End-to-end system for recognizing and solving
Kakuro puzzles

Sameep Bagadia
Stanford University
sameepb@stanford.edu

ABSTRACT

Kakuro is a type of logic puzzle that is often referred to as
a mathematical equivalent of the crossword. In this project,
we build an end-to-end system for recognizing Kakuro puz-
zles from real images that one might take from a cellphone
camera, and solving them. The final solution is overlaid on
top of the original image. This problem provides us the
opportunity to work on a wide variety of computer vision
problems such as binarization, segmentation and recogni-
tion. While there has been some prior work in building sim-
ilar systems for Sudoku, as far as we know, ours is the first
attempt to build such a system for Kakuro puzzles.

1. INTRODUCTION

Mathematical puzzles and games have often been used to
showcase various techniques and algorithms in Computer
Science because of the well-defined nature of the problem
domain. In this project, we explore the problem of recogniz-
ing and solving Kakuro puzzles [1]] taken from real images
that one might take from a cellphone camera. After solving
the puzzle we aim to overlay the solution on top on the pho-
tograph of the unsolved puzzle.

Our motivation for building a system for recognizing and
solving Kakuro puzzles is two fold: firstly, we would love
to use such a system ourselves! We see puzzles like Kakuro
in newspapers and puzzle books, but many times they come
without a solution. Instead of manually feeding in the puz-
zle setup to a computer, it is faster, easier and more intuitive
to be able to see the solution of the puzzle by just taking a
photograph. Secondly, this project will provide us the oppor-
tunity to work on problems related to to image binarization,
perspective correction, image segmentation and multi-digit
number recognition, all of which are relevant problems in
the field of Computer Vision.

We devise our technical solution as a sequence of steps, each
of which can be seen as a module or a lego block. Our aim is
to have each module solve a specific problem and operate as
independently as possible from other modules. This allows
us to easily change the implementation inside any module
without affecting the system. A detailed explanation of our
technical approach is in Section f] We finally test the per-

Nihit Desai
Stanford University
nihit@stanford.edu

formance of our number recognition model, as well as the
entire system on a test dataset of Kakuro puzzle images. Our
system is fairly robust to variations such as different puzzle
sizes, lighting conditions, rotations and variations in fonts.
Quantitative and qualitative results from our evaluation are
discussed in Section

2. PROBLEM DOMAIN

Figure 1: Kakuro puzzle photograph

Kakuro is a type of logic puzzle that is often referred to as a
mathematical equivalent of the crossword. An example puz-
zle is shown in Figure[I] The Kakuro puzzle is a 2-D grid of
cells where each cell can be a “Blank™ cell (which need to
be filled in as part of the puzzle solution), or a “Brick” cell
(which contains a diagonal slash from upper-left to lower-
right and a number in zero or one or both halves). Each hor-
izontal array of Blank cells have a number in the Brick half-
cell to its immediate left and each vertical array of Blank
cells has a number in the Brick half-cell immediately above
it. These numbers provide important clues in the puzzle.
The objective of the puzzle is to insert a digit from 1 to 9
into Blank empty cell such that the sum of the numbers in
each array of Blank cells equals the clue associated with it
and that no digit is duplicated in an array.

In this project, we aim to build an end-to-end system for
solving these Kakuro puzzles. This system can best be thought
of as a pipeline, consisting of a sequence of steps, each of
which solves one part of the problem - image denoising and

binarization, puzzle detection, perspective transformation,
number recognition and searching for a valid solution. We
provide details about these steps in Section .

3. RELATED WORK

Image Thresholding: Thresholding is one of the simplest
method of image segmentation. From a grayscale image,
thresholding can be used to create a binary image. In their
survey [[15]], Sezgin and Sankur categorize thresholding meth-
ods into various groups - local methods (adapt the threshold
value on each pixel), spatial methods (using higher-order
probability correlation between pixels), clustering methods
(where background and foreground pixels are modeled as a
mixture of two Gaussians) to name a few. Among the last
group of techniques, Otsu’s image thresholding method
is by far the most commonly used. This is also the tech-
nique we use in this work. The algorithm assumes that the
image contains two classes of pixels following bi-modal his-
togram and calculates the optimum threshold separating the
two classes.

Feature Detection: Feature detection refers to methods to
compute abstractions that represent an image, starting from
raw pixels. Broadly, the aim is to capture information about
“interesting” parts of the image, which can then be used
downstream for tasks such as recognition, segmentation etc.
The geometrically precise structure of Kakuro puzzles means
that we can leverage edge features and corner detectors quite
substantially - for detecting the puzzle grid, for cell type
classification and so on. For edges, we use the Canny edge
detector [4]], while for corners, we use the Harris corner de-
tector [8]].

Convolutional Neural Networks: Visual recognition is a
well studied problem in Computer Vision. Deep Convo-
lutional Neural Network (CNN) architectures [11]] have re-
cently become popular as they eliminate the dependence on

hand-designed explicit features and instead directly learn good

feature representations from raw data [24]. CNN-based mod-
els have advanced state-of-the-art performance in various
computer vision tasks, including visual recognition (which
is the application we focus on in this project) [10]], [9]. There
has also been considerable work in enhancing individual com-
ponents of CNN architectures, including pooling layers
and activation units [7]. Additionally, there is ongoing work

in improving training of CNN models, such as by Dropout[[17].

In this project, we use CNN models for the problem of num-
ber recognition in order to identify constraints of the given
Kakuro puzzle. There has been some prior work in using
CNN architectures for this problem by Niu and Suen [13]].

Sudoku Solvers: There has been some work previously to
recognize sudoku puzzles - use some computational ge-
ometry techniques to detect thepuzzle orientation, followed
by template matching as a method for digit recognition. While
this method works well for puzzles of a fixed size and fonts,
these techniques don’t generalize well to handwritten puz-

zles or fonts that are not present in the template database.
Recently, [22]] has proposed using a Deep Belief Network
(DBN) to recognize digits from Sudoku puzzles. While these
bear some similarities with the problem at hand, it is impor-
tant to note that Sudoku puzzles are easier to recognize and
solve. Firstly, there can be only two types of cells (unlike
5 as in case of Kakuro), a cell can at most have one digit
(unlike of multiple digits in case of Kakuro).

4. TECHNICAL APPROACH

In this section, we outline the main steps and technical chal-
lenges involved in our project. Since our system consists
of sequence of steps. We will explain each step in sequence.
Throughout this section we use a running example of kakuro
puzzle shown in figure[2] We implement our system in Python,
and use OpenCV [3] for binarization and feature detection
steps (such as Cannry edge detection, Harris corner detec-
tion, detecting contours in the image etc). We implement the
CNN model training and testing in Tensorflow [2]].

Figure 2: Original Image

4.1 Denoising and Binarization

We first need to separate the background (non-puzzle parts
of the image) from the foreground (puzzle) by binarizing
the image. As a preprocessing step, we convolve the image
with a Gaussian filter to reduce noise. This technique, also
called Gaussian smoothing, is widely used in graphics soft-
ware to reduce image noise. As a next step, we use Otsu’s
adaptive thresholding method for binarizing the image.
Otsu’s method performs a histogram-based image theshold-
ing. The algorithm assumes that the image to be thresh-
olded contains a bi-modal histogram of pixels (foreground
and background). The algorithm then calculates the opti-
mum threshold separating those two classes. The resulting
binarized image is shown in figure 3]

4.2 Puzzle Corners Detection

In this step, we want to detect the puzzle in the photograph
by detecting the four corners of the puzzle. The approach
we use is to detect contours in the image using the algorithm

Figure 3: Binarized Image

of [19]. An implementation of this is already available in
OpenCYV, as part of the the findContours function. Con-
tours are a useful tool for shape analysis and object detection
and recognition. From all the contours we retrieve, we con-
sider the one with the largest area to be the contour corre-
sponding to the puzzle grid. From this contour, we will find
the 4 corners of the puzzle.

In order to detect the 4 corner points from the list of points
defining the puzzle contour, consider line of slope -1 drawn
from each point. Consider their intersection with the y axis
as shown in the figure] The point of intersection of lines
corresponding to two of the corners with y-axis will be ei-
ther maximum or minimum value. The value for rest of the
points on the contour will lie between them. Similarly other
two corners will be detected using line of slope 1. We make
use of this idea to detect the corners.

Concretely, for each point (x;, y;) we calculate two values:

Loz — s
2. T+ Y;

The points at which maximum and minimum values are ob-
tained for the above two equations give us the four corner
points of the puzzle. Figure[5|shows the corners detected for
our running example.

4.3 Perspective Correction

We do not assume the image to be taken from any particular
viewpoint. This means the puzzle will not always be perfect
centered rectangle but can be off-centered and can have skew
and rotations. We transform the detected puzzle grid into a
standardized top-down viewpoint for the task of recognition
with a two step process:

1. Using the corners of the puzzle grid and the mapping
of each corner to the grid in the desired viewpoint, we
compute a generic 2D to 2D perspective transforma-
tion matrix.

Figure 4: Corner Detection for inferring the orientation of
the puzzle. These corners are used for perspective correction

2. We apply this perspective transformation to the origi-
nal puzzle grid to get the desired top-down view.

In summary, we calculate a 3x3 perspective matrix so that a
point (x;,y;) in the original image is transformed to (7, y})
in the transformed image, such that:

fnl‘i Z;
tiy; | = H* |y
t; 1

Figure[6] shows the transformed image.

4.4 Grid Detection

Once we have an aligned image, we detect the lines in the
image to detect the grid of the puzzle. In order to do this, we
first apply Canny edge detector on the image and then we
use Hough transform [|6]. Canny edge detection helps in im-
proving the results of Hough transform. The image obtained
after apply Canny edge detection is shown in figure

After we have the lines from Hough transform, we post-
process them to remove duplicate lines by eliminating lines
that are very close to each other. Once we have the unique
set of lines, we remove the boundary lines. The grid lines
detected from Hough transform are shown in figure (8| From
the grid lines we can infer the size of the puzzle. The exam-
ple image is a 7 x 7 puzzle.

4.5 Cell Type Classification

Once we know the grid and size of the puzzle, we can focus
on individual cells. For each cell in the grid, we detect the
type of cell it is. In Kakuro, we have blank cells where the

NN RN
N
NEENNEE

NN

Figure 6: Perspective corrected

solver needs to put in a number and brick cells which are
not to be filled. We distinguish between them based on the
diagonal line present in the brick cells. This line is detected
using Hough transform [6]]. Figure Pa] shows the diagonal
line detected in a Brick cell.

Brick cells are further divided into 4 categories based on
whether there is a number present on either side of the di-
agonal. In order to detect this, we first apply Harris corner
detection to cell image. We expect a large number of corners
if there is a number present. Figure Ob]shows Harris corner
applied on one of the cells. We check each half of the di-
agonal and if the number of corners detected there is greater
than a threshold, we mark it as a number.

At this point we can completely classify each cell into Blank
or Brick and also each brick into various sub-types. The cells
and their types are shown in table

4.6 Multi-Digit number recognition

Our next task to to recognize the numbers present in the
brick cells. Note that some of the numbers contain 2 dig-

Figure 8: Detected Grid lines overlaid on top of the puzzle

its whereas some numbers contain single digit. We further
divide the number recognition problem into finding the digit
bounding boxes, digit recognition and combining the digits
to obtain the number.

4.6.1 Digit bounding box detection

The problem here is to find bounding boxes for individual
digits so that we can extract them and pass it to Convo-
lutional Neural Network (CNN) for digit recognition. For
each brick cell containing numbers, we first find contours in
the image. We then eliminate false positives using heuris-
tics on the area and location of the contour. We also match

(a) Diagonal line detection (b) Harris corner detection

Figure 9: Features for cell type classification

Cell Image Cell type obtained

Brick01

Brick10

Brick00

Brickl1

Blank

Table 1: Example cells and cell detection output

the contour location with the brick type to make sure we are
detecting bounding box for digits in the correct side of the
diagonal. Figure[TOa|shows the bounding boxes detected for
one of the cells from the puzzle.

Using the bounding boxes, we crop the digits. We then resize
the digits and add padding around them to match the size of
the images used for training the CNN. Figure[TOb|shows one
of the extracted digits after resizing and padding. We first
extract all the digits in the puzzle and then pass them in a
batch to the CNN for recognition.

4.6.2 Digit recognition using CNN

This is a supervised learning task - Given an image (a grid of
pixels of fixed size), we want to classify it into one of the 10
labels. After evaluating some possible approaches to solve
this problem, we finally decided to use a Deep Convolutional
Neural Network (CNN) model: CNNs can learn highly non-
linear functions unlike linear classifiers, CNNs are fast at
test-time compared to models like k—nearest neighbors, and
CNNs generalize very well to unseen data such as different
fonts compared to template matching techniques.

We experimented with different architectures (varying the
number of layers, type of non-linearity, size of convolving

(a) bounding box around digits (b) Extracted digits

Figure 10: Extracting digits from each brick type cell

filter etc), but the final architecture layout of our model is
given in Figure[TT] We use a 6-layer CNN (1 input layer, 3
convolutional layers, 1 fully-connected hidden layer, 1 out-
put layer) for this task. It is important to note that all layers
except the input consist of an affine transformation, a non-
linearity following by a pooling operation layer.

e Input Layer: Input layer expects a fixed size grayscale
image of 28x28 pixels.

e Convolutional Layers: These are 2D convolutional
layers. Each layer consists of a convolution, followed
by a ReLU (Rectified Linear Unit) non-linearity, fol-
lowed by max-pooling. The convolution uses padding
around the edges the maintain input dimensions, while
the 2x2 max-pooling layer reduces the width and height
by a factor of 2. Since our network has 3 convolutional
layers, the input images of spatial dimension 28x28 are
finally reduced to 7x7. This is matched by increasing
the depth of the output volume of a convolutional layer
(i.e. 32 for the first layer, and 64 for the next two lay-
ers). We also added dropout after the last convolutional
layer to better regularize our model.

e Fully Connected layers: We flatten the output of the
last convolutional layer and use this “feature vector”
as input to a fully-connected layer with 512 hidden
units. This hidden layer uses a ReLU non-linearity
and dropout for better regularization. The output of
the hidden layer is fed into a softmax classifier which
produces class probability scores as the final output.

To train our model, we used a combination of two datasets
- MNIST, which is a dataset of handwritten digits [[12], and
the Chars74K dataset [5], which is a dataset of digits from
various computer fonts. The total size of our dataset is 80000
images, which we split into 60000 training images (for train-
ing), 10000 validation images (for optimizing hyperparam-
eters), and 10000 test images (for final testing). We noticed
that using only the MNIST dataset did not generalize as well
to printed numbers, and that the combination of datasets
gives us a better test performance.

We implemented our model using Tensorflow [2] and trained
it on a g2.2xlarge GPU instance (NVIDIA Tesla K40 GPU)
on Amazon Web Services. These instances have 15GB of
memory and 4GB of GPU memory. We used a cross-entropy
loss function (with [-2 regularization) and minibatch gradi-
ent descent using Momentum optimizer [|18]] for the training

Inputs 32@ 32@ 6d@
14x14

28x28 28x28 14x14

ax-pool Conv.

64@ 64@
7 7 512 10

. Max-pool
3x3 2%2 3x3 2%2

Hidden Outputs

~

Conv. Flatten Fully
3x3 connected

Figure 11: CNN architecture used for digit classification

process. Details about hyperparameters and evaluation are
given in Section 3]

4.6.3 Combining digits

Once we have recognized all the digits in the puzzle, we map
them back to their respective cells. If we have two digits
belonging to the same number then the original number is
constructed from them based on the location of the bounding
box corresponding to the digits.

4.7 Solve

llll%ﬂﬂ

ENIIIN

Figure 12: Solution

Once we have detected all the bits and pieces of the Kakuro
puzzle, we put them together to solve the puzzle and get the
digit to be filled in each blank cell. The board is solved us-
ing an iterative refinement process by eliminating possible
values from entries and candidate values for semi-rows or
semi-columns used in sums. When pure refinement yields no
more improvement, the algorithm uses backtracking, branch-
ing on an entry of fewest possible values.

4.8 Overlay solution on top of the image

Once the puzzle is solved successfully, we print the solution
on the unsolved puzzle grid. Figure[I2]shows the solution for
our example puzzle. We then re-transform it back to original
image so that digit appears to have been filled in the original
image which will be shown to the user. In order to retrans-
form it back, we apply the inverse of the transformation ma-

Figure 13: Solution transformed and overlaid on original im-
age

trix we applied in section 3] The final image obtained is
shown in figure[I3]

S. EXPERIMENTS & EVALUATION

Our evaluation consists of two main components. Firstly,
we evaluate the the performance of the Convolutional Neural
Network model on the training and validation dataset quan-
titatively and qualitatively. Secondly, we evaluate the per-
formance of our system by evaluating various steps individ-
ually.

5.1 CNN Evaluation

As mentioned in Section [£.6] we use a combination of two
datasets - MNIST, which is a dataset of handwritten dig-
its [12]], and the Chars74K dataset [5]], which is a dataset
of digits from various computer fonts. The total size of our
dataset is 80000 images, which we split into 60000 training
images, 10000 validation images, and 10000 test images. In
order to train the model, we used a cross-entropy loss func-
tion (with /-2 regularization) and minibatch gradient descent
using Momentum optimizer [[18]. Our models take about
20 epochs to converge. The optimal hyperparameters values
we arrived at after grid search and some manual testing are
given below:

e Learning rate: le-2, decays exponentially after each

epoch.

L2 regularization: 5e-4

Dropout keep probability: 0.5

Convolution filter size: 3x3

Convolution output depth: 32, 64, 64 respectiely in the
three convolution layers

e Densely connected layer hidden dimension: 512

While training, we track training loss curves as a yardstick
to ensure proper training and convergence of our models.
Training loss curve for our model training phase is given in

Figure[T4]

Training Loss history

Training Loss
w
<

0 5000 10000 15000 20000 25000
Minibatch Iteration

Figure 14: Loss history for 6-layer CNN

After training is completed, we test the performance of our
model on our dataset. Since our dataset is balanced across
all classes, we use accuracy as our evaluation metric at this
stage (the next stage of system evaluation also looks at class-
wise performance). Performance numbers of our model are
given in Table Our model, while only 6 layers deep,
achieves close to state of the art performance on this dataset
([21]] achieve a test accuracy of 0.998).

Dataset | Accuracy
Train 0.998
Validation 0.996
Test 0.995

Table 2: 6-layer CNN evaluation results on the MNIST +
Chars74K dataset

Lastly, we perform some qualitative evaluation. We extract
features from the hidden layer (layer 5 of our model), ap-
ply a dimensionality reduction technique and then cluster
our data points in the reduced dimensionality space using a
well-known technique called t-SNE (t-Distributed Stochas-
tic Neighbor Embedding). Figure [I5] shows a t-SNE [20]
plot of the layer-5 representation of data points in the vali-
dation set. We observe that data points belong to different

classes are quite well separated, an insight that is also borne
out by the quantitative results in Table 2}

60

q0f

20+

2001

-40|

—60 L L L L L
-60 -40 =20 o} 20 40 60

Figure 15: t-SNE visualization of the MNIST validation set.
Points with a particular color all belong to the same labels
(i.e. they are the same digit).

5.2 System Evaluation

Since our pipeline consists of a series of geometric trans-
formation and recognition tasks, we think it is important
to rigorously evaluate the performance of each step in the
pipeline. We explain our system evaluation setup and results
in this subsection.

We used puzzles of varying sizes for evaluation. For each
of the puzzles, we clicked multiple images by varying the
angle, skew and lighting conditions between them to give us
a wide range of test examples. In total we have 40 different
kakuro puzzle test images. Since each puzzle has many cells,
numbers and digits we have a good size of test data. Out
test set consists of a total of 2020 cells, 1180 digits and 700
numbers. We use this test set to test the following steps of
our system:

1. Corner detection

. Puzzle size

. Cell type classification

. Bounding box detection

. Digit recognition

AN W W

. Number recognition

These evaluation metrics helped us in evaluation of our sys-
tem and to improve our performance by helping us find the
major error sources. Our final test accuracies for the above
metrics are shown in table 3]

We see that our system is pretty robust in corner detection as
well as detecting the size of the puzzle. It achieved 100%

Type of test Test accuracy
Corner detection 1.000
Inferring size (nxn puzzle) 1.000
Cell type classification 0.991
Digit bounding box 0.989
Individual digit recognition 0.981
Number recognition 0.952

Table 3: System evaluation results

accuracy in both the tasks. For cell type classification it
achieved an accuracy of 99.1%. It does fairly good job at
this. Figure [16] shows the confusion matrix for cell type
classification. We see that sometimes it confuses Brick0O
as other brick types. This means it thinks there is a num-
ber sometimes when there is none. This is because of some
noise in the image making Harris corner detection showing
some noisy corners. Also, most of these errors are in im-
ages with higher puzzle size since number of pixels per cell
is smaller for larger puzzle sizes.

Brick00
Brick01
Brick10

Brick1l

Blank Brick00 Brick01 Brickl0 Brick1ll

Figure 16: Cell type classification confusion matrix on the
kakuro puzzle test set

Bounding box detection accuracy is 98.89% and out of those
digits for which we have correct bounding box, digit recog-
nition accuracy is 98.11%.

Since digit recognition is a multi-label classification prob-
lem, we also present a confusion matrix which shows the
classwise performance of our model on the test. Figure
shows the confusion matrix for digit recognition. We see
that in general the model does a good job across the board
- it mostly classifies the digits correctly. But there is occa-
sionally a confusion between the pairs of digits (1,7), and (8,
9). This is intuitively easy to see, since these pairs of digits
are written in a similar fashion.

A number will be detected correctly only if the following
criteria is satisfied:

0
0
0
0
0
0
0
0

o O O O O o o o o

wu
(=]

Figure 17: Digit recognition confusion matrix on kakuro
puzzle test set

e cell type is correctly classified

e bounding boxes of all digits of the numbers are cor-
rectly detected

e all digits in the number are correctly recognized.

Overall number detection accuracy on our test set is 95.28%

In general, our system works pretty well but makes few mis-
takes as seen in the above results. Also we went ahead to
analyze when the mistakes are made. We notice that most
of the images have no mistake in any of the steps and give
the correct final solution image. Only some images are the
source of the errors. Most of the images that had errors were
because of slightly out of focus or blurred image. Thus if
the photo is taken with proper focus then our system does
a pretty good job at completely recognizing everything cor-
rectly. We also notice some errors in images with higher
puzzle sizes. This is because as the puzzle size increases,
number of pixels per cell decreases. This means at cell level
we have slightly inferior image leading to slightly worse re-
sults

6. CONCLUSION AND FUTURE WORK

As part of this project, we created a system to recognize and
solve Kakuro puzzles. Through this project, we had the op-
portunity to work on a wide variety of computer vision prob-
lems (each of which play a role in solving a sub-problem) -
binarization, perspective correction, feature detection, seg-
mentation and recognition. While there has been some prior
work in building similar systems for puzzles such as Sudoku,
as far as we know, ours is the first attempt to build a recog-
nition and solving system for Kakuro puzzles.

We would like to share some insights we came across when
working on this project:

e We observed that traditional Computer Vision tech-
niques, despite being ovetaken by neural network ap-
proaches in popularity in recent years, actually still
worked well for our case. Our solution for perspec-
tive correction, cell type classification and extracting
digits from the puzzle (in order to feed it to the clas-
sifier) all use techniques that are well-established and
were taught in the class. From our tests results (given
in Table [3), we conclude that the techniques general-
ized fairly well.

e On the other hand, for tasks such as recognition, con-
volutional neural network achieve state of the art per-
formance and we chose to use them for digit recogni-
tion. However, neural network models are sensitive to

hyperparameter settings, parameter initialization schemes

and can overfit very easily to training data as we ob-
served during the initial stages. We had to experiment
with hyperparameters to find ranges where the model
performed well.

There are multiple possible directions to extend this work
in the future. We would like to make the system faster and
more robust - currently, the end-to-end latency for an im-
age is between 2-3 seconds (depending on puzzle size) and
we think w can get it to under 2 seconds with optimizations.
Secondly, we would like to extend the user interface in the
form of a smartphone application and try to have the entire
system running on the client for an even more responsive
user experience. Lastly, we would like to extend this to rec-
ognize different variations of Kakuro puzzles (which may
not be rectangular grids, or may operate with a different set
of constraints etc).

7. CODE SUBMISSION

Our code and dataset is hosted on Dropbox and available for
download from there. We have shared the relevant links via
the Google form that was shared with the class on Piazza.

8. REFERENCES

[1] Kakuro puzzle. https://en.wikipedia.org/wiki/Kakuro.
[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, 1. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.
[3] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[4] J. Canny. A computational approach to edge detection.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):679—698, 1986.

[5] T. E. de Campos, B. R. Babu, and M. Varma.
Character recognition in natural images. In
Proceedings of the International Conference on
Computer Vision Theory and Applications, Lisbon,
Portugal, February 2009.

[6] R. O. Duda and P. E. Hart. Use of the hough
transformation to detect lines and curves in pictures.
Commun. ACM, 15(1):11-15, Jan. 1972.

[7] L J. Goodfellow, D. Warde-Farley, M. Mirza,

A. Courville, and Y. Bengio. Maxout networks. arXiv
preprint arXiv:1302.4389, 2013.

[8] C. Harris and M. Stephens. A combined corner and
edge detector. In Alvey vision conference, volume 15,
page 50. Citeseer, 1988.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541-551, 1989.

[12] Y. Lecun and C. Cortes. The MNIST database of
handwritten digits.

[13] X.-X. Niu and C. Y. Suen. A novel hybrid cnn—svm
classifier for recognizing handwritten digits. Pattern
Recognition, 45(4):1318 — 1325, 2012.

[14] N. Otsu. A threshold selection method from gray-level
histograms. Automatica, 11(285-296):23-27, 1975.

[15] M. Sezgin et al. Survey over image thresholding
techniques and quantitative performance evaluation.
Journal of Electronic imaging, 13(1):146-168, 2004.

[16] P.J. Simha, K. Suraj, and T. Ahobala. Recognition of
numbers and position using image processing
techniques for solving sudoku puzzles. In Advances in
Engineering, Science and Management (ICAESM),
2012 International Conference on, pages 1-5. IEEE,
2012.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929-1958,
2014.

[18] R. S. Sutton. Two problems with backpropagation and
other steepest-descent learning procedures for
networks. In Proc. 8th annual conf. cognitive science
society, pages 823—-831, 1986.

[19] A. K. Suzuki S. Topological structural analysis of
digitized binary images by border following.
Computer Vision, Graphics and Image Processing,
1985.

[20] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of Machine Learning Research,

(21]

[22]

(23]

[24]

9(2579-2605):85, 2008.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus.
Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference
on Machine Learning (ICML-13), pages 1058-1066,
2013.

B. Wicht and J. Hennebert. Camera-based sudoku
recognition with deep belief network. In Soft
Computing and Pattern Recognition (SoCPaR), 2014
6th International Conference of, pages 83-88. IEEE,
2014.

M. D. Zeiler and R. Fergus. Stochastic pooling for
regularization of deep convolutional neural networks.
arXiv preprint arXiv:1301.3557, 2013.

M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. In Computer
vision—-ECCV 2014, pages 818—-833. Springer, 2014.

	Introduction
	Problem Domain
	Related Work
	Technical Approach
	Denoising and Binarization
	Puzzle Corners Detection
	Perspective Correction
	Grid Detection
	Cell Type Classification
	Multi-Digit number recognition
	Digit bounding box detection
	Digit recognition using CNN
	Combining digits

	Solve
	Overlay solution on top of the image

	Experiments & Evaluation
	CNN Evaluation
	System Evaluation

	Conclusion and Future Work
	Code Submission
	References

