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Abstract

There are many existing saliency detection methods that
attempt to detect the dominant region of an image. Work has
been done to optimize detection by combining these maps
with fixed weights and applying a threshold on the weighted
average to determine saliency. We propose a model that
generates adaptive weights based on similarity to training
images, and uses these weights to acquire the final saliency.
Evaluating similarity to training images is accomplished by
attaining high-level feature vectors of images and applying
different models to determine the corresponding weights.
We present methods for generating feature vectors of im-
ages and the models used to determine adaptive weights,
and display the corresponding results, several of which im-
prove on the literature. We also apply a bounding box to the
salient region using a branch and bound algorithm. This re-
duces the rate of false positives by removing spurious pixels.
It also provides a matrix format of the salient region that
can be used for further analysis and applications. Finally,
we show results on two different datasets to show general
feasibility of this method. In summary, we show that us-
ing adaptive weights based on training images allows us to
leverage the strengths of saliency models with reduced ex-
posure to their weaknesses, thus providing improved results
for saliency detection.

1. Introduction

Saliency in images is a measure of distinctive image
quality assessment. It is a technique to identify or distin-
guish objects and regions of the image that stand out from
the rest of the image. These are the qualities of an image
that immediately grab our attention and, therefore, saliency
is a subjective quality assessment method. Human beings
are instantly able to analyze an image and process the de-
tails to detect saliency. Not only are we reliable, we are fast
as well. Despite this, the computational models for saliency
are still not well-established. This is an important, high-
impact problem because with images and videos there is an
overload of information. Each image has many pixels that
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do not contain relevant information, therefore many images
can easily be compressed.

Saliency detection is an important computational tool as
it has many practical applications. One obvious applica-
tion is in object detection and hence, scene understanding.
Another can be in compression as it will allow us to al-
locate more bits to salient pixels, giving us more detailed
images that take up less memory. Further applications of
saliency detection include Robotics, surveillance, graphics,
representation, matching etc.

Currently, there are a lot of different techniques used
for saliency detection. Because the human visual process-
ing system is not fully understood, the heuristics used vary
greatly and there is no one method that can be really said
to be the best. After a survey of the most prominent said
techniques, we observe that these various methods can be
good in certain applications and that each has its own mer-
its. We first select a few of these techniques which we felt
were most successful and propose a novel approach to com-
bine these saliency maps weighted based on high-level fea-
tures obtained from the image itself. Further, we propose to
enhance the saliency values by computing a bounding box
over the salient object which can be useful for other appli-
cations like object detection as well.

We start off by describing the types of saliency ap-
proaches generally undertaken and discussing some of the
most prominent ones following by a brief listing of the im-
provements that we have implemented. Next, we move on
to the Methodology section where we first describe the en-
tire algorithm by splitting it into 4 high-level modules fol-
lowed by a step-by-step detailed technical description of
each of our modules. After that, we go into the Experiments
section where we compare the set of models we have used
and compare them to other state-of-the-art works. We also
discuss some of the failure cases experienced by these mod-
els. Lastly, we present the conclusion where we go over the
main results, what we learned from our project and what we
can keep with us moving forwards.



2. Previous Work
2.1. Overview

Previous work can be divided into three main classes:
block-based models with intrinsic cues, region-based mod-
els with intrinsic cues, and models with extrinsic cues ([3]).
All three are important to review in understanding our work
because we apply a synthetic approach that relies on the
strengths of each of these methods, especially the latter two.

Early works used the block-based model to predict
saliency based on center surround contrast on a pixel by
pixel basis [1]. As the field developed, blocks were used
to determine contrast instead of individual pixels. Margolin
et al. ([L1]) proposed a method that defines the uniqueness
of a patch relative to it’s distance from the average patch in
higher-order, PCA coordinates.

From the region-based models with intrinsic cues, we
looked at context aware saliency ([S]) which will be de-
scribed in detail in later sections. These techniques primar-
ily rely on basic image features, such as color and contrast,
to define distinctiveness between regions of the image.

Lastly, we have the models based on extrinsic cues. [7]]
uses frequency domain based on the empirical observation
that amplitude spectrum of natural images lies approxi-
mately on a straight line. [6] uses probability distributions
to model the image information according to the criterion
of human fixation. [2] uses the idea that the more central a
pixel is within the salient object, the smaller the lower fre-
quency cutoff must be for detecting it.

[[10]] present a summary of naive bounding box detection
techniques followed by an efficient branch and bound tech-
nique that we implement for our solution as well. [14] also
propose object bounding boxes but these are not based on
saliency but on edges.

2.2. Improvement

Our main contributions are as follows. First, we ap-
ply a variety of saliency computations methods to generate
saliency maps. These methods have been chosen to cover
most bases and, when put together, give the best result pos-
sible. Then we use an adaptive weight model to combine
these saliency maps using high-level features vectors ex-
tracted from the images. Finally, we perform bounding box
computation to fixate on the salient object. The benefit is 2-
fold as it helps in reducing the number of false positives and
can also be used for general object detection applications.

3. Methodology
3.1. Overview

The first step is compute preliminary saliency maps.
These include context aware saliency ([3]]), Patch Distinc-
tiveness saliency ([11]) and DRFI ([8]]) each of which will

be described in detail later. Then, we compute high-level
features for each image (Histograms, Bag of Visual Words,
Fisher vectors etc.), cluster them using those features us-
ing various models (K Means, GMM etc.), and calculate
weights which can be used to combine our preliminary
saliency maps. Finally, we compute bounding boxes via
a branch and bound algorithm on top of the saliency maps
and remove pixels lying outside the bounding box.

3.2. Technical Details
3.2.1 Preliminary Saliency Maps

1. Context Aware Saliency ([5]) - It was earlier believed
that salient regions detection should focus on just the object
and nothing more. However, further psychological studies
revealed that humans focus on not only the object but also
some relevant portion of the background, which conveys the
context. So the saliency map should detect the dominant
object and some portion of the background. The salient re-
gion should include local (low-level) considerations, such
as contrast and colour, global considerations (which sup-
press features that occur frequently), visual considerations
(which take into account the possibility of existence of more
than one center of gravity of the image, which turns out
to be very useful in multiple-object detection), and finally
high-level factors (such as human faces).

Low level and global considerations state that a pixel is
salient if its appearance is unique. However, instead of look-
ing at an isolated pixel, we look at the surrounding patch
of each pixel too, which gives us an immediate context to
determine uniqueness. If dposition (Ps, p;) is the Euclidean
distance between the patches p; and p; and dcoror (pi, pj) is
the distance in CIE Lab color space, dissimilarity measure
between them is given by :

dcolo’r (PZ» p.j)
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Visual Considerations take into account the positional dis-
tance between patches. This automatically rules out back-
ground patches, as they are likely to have similar patches
both near and far-away, in contrast with salient patches,
which are generally grouped together.

Multi-scale saliency enhancement states that background
patches are likely to have similar patches at multiple scales,
which is contrast to more salient pixels that could have sim-
ilar patches at few scales (but not all). Therefore, multiple
scales are adopted to further decrease the saliency of back-
ground pixels, improving the contrast between salient and
non-salient regions. In the single scale equation, we con-
sider the K most similar patches in the image, and call a
pixel to be salient when is very different as compared to its
nearest other patches.

In multi-scale saliency measurement, for a patch p; of
scale r, we consider as candidate neighbors all the patches



in the image whose scales are {r,r/2,r/4}. Among these
patches, the K most similar ones are found and used for
computing the saliency. Hence, the final equation for
saliency of pixel 7 at scale 7 is given by:

K
Si :1*exp<* %Zd(pi,qzk)) )
k=1

where ¢,* is the kth most similar patch which happens
to be at a scale of . Finally, the saliency at pixel 7 is taken
to be the mean of its saliency at the different scales:
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After the saliency values for each pixel have been cal-
culated, a pixel is classified as attended or non-attended,
depending on whether the saliency value exceeds a certain
threshold (generally 0.8). First, the most attended areas are
extracted from the image, and each pixel outside the at-
tended area is weighted according to its Euclidean distance
to the closest attended pixel. The rationale behind this is
that images tend to contain center(s) of gravity and salient
objects are usually located nearby. The saliency of the pixel
is then redefined as:

Si = Si(1 = dyoei(i)) 4)

where djoci(2) is the distance of pixel ¢ with respect to
its closest center of gravity or attention. Lastly, we add
in high-level factors for which we use Viola face detector
algorithm ([13]) and then take the maximum between our
current saliency map and the face detection result. This can
be further expanded to include other application-specific
high-level factors.

2. Patch Distinctness - A previous paper that we chose
to implement ourselves is the Margolin paper [11]] “What
Makes a Patch Distinct.” We chose to include this paper
because in a survey of papers we found that although it
did not achieve a strong overall performance, it achieved
a low rate of false positives. We believed that in a syn-
thetic model, it could be advantageous to include methods
with different strengths to such that their combination could
leverage their diverse capabilities. Our implementation did
not achieve the same scores as the Margolin paper, but ap-
plies the same principles without optimizing weights and
implementing some of the post-processing features.

The technical details of this paper is split into three parts:
pattern distinctness, color distinctness, and putting it all to-
gether. Color and pattern distinctness are measured on SLIC
superpixels.

For pattern distinctness, the comparison is made to the
average patch because non-distinct patches are concentrated

around the average patch. The average patch is found under
the L; norm using the equation
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The distinctness is then meased by the L; norm in PCA
coordinates, thus defining P(p,.) as:

P(pa) = [Ipxlly (6)

where p, is the coordinates of patch x in the PCA coordinate
system. We combine these distinctness measures to form a
vector of distinctness for all patches.

We determine color distinctness by calculating the Lo
distances from all other regions in the CIE LAB color-
space. The equation for the color distinctness is given by:

M
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where 7, is the color profile of a region. This calculation is
only done between SLIC superpixels to save time.

Finally, for putting it all together, we take the dot
product of the vectors for color and pattern distinctness
and apply a Gaussian to the center of the image because
salient regions tend to cluster centrally in the image. We
take this dot product to get our final result. The paper
includes further steps to refine the final result that we have
omitted in our implementation, including calculations at
different resolutions and center-of-mass Gaussians for
various thresholds.

3. DRFI - The method proposed in the paper “Salient
Object Detection: A Discriminative Regional Feature Inte-
gration Approach” by Jiang et al. [8], abbreviated DRFI,
has a pipeline composed of 4 steps. First an initial segmen-
tation of an image is created. Then several (15 in our case)
segmentations are produced from this initial segmentation
by combining similar regions in an iterative manner. These
segmentations are transformed into saliency maps by a ran-
dom forest model. Finally those saliency maps are com-
bined in a weighted sum using a fixed set of weights to pro-
duce a final output saliency map.

The initial segmentation of the image is created using the
segmentation technique by Felzenszwalb et al. in [4] which
is an efficient graph-based image segmentation. From the
initial segmentation, additional segmentations are produced
by combining similar and adjacent regions iteratively. See
details in [4].

In order to transform the segmentations into saliency
maps, a random forest model was trained. A 93 dimensional
feature vector is extracted from each region in the seg-
mentations. This feature vector describes the intra-region



pixels, the similarity between the region and adjacent re-
gions, and the similarity between the region and the pseudo-
background which is the 15 pixel border around the image.
The random forest model predicts the saliency of a region
from these feature, and the saliency of each pixel in the re-
gion is set to the predicted value. [8] contains more details.

Finally each saliency map must be combined into one fi-
nal saliency map. In [8] this is done using a fixed set of
weights for a weighted sum (E%Zl W Ap). The weights
were determined by minimizing a least s%/}lares estimator
over all the training images (min |[A — > w, A ||5).
This optimization problem to determine the weights is ex-
plained in more detail in the sections below.

The approaches we highlight below utilize the saliency
maps produced as an intermediate output by the DRFI
method. The saliency maps were produced using code pro-
vided by [8]. The numerous saliency maps they create pro-
vide us with a platform to test saliency map combination
methods. Our methods differ from the DRFI method in
that they use a set of weights that adapts to the image at
runtime. The use of adaptive weights was is present in the
DRFI method.

3.2.2 Combining Saliency Maps: Image Vectors

We used three different methods to extract feature vectors
to classify the images. We used a simple gray scale his-
togram model, Bag of Visual Words and fisher encodings
to extract high-level features of the images into a vector for
processing.

To get the gray scale histogram, we first converted the
RGB image into gray scale values ranging from O to 255.
We then created a histogram with 256 buckets, one for each
grayscale value. The value of each bucket corresponded to
the fraction of total pixels that corresponded to that gray
scale value. An array of this histogram was used as the
image’s feature vector.

We also used Bag of Visual Words encodings of the im-
ages. This method extracts common patterns from a set of
images and creates buckets corresponding to those common
patterns. A new image is described by a vector holding
counts corresponding to the frequency of a bucket’s cor-
responding visual pattern. We trained the Bag of Visual
Words on our training images, and classified test images ac-
cording to this model.

Finally, we used fisher encodings to generate a vector
holding statistics about local feature descriptors, namely
SIFT features. We first trained a GMM on all SIFT features
from the training images. We store the means, covariances,
and priors of this GMM, and use them to run a fisher en-
coding algorithm on the SIFT features of the images seen in
the test set. This assigns each SIFT feature in the test im-
age to a mode in the GMM with a certain probability. The
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Figure 1. Our training and testing pipeline for methods using a
GMM.

mean and covariance of these probabilities are then used to
generate the final fisher vector. This vector can be used to
acquire second-order information about an image in a vec-
tor format.

3.2.3 Combining Saliency Maps: Synthetic Models

We used four algorithms to adaptively assign weights to an
image that would be used to combine the saliency maps pro-
duced from that image. Once these weights were assigned,
the final saliency map is produced according to a weighted
sum of the previous saliency maps (Zﬁf:l Wi Am). Each
method is given three things: a feature extraction method
that is used to transform training images into a feature vec-
tor, several saliency maps produced from each training im-
age, and the set of “best weights” for each image. The “best
weights” for an image are defined as the solution to the fol-
lowing optimization problem:

M

min||A = Y wm Am||F

m=1

0<wy, <1

where A is the ground truth saliency map, M is the number
of saliency maps produced, A,, is the m*" saliency map,
and w,,, is the weight associated with the m*" saliency map.
[8]] provided code to solve this optimization problem.

The first method used was K nearest neighbors. To de-
termine the weights associated with a new image, it is first



transformed into a feature vector. Then the K closest (in
Euclidean distance) training images in the feature space are
selected and the average of their “best weights” is associ-
ated with the new image. K was chosen to maximize the
AUC score of a validation set of images and was set to 20
when using the Fisher feature representation. The K near-
est neighbors method is labeled as KNN in the experiments
section.

The remaining methods rely on a Gaussian mixture
model to perform clustering on the training images in the
feature space. The Gaussian mixture model is a common
technique and relies on the EM algorithm to fit a fixed num-
ber of Gaussian distributions over the data set. These Gaus-
sian distributions then represent clusters of the data. A data
point (an image in our case) belongs to a cluster if the prob-
ability it was generated from the Gaussian distribution as-
sociated with that cluster is the largest. The number of clus-
ters was chosen by minimizing the Akaike information cri-
terion (AIC), which is the number of parameters minus the
log likelihood of the data. The number of clusters was set
to 6 when using the Fisher feature representation, although
a higher number of clusters (64) was tested and found to
perform worse. Refer to Figure [T] for a visual depiction of
methods using a Gaussian mixture model.

The method labeled as GMM in the experiments section
first associates a set of weights to each cluster found in the
Gaussian Mixture Model then uses the cluster’s weights to
assign weights to new images. The set of weights associ-
ated with each cluster is the mean of the “best weights” for
each image that belongs to that cluster. To assign weights
to a new image, soft clustering is employed. The assigned
weights are a sum over the weights of each cluster weighted
by the probability that the image belongs to that cluster. The
weights assigned to a new image are given by the following
expression:

Yery p(I|c)w,
25:1 p(I|C)

where 0 are the weights assigned to the new image, C'is the
number of clusters, p(I|c) is the probability of the image
being produced from the Gaussian associated with cluster
¢, and w. are the weights associated with cluster c.

The method labeled Soft in the experiments section, is
the same as the previous method, except the weights asso-
ciated with each cluster are assigned according to an op-
timization problem rather than a mean. The optimization
problem is the same as the one used to determine the “best
weights” for an image, except it is a sum over every image
in the cluster (min Ele [|4; — Zn]\le Wi Ai || %)

The method labeled Hard in the experiments section as-
sociates weights to each cluster in the same manner that the
Soft method does. However to assign weights to a new im-
age, the Hard method simply uses the weights associated

u_;:

with the cluster that image belongs to. This is known as
hard clustering hence the names Hard and Soft (GMM tech-
nically also does soft clustering).

3.2.4 Bounding Boxes

After combining all of the saliency maps, the aggregated
map obtained is quite spread out. In other words, there are
many spurious pixels marked as salient either due to noise
or edges or some background features. The next and final
step is to remove these false positives by detecting a bound-
ing box around the salient object. Such a bounding box
has further applications for object detection, representation
etc. The major difficulty is in pre-defining the amount of
saliency the salient region/object should contain, as it de-
pends on the size and shape of the salient object, as well as
how cluttered the background is. Traditional methods use
thresholding and then searching for windows but these ap-
proaches are highly sensitive to the selection of threshold,
which is difficult to optimize, and are very computationally
intensive. Hence, we employ a branch and bound algorithm
for bounding box detection (from [[L0]) using an area-based
heuristic.

The saliency score (called Saliency Density) of a win-
dow W is defined to be -

_ Z(m,y)GW S(Jf, y)
Z(I,y)el 8(377 y)

where S(x,y) is the saliency of pixel at (z,y) coordinate,
I is the entire image and C' is a parameter used to balance
the trade-off between area of the window and its average
saliency. In the expression, the first term denotes what frac-
tion of the total images saliency is captured in this window
while the second term denotes the saliency density of that
window with respect to area of the window. Now, there are
quadratic (in the image size) number of possible windows
hence, we use a branch and bound algorithm to compute
this efficiently. A window can be full determined by its top,
bottom, left and right coordinate. So, we define a set of win-
dows as a tuple consisting of 4 possible ranges, one each for
the top, bottom, left and right coordinates. Then, we define
the upper bound function for a window W belonging to a
set of windows X (for Branch and Bound algorithm) as -

Z(Ly)EW S(.I‘, y)
C + Area(W)

fW) + (8)

maxwex (Z(:I,'7y)eW S(xay))
Z(z,y)EI S(.I‘, y)

maxwex (Z(x,y)ew S(z, ZJ))
C + minw e x Area(W)

f(X) =

We see that f(X) is an upper bound for any window W €
X and equal when W = { X'} which are the 2 requirements
for a branch and bound algorithm. In each iteration, we pick
the most promising set so far, split it into two by dividing



the range of the dimension (which has the largest range) into
2. Putting all that together gives us algorithm [I]

Data: Image I, Saliency map S € R™*"

Result: Bounding box coordinates - T,B,L,R

Create an empty Priority Queue PQ ;

X ((Lm), (1,m), (1,n), (1,n);

while X contains > 1 window do
Split X into X; and X5 based on largest
dimension ;
Insert X into PQ with priority f(X1) ;
Insert X5 into PQ with priority f(Xs) ;
X < Top element from PQ ;

end

Assert X = ((¢,t), (b,b), (1,1), (r,7));

Return t,b,1,r ;

Algorithm 1: Bounding Box Computation Algorithm

4. Experiments

The primary metric we use to evaluate the performance
of our methods is the AUC score so that we can compare our
results to [8]]. To calculate the AUC score all the saliency
maps produced have a threshold applied at various values
from 0 to 255 to produce salient object segmentations. Then
the true and false positive and true and false negative statis-
tics are calculated over all pixels in the test images at each
threshold. We accumulate these statistics to produce the
ROC curve which is based on the true positive rates and
false positive rates. From the ROC curve we compute the
AUC score via numerical integration.

We tested on 2 datasets. MSRA-B dataset can be
found here http://research.microsoft.com/
en—-us/um/people/jiansun/SalientObject/
salient_object.htm [9] and ECSSD dataset can
be found here http://www.cse.cuhk.edu.hk/
leojia/projects/hsaliency/dataset.html
[12]. All of our own code along with the already im-
plemented code for the context aware saliency method
can be found here https://github.com/bweems/
cs231la, The code from the DRFI paper we used was
recently update. The more recent version is located as
https://github.com/playerkk/drfi_matlab
and the older version that we used seems to have
been taken down, but was previously available at
http://jianghz.com/projects/saliency_
drfi/index.htmll

4.1. Feature Comparison

Figure [2] shows the experiments that were run to de-
termine which features produced the best results. The K
nearest neighbors method and the Gaussian Mixture Model

method perform consistently across the feature representa-
tions. However, for both the Hard and Soft clustering meth-
ods the Fisher feature representation produces the best re-
sults. We also see that the Fisher feature representation
and the bag of visual words representation both generalized
fairly well. For these reasons, the Fisher feature representa-
tion appears to be the most powerful.

4.2. Weight Selection Algorithm Comparison

Figure[3]compares the different methods using the Fisher
feature representation across both the MSRA-B dataset and
the ECSSD dataset. The GMM method empirically per-
formed the best, although all methods outperform the origi-
nal DRFI method when using the Fisher feature representa-
tion. The GMM method seems to be a more uniform version
of the DRFI output, although on occasion it does produce a
very different image. This is visible in the output examples
below in Table[ll

4.3. Bounding Boxes

We used C' = 0.2 x width x height as our parameter
after performing some manual testing. Furthermore, we ex-
tended the bounding boxes by 10 percent extra in each di-
rection to avoid missing boundaries of the salient object.

As can be seen in Figure [] it appears that the addition
of the bounding box results in lower AUC scores. How-
ever, the bounding boxes can be useful as a method for find-
ing windows for other computer vision algorithms and the
qualitative results look reasonable. We also have a couple
of thoughts that may help improve our bounding boxes for
saliency purposes. One is to extend the boxes by a higher
margin (say 20 percent). This might help with the saliency
measures but is not the best for object detection. The other
thought is to scale up the pixels inside the box and scale
down the pixels outside.

4.4. Alternative Datasets
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Figure 5. Comparison across datasets. The methods are using the
Fisher feature vectors.
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The MSRA-B dataset was the dataset used for train-
ing our models. To test the generalization of our method
we examine our results on the ECSSD dataset. The EC-
SSD dataset, or the Extended Complex Scene Saliency
Dataset, includes many semantically meaningful but struc-
turally complex images for evaluation. This is also the
dataset on which the method in [8] performs the worst. The
ECSSD dataset was included to test our methods on im-
ages that represent failure cases, such as images where the
saliency object is similar to the background, images where
the background is very cluttered or complex, and images
with multiple salient objects. From the results in Figure 5 it
appears that all the methods generalize to the ECSSD data
set reasonably well. The difference between the result from
[8]] (labeled DRFI) and the methods we introduce remain
approximately the same between datasets.

4.5. Additional Saliency Maps

Additional Saliency Maps AUC Comparison
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Figure 6. Additional Saliency Maps AUC Comparison

Figure 6 displays the results of the methods using
the Fisher feature representation with the two additional
saliency maps from [[11] and [S]. The addition of these
two saliency maps results in slightly worse performance for
our methods, likely because they were worse saliency maps
than the intermediate saliency maps produced by the DRFI
approach [8]], which are the only saliency maps all the other
results use. Future work could focus on synthesizing fi-
nal results of other state-of-the-art saliency maps instead of
relying on our implementations to generate the additional
mappings.

4.6. Qualitative Results

Table [T] shows some of the output results for the meth-
ods that have been discussed. The first and fourth image in
the results show images where the methods proposed in this
paper outperform previous methods. The first image is a
case where the background had a noisy object. The second

and third images highlight how the KNN and GMM meth-
ods tend to be more uniform versions of the DRFI approach.
The second and fourth images show situations where some
parts of the salient object lie outside of the bounding box.

4.7. Failure Cases

Table 2] shows some images that were failure cases for
our methods. The third and fifth images are cases of im-
ages with cluttered backgrounds. The methods capture the
salient object but also capture some of the background ob-
jects. However, the bounding box method does a reason-
able job of capturing the salient object within the image,
even in the presence of noise in the saliency map. Per-
haps the bounding box methods previous discussed could
be used to improve saliency maps produced from cluttered
images. The first, second, and third images are cases where
the salient object is similar to the background. These im-
ages were the most difficult. All images in Table 2]are from
the ECSSD dataset.

5. Conclusion

Computational saliency detection in itself is quite a di-
verse (and open) field because many recent works use very
different heuristics and ideas to predict saliency. We ob-
serve that different models have their own advantages and
disadvantages. For example, block-based models are sim-
pler but fail to capture the differing shapes of objects.
The context-aware model succeeds in detecting outlines but
struggles to detect interior regions of salient objects. The
Saliency DRFI method is powerful, but produces patchy
saliency maps.

Our main contribution was to propose an adaptive
weights based combination model for incorporating the ad-
vantages of different techniques that were most successful
on similar images. We tested various models for both fea-
ture selection and clustering scheme, and we found GMM
with Fisher vectors to generalize the best. We compared our
results with related recent work and see improvements. This
suggests that we successfully clustered images into groups,
each of which had a preference for certain saliency map
techniques.

Finally, we enhanced our final saliency map using
bounding boxes. Although this results in lower AUC scores,
we believe that it is a valuable step because it generates out-
put in a data structure that is useful for applications such
as scene understanding and object detection. We also dis-
cussed a few failure cases and some ideas that may help
overcome them.



N\
ad E

Table 1. This table shows images and outputs from various methods. Each image occupies two rows in the table above. Along the first row
(from left to right) is the original image, the ground truth, the DRFI output, the KNN method output, and the GMM method output. Along
the second row (from left to right) is the original images, the Soft method output, the Hard method output, and the last two images show the
bounding box over the original image and the GMM saliency map respectively. All methods here used the Fisher feature representation.
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Table 2. This table shows images that are failure cases for our methods. Each row has one image and its saliency maps. The columns in
order (from left to right) are the original image, the ground truth, the DRFI output, the GMM output using the Fisher representation, and
the bounding box computed from the GMM-Fisher output.
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