.

Similar to the Kinect, we used Unity to construct a dy-
namic mesh of the user’s hands for every frame and ren-
dered that into the virtual world. This presents the possibil-
ity for higher-fidelity inputs than controllers.

Figure 2: Intel RealSense SR300 depth camera

Figure 3: Example of KinectFusion reconstruction over
time. Left: depth image from a single frame. Right: re-
construction results as more depth frames are integrated.

3.3. KinectFusion

As previously mentioned, the primary inspiration for this
work was KinectFusion, Microsoft’s 3D reconstruction /
SLAM software for the Kinect. As a user moves the de-
vice around a small scene, the KinectFusion pipeline will
take every depth frame captured by the Kinect and merge
them into one high-fidelity 3D reconstruction, thus filling
in occluded regions and eliminating most of the noise over
time. At the same time, the Kinect sensor’s position can be
quickly and accurately tracked relative to the scene.

This lends itself quite well to virtualizing a scene in VR.
Using a multi-frame reconstruction takes care of the occlu-
sion and phantom surface problems seen in a one-frame re-
construction (as shown in Figure[7). It also allows the scene
to remain fixed in virtual space as the virtual camera’s po-
sition can be updated in real-time. Essentially, the Kinect
serves as a “flashlight” to the real world, uncovering it for
the user as it is pointed around.

Figure 4: The full KinectFusion pipeline. The two major
outputs of the pipeline are a raycasted vertex and normal
map, which can be used to create a 3D mesh, and the cam-
era tracking parameters which is helpful for proper mesh
registration with the real world

Tracking Outliers

VAR
;r/')\?%‘/%{‘z /

Raycasted Vertex &
Normal Map

Raw Depth

%

d) Raycating
(3D Rendering)

_6DOF Pose & Raw Data

c) Volﬁmetric
Integration

b) Camera
Tracking

a) Depth Map Conversion
(Raw Vertex & Normal Map)

3.4. Point Cloud Stitching

One of the principal objectives of this project was to al-
low the user to scan in and reconstruct an entire room in VR.
The KinectFusion|[cite] system implemented on the Kinect
for Windows Sensor provides real-time 3D object scanning
and volume reconstruction. However, due to memory con-
straints, it cannot be used to reconstruct an entire room in
one go. Therefore, to reconstruct a large real-world scene
with high resolution, we will need to capture different parts
of the scene separately and assemble them together after the
fact.

We captured point cloud representations of different sec-
tions of the room (with some overlap) using KinectFusion.
These point clouds were then merged using the Iterative
Closest Point Algorithm.

Iterative Closest Point (or ICP) refers to a class of algo-
rithms that try to find the transformation(i.e rotation and
translation) between two point clouds. If the transformation
between each point cloud and some reference point cloud is
computed, all the point clouds can be transformed into the
reference frame and then merged together to form a com-
plete scene.

Here, we summarize two widely used algorithms, the stan-
dard ICP which was first described in [1] and its “point-to-
plane” variant, originally introduced in [2].

34.1 Standrard ICP Algorithm

The standard ICP algorithm has two main steps which are
repeated until convergence:

(1) Compute correspondences between the two point
clouds.

(i) Compute a transformation which minimizes the dis-
tance between the corresponding points

This works well only if there is a complete overlap be-

tween the two point clouds. However, in our case the over-
lap is only partial. Therefore, the algorithm provides a
matching threshold, d,,,,. We only look for a match in-
side a sphere of radius d,;,4,. This accounts for the case in
which there are no correspondences for some of the points
in the reference point cloud. The algorithm can be formally
summarized as follows:
Given a reference point cloud A = a;, a moving point cloud
B = b; with partial overlap and an initial transformation
Ty, the goal is to find a transformation 7" which best aligns
B to the reference frame of A. This is done through the
following steps:

1. Initialize T' = Tj.

2. Foreach b; € B, find the point ¢; € A which is closest
to sz

3. If [e; — T'b;]| < dmaa, set w; = 1. Else, set iw; = 0.
4. SetT = argmin Y, w;lle; — T.b;||?

5. Repeat steps 2 to 4 till convergence

3.4.2 Point-to-plane

This is a variation of the standard ICP algorithm. The only
difference is in the cost function in step 4. In this algorithm,
the cost function used is:

T = argminZwiHni-(Ci —T.b)|I? (1

1
where n; is the surface normal at c;.

3.5. KinectFusion Over Network

One potentially interesting alternative to directly piping
KinectFusion reconstructions to an engine like Unity would
be to send this data over a network. For a user mapping their
own room, packets could be sent over localhost. The possi-
bilities get even more interesting when considering sending
reconstruction data over a remote network. In this way, a
user could experience the reconstruction of someone else’s
environment. Furthermore, with the addition of a dynamic
reconstruction like DynamicFusion [5]], it would be possi-
ble to teleconference with high-fidelity reconstructions of
people in VR. This would serve as an alternative to using
pose estimation techniques to find the pose of a person and
animating a rigged model of a person.

4. Experimental Setup and Results
4.1. Experimental Setup

For long range scene capture, we used the Kinect for
Windows sensor. The Unity Plugin provided with the

Figure 5: Experimental setup: The RealSense depth camera
attached to the HMD assembled in the EE267 class

Figure 6: Experimental setup: The Foosball table used to
test the point cloud stitching algorithm

Kinect SDK was used to transmit the RGB and depth im-
ages and visualize the resulting point cloud in Unity as
shown in Fig[7]

For the purpose of hand visualization and tracking, we
mounted the Intel RealSense depth camera on top of the
HMD which we had assemebled in the EE267 class (Fig[3).
The Unity Plugin provided in the RealSense SDK was used
for interfacing with Unity.

In order to test the point cloud stitching, we used the
Foosball table (Fig[) in Gates fifth floor lounge as a test
subject. Using the KinectFusion system, we captured point
clouds of the table from multiple orientations. Going
around in a circle around the table, we captured 8 point
clouds at equal angular intervals of 45 degrees.

4.2. Results
4.2.1 Real-time Scene Capture using Kinect

Given its effective range (50 cm - 450 cm), the Kinect sen-
sor is ideal for scanning the user’s surroundings into VR.

Figure 7: Live feed of Kinect depth & RGB values, recon-
structed into a dynamic mesh in Unity. Note the phantom
surface artifacting at the sides of objects where the Kinect
could not capture depth information.

DepthMode: MultiSource

We used a plugin provided with the Kinect SDK to interface
with Unity. This allowed us to transmit the live RGB and
depth images captured by the Kinect sensor to Unity and re-
construct a dynamic mesh in real time. Since we only used
the live RGB and depth information, the rendered mesh was
only accurate in the absence of occlusions. In the presence
of occlusions, Kinect cannot capture all the depth informa-
tion which results in phantom surface artifacts at the edges
of objects as seen in Fig.

This problem can be rectified with the integration of Kinect-
Fusion with Unity, which is currently not possible due to
software limitations.

4.2.2 Hand Visualization and Tracking Using Re-
alSense

In contrast to the Kinect, the Intel RealSense is a short
range depth sensor. This is ideal for VR applications like
hand visualization, hand tracking and gesture detection.
We used the Unity Plugin provided in the RealSense SDK
to stream the live RGB and depth images from the sensor to
Unity. The depth image was used to reconstruct a real-time
dynamic mesh in Unity as seen in Fig. [§] It must be noted
that the RealSense also supplies RGB data but this was
purposely omitted due to the unsightly artifacts it produced
at the edges of the hands. Also, this mesh is not only
limited to hands but can capture and portray any real world
object within 1m of the camera.

In addition to hand visualization, we implemented real
time hand tracking (Fig. [0) using the hand tracking module
provided in the Unity Plugin. This falls under the category
of egocentric hand tracking, for which the state of the art
algorithm uses CNNs. Here, neural nets were not used

Figure 8: Live feed of the RealSense depth values, recon-
structed into a dynamic mesh in Unity. The RealSense also
has RGB color information but we omitted it for the sake of
this demo due to unsightly artifacts around the edges of the
hands.

Figure 9: Real-time hand tracking in VR. The white discs
attached to the hand are an estimate of the hands’ centers.
This is a screenshot of a live scene rendered in Unity

since we needed a real-time system. Even so, the hand
recognition and tracking was very robust when only one
hand was present in front of the camera. With both hands,
the algorithm sometimes lost track of the second hand.

On top of this, we also implemented a simple gesture
recognition system for the demo. The hand tracking module
keeps track of the (X,y,z) coordinates of the hands. We used
the Euclidean distance between the (X,y) coordinates of
the hands as an action trigger in the scene. Whenever the

Figure 10: Real-time gesture recognition in VR. Our system
uses the proximity of the hands as an action activation trig-
ger in Unity. The green color of the point clouds indicates
that it has been activated

Figure 11: Interaction with the virtual environment. After
activation, when the user’s hands cross a depth threshold,
they fire lightning at rigid bodies in the scene

i’ [
G

distance fell below the threshold, the point clouds turned
green (indicating activation) and lightning was generated
between the hands (Fig. . In addition, after activation,
whenever the hands crossed a certain depth (z-coordinate)
threshold, the user could shoot lightning into the scene and
interact with it.

To achieve interaction with the virtual scene, we in-
cluded a script which scans the view frustum of the user
and finds all the rigid bodies within it. When such bodies

Figure 12: Example of Point Cloud Stitching with two par-
tially overlapping point clouds

(a) Point Cloud 1

(b) Point cloud 2

2 —
20 T—r -
15 e 5
0 7 B

5 L
40 s 2

(c) Merged Point cloud

are detected, a lightning bolt is fired from the hands to the
rigid body. We used the Unity Physics engine to apply a
force on the rigid bodies whenever lightning struck them

(Fig. [TT).

4.2.3 Point Cloud Stitching

The ICP algorithm with point-to-plane metric was imple-
mented in MATLAB. For initial testing, we captured point
clouds of different parts of the room using KinectFusion
and then stitched them together offline. Currently, this step
of the process is not real-time. Our initial foray into point

Figure 13: Stitching point clouds captured at an orientation
of 180 degrees with one another. The two point clouds were
captured from opposite sides of the table.

(a) Point Cloud 1

(b) Point cloud 2

o=N

0.5
-0.5 0

(c) Merged Point cloud

cloud stitching is presented in Fig. [I2]

From our initial testing, we noticed that the ICP
algorithm failed to compute the right transforms if the
overlap between the point clouds was too small. From our
observations, an overlap of 50% or above was required for
the algorithm to merge the two point clouds correctly.

For further testing, we captured 8 point clouds of the
Foosball table shown in Fig. [f] from multiple views. We
went around the table in a circle and captured point clouds
at an angular displacement of 45 degrees from one another.
We made a few interesting observations while trying to

Figure 14: Stitching point clouds captured at an orientation
of 45 degrees with one another. The two point clouds were
captured while moving around the table, in a circle

-0.5

(a) Point Cloud 1

(b) Point cloud 2

(c) Merged Point cloud

fuse the point clouds together.

Firstly, the stitching algorithm worked very well when
the inputs were point clouds captured from exactly oppo-
site orientations (i.e at an orientation of 180 degrees). An
example is shown in Fig. [I3] The two points clouds were
captured while looking in from the two long edges of the
table. The algorithm seamlessly fuses the two to create a
single point cloud containing features from both the inputs.
Perhaps this effectiveness comes from the symmetric nature
of the capture object; further study with more irregular ob-
jects could help to determine whether this is the case.

Figure 15: Stitching point clouds captured at an orientation
of 90 degrees with one another. The two point clouds were
captured from opposite sides of the table.

(a) Point Cloud 1

0 0.5

(b) Point cloud 3

0.2
0.4
0.6
0.8 0.5
05 0
(c) Merged Point cloud

Fig. [T4] shows our attempt to fuse point clouds captured at
an orientation of 45 degrees to one another. While the algo-
rithm did fuse the two correctly, the result is not as qualita-
tively good as in the previous case.

Finally, we tried fusing point clouds which were captured
at orthogonal orientations, i.e one was captured looking in
from the longer edge and the other from the shorter edge.
As seen in Fig. [I5] the output is completely skewed. We
can clearly make out the two input point clouds which have
been fused at an orientation of 90 degrees.

From this experiment, we see that the ICP algorithm is very
sensitive to the initial orientation of the two point clouds.

When the input point clouds are at an orientation close to
that in the real world (in our case, close to 0 degrees or
180 degrees), the algorithm works really well. However,
when this orientation comes close to being orthogonal, the
algorithm fails. This is because, in this case, it tends to con-
verge and stagnate at a local minimum. Therefore, we can
conclude that in addition to reasonable overlap, if the initial
transformation 7§ is too far off from the ground truth, the
algorithm ends up converging to a local minimum most of
the time and the stitching fails.

5. Conclusion and Future Work

Ultimately, our various explorations of Virtualized Real-
ity are first steps. Our ideal, real-time room-scale virtualiza-
tion system is simply out of the scope of a class project, but
we believe that with a follow-up to our work, it is certainly
feasible.

Our goals for future development in this area would
likely include the following:

e Real-time point cloud stitching: Since KinectFusion
can only reconstruct a small volume, stitching together
multiple reconstructions will still be an important part
of scene capture. Ideally, we would like for users
to be able to capture an entire scene in one take for
maximum convenience. Performing the stitching in
real-time also offers extra information that would be
helpful for the ICP algorithm; for instance, if the cur-
rent tracked position of the Kinect sensor were used to
place the two point clouds initially, then these condi-
tions would help the algorithm converge faster.

e Automatic point cloud registration: Once a full scene
is virtualized, it still needs to be registered to (at least
approximately) line up with the real-world scene. Cur-
rently, we have to manually set the transform for the
scene. This task is especially laborious for the Kinect-
Fusion reconstruction, as the coordinate system is reset
every time the reconstruction is reset. However, there
is no one obvious solution for this, and performing this
task alone would likely merit its own research paper.

e Improved integration with a game engine such as
Unity: As it currently stands, the Kinect SDK is com-
patible with Unity but KinectFusion is not. Finding a
way to port the KinectFusion capability, either through
an open-source alternative like PCL or waiting for
Unity to upgrade its .NET capability, would add an im-
portant layer onto reconstruction projects such as ours.
This has the capability of becoming an important plu-
gin into Unity and making virtualization far more ac-
cessible for developers.

e Experimenting with different depth cameras: For ex-
ample, using both the short-range and long-range Intel

RealSense cameras could help solve many of the prob-
lems with using KinectFusion and even help tackle the
registration problem (since the depth cameras would
be in a locked position relative to the headset).

Acknowledgements

Thanks to Gordon Wetzstein and Robert Konrad for pro-
viding the equipment for this project!

References

[1] P. J. Besl and N. D. McKay. Method for registration of 3-
d shapes. In Robotics-DL tentative, pages 586—606. Interna-
tional Society for Optics and Photonics, 1992.

[2] Y. Chen and G. Medioni. Object modelling by registra-
tion of multiple range images. Image and vision computing,
10(3):145-155, 1992.

[3] S.Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, et al.
Kinectfusion: real-time 3d reconstruction and interaction us-
ing a moving depth camera. In Proceedings of the 24th annual
ACM symposium on User interface software and technology,
pages 559-568. ACM, 2011.

[4] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality:
Constructing virtual worlds from real scenes. IEEE multime-
dia, (1):34-47, 1997.

[5] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 343-352, June 2015.

[6] M. Vitelli, S. Dasgupta, and A. M. Khwaja. Synthesizing the
physical world with the virtual world: Computer vision for
augmented reality applications.

