Computer Vision for Food Cost Classification

Dash Bodington
Stanford University
dashb@stanford.edu

Abstract

This project aims to use various computer vision meth-
ods for the novel task of restaurant cost prediction based
on food images. It uses the Yelp dataset, a dataset of
200,000 images tagged by business, which is significantly
pared down to near 15,000 relevant images tagged as food,
and labeled by the cost rating of the business they come
from. These food images are partitioned into training and
testing datasets, and the test dataset has a uniform sample
distribution over the classes: cheap ($-$$ on Yelp), and ex-
pensive ($$$-338 on Yelp).

Once the dataset is defined, several techniques are
trained and applied to make class predictions on the test
dataset. The prediction model is broken into feature extrac-
tion and classification, and significant exploration was done
to come up with optimal features and classifiers for the spe-
cific task. The primary goal of this project was to achieve
the highest possible classification accuracy on the reserved
test dataset.

The four main feature extractors used were: simple pre-
processing (crop and resize images to uniform dimensions),
color histograms (a normalized distribution of color inten-
sity at all pixels), SIFT bag of words (using normalized dis-
tributions of SURF feature common descriptors over each
image), and deep neural network features (using the trained
Alexnet to extract image features).

Each feature extractor was tested with each of the fol-
lowing classification methods: K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Naive Bayes, and a custom
neural network with softmax loss.

The best results were achieved from the combination of
Alexnet features and color histograms, independently com-
pressed using PCA, and classified with a shallow neural
network, which acheived 70% accuracy on the test set while
most other methods achieved from 50% - 78% accuracy.

1. Introduction

Since various deep learning methods have shown very
impressive results in classification, detection, and localiza-

tion, there has been a great deal of focus on understanding
images beyond their still content, mostly in the form of gen-
erating descriptive sentences, and using semantic analysis
to understand language [6, 7] to generate these descriptions.
While generating descriptions is easy for a human to eval-
uate and judge a perceived intelligence, it is only a subset
of what can be understood beyond image content through
computer vision.

This project aims to tackle a subset of beyond-content
image understanding through food images and restaurant
ratings from the Yelp dataset. The dataset contains 200,000
images tagged with descriptors and the businesses they
come from, and businesses are give a cost rating from $
to $$$$. Because of the small number of restaurants in
the two most expensive classes, these cost ratings are com-
pressed into 1-2 $ and 3-4 $, hereafter referred to as cheap
or $ and expensive or $$ By filtering images by *food’ tag-
ging, and assigning the business cost rating to the image, a
dataset containing food photos and an estimated cost rank-
ing, or fanciness ranking is created. Many computer vision
approaches can be used in an attempt to understand these
food images beyond their straightforward content. The sim-
ple goal of this project is to train algorithms on the training
data, and maximize accuracy on the test dataset.

Of the possible approaches to this problem, this project
focuses on predictive models divided into feature extractors
and classifiers, and explores several options and combina-
tions between the two model parts. Four primary feature
extractors used were: simple preprocessing (crop and resize
images to uniform dimensions), color histograms (a nor-
malized distribution of color intensity at all pixels), SURF
bag of words (using normalized distributions of SIFT fea-
ture common descriptors over each image), and deep neural
network features (using the trained Alexnet to extract image
features). Each feature extractor was tested with each of the
following four classification methods: K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), Naive Bayes, and
a custom neural network.

Very little work similar to this project has been done, but
the project relies heavily on more general, existing com-
puter vision tools and research. The remainder of this re-

port will discuss the dataset, models, and results, and con-
clusions of this project in detail.

2. Implementation
2.1. Experimental Setup

The implementation of this project was completely com-
putational, and involved dataset extraction, data preprocess-
ing, feature extraction, and classification. All code for this
project was written in python 2.7, opencv was used for most
image processing [2], tensorflow [1] was used to write all
neural networks, and scikit provided implementations of
some other classifiers[5].

The project was run on a fast desktop computer. All neu-
ral network models were run on an Nvidia GTX 780 GPU,
and the remainder of the processing was done on a 4.4GHz
quad-core CPU. Even with reasonably fast hardware, fea-
ture extraction was very time consuming, so it was often
done only once, and the features were cached to be used
on-demand.

2.2. Dataset Extraction

Though this project uses a nicely formatted and labeled
dataset, the subset required for training and testing comes
from several extraction steps. The Entire Yelp dataset con-
tains 200,000 color images from business’ Yelp pages. Im-
ages can be uploaded by either businesses or customers, and
are of varying quality and size. These images are tagged
by Yelp’s own computer vision algorithms, and can be cor-
rected by users, as there are sometimes errors in tagging.

Initially, the image database is analyzed, and all images
tagged as "food’ are extracted along with the "id’ of the busi-
ness they come from. All images from the same business
are grouped, and are then labeled with the consolidated cost
label (mapped from Yelp’s $ - $$3$$ to the binary $ or $$
for this project) of the business. If a business has not been
labeled with a cost rating, which happens infrequently, the
corresponding images are discarded. Next the businesses
ids are binned by their attached cost ratings, each bin is
shuffled, and a predetermined train/test ratio (0.7 in this
case) is used to assign each business id to the training set
or test set. This binning by business and cost rating is used
to ensure that there is a similar distribution of data in the
test and training datasets, and to avoid placing images of
the same item from the same business into the training and
test dataset, which could be considered as mixing the two.
In total, there are 11,530 images available for training, and
4,412 images available for testing, though these counts de-
crease depending on the desired training and testing distri-
butions.

In the test dataset, images in each class are shuffled, and
images are discarded from the class with more images un-
til exacly 50% of the images in the test set are from each

class. Enforcing this 50% distribution cuts the dataset ap-
proximately in half because of the relative rarity of expen-
sive restaurants.

After the training and test datasets are fully defined, each
image is cropped from the center to the largest square area
possible, and is resized to a variable size, depending on the
feature extractor used (sizes range from 64x64 to 227x227).

With this definition of the training and test datasets, there
are several further processing steps which are sometimes
used on the training set to improve training and perfor-
mance.

e For validation or cross validation, which is only used
when tuning feature or classifier parameters, or train-
ing neural networks, 20% of the training dataset is ran-
domly designated as the validation set. All models ex-
cept neural networks are trained on the whole training
dataset before testing.

e Depending on the classifier and loss function being
used, the training set will usually have images dis-
carded in the same fashion as the test dataset to even
the distribution of images across classes.

2.3. Feature Extraction

Several feature extractors were used in this project as in-
puts to the various classification systems.

2.3.1 Images as Features

In some cases, preprocessed (scaled and cropped) images
were used as features themselves. This method is usually
most appropriate for input into a convolutional neural net-
work classifier, which essentially defines its own features
internally, but can also be used with other classifiers with
varying success. These features use images of size 128x128
or 64x64, which are vectorized unless the classifier is a con-
vnet.

2.3.2 Color Histogram Features

As an initial step beyond images as features, it was thought
that the colors in an image could give an indication about
the cost of food. This feature consists of a length 30, nor-
malized (sum 1) vector, which contains a 10-bin histogram
for each color channel. These features use images of size
128x128 or 64x64 as inputs.

2.3.3 SIFT Bag of Words Features

SIFT Bag of Words features consist of frequency distribu-
tions of common feature descriptors. During training, a set
of SIFT descriptors from all training images is extracted,
and N (range: 20-100) *words’ are extracted with the K-
means algorithm [2, 4]. Next, during training and testing,

each image’s feature vector is calculated as a normalized
N-length histogram of the words, where each feature de-
scriptor from the image is assigned to one word with the
nearest neighbor algorithm. These features use images of
size 128x128 as inputs.

2.3.4 Alexnet Features

Alexnet is a 13-layer pretrained convolutional neural net-
work which previously achieved state of the art perfor-
mance in the Imagenet large-scale image classification chal-
lenge [3]. Originally, the network’s output was a 1000-class
softmax layer, but because the network learns very useful
features for other tasks, swapping the final layers of the net-
work for custom-trained layers is a common practice, espe-
cially for those working without the computational power or
large data volume required to train a model with similar per-
formance from scratch. For this project, ’Alexnet Features’
are considered to be the output of one of the final layers of
the pretrained network.

With Alexnet, multiple feature sets were created from
multiple layers of the convnet. fc8, fc7, and fc6 (the final
fully-connected layers of the network). Because these fea-
tures are effectively sparse (we are feeding the network a
very small subset of the images it was trained to classify),
and very large in size, PCA is often used to reduce the fea-
ture dimensionality before training.

This network requires image inputs of size 227x227,
which are also mean-subtracted.

Using the GPU allows for a significant speedup in fea-
ture generation, over 70x faster than CPU computation on
the hardware for this project, but is not enough to train a net-
work like Alexnet from scratch with limited time and data.

2.4. Classifiers

Because of the many feature inputs used in this project,
classifiers with different properties and strengths are used to
increase the likelihood of good performance with each fea-
ture set. Feature vector lengths range from 30 (Color His-
togram) to 12,288 (cropped and rescaled images), so mod-
els which may overfit in some cases, may perform well with
fewer features.

2.4.1 K - Nearest Neighbor

The K-Nearest Neighbor classifier archives the entire train-
ing feature set, and at prediction time, calculates the eu-
clidean distance from the input feature vector, and makes
a prediction based on a majority vote from the labels of
the K closest training examples (K = 20 for this project).
While storage-inefficient, it is one of the simplest classi-
fiers, and would perform well if images in the training and
testing dataset were similar enough, but fails to generalize
otherwise.

2.4.2 Naive Bayes

Naive Bayes classification assumes feature indepen-
dence and Gaussian probability distribution of fea-
tures to make a maximum likelihood estimate § =
argmaz, P(y)ILP(y|z;) of the class, and usually can per-
form well on small training datasets because it has few pa-
rameters.

2.4.3 Support Vector Machine (SVM)

The SVM is a linear classifier which defines a class-dividing
hyperplane f(z) = By + Bz, which minimizes ||B]|?
subject to y(Bg + BTxz) > 1 on the training set. Generally,
SVMs have the advantage that they are less likely to overfit
than other methods because of build-in regularization.

2.4.4 Neural Networks

While neural networks are the most general classifier used
in this project, they are also the most difficult to tune, and
it requires a great deal of data to train networks with many
neurons. Neural networks are a layered structure of inter-
connected linear and nonlinear operations whose parame-
ters can be learned with various gradient descent methods.

In this project, the classification networks presented have
zero or one hidden layers, and all layers are fully connected.
Each fully connected hidden layer (when present) is fol-
lowed by a Rectified Linear Unit (ReLU), and the final layer
is a softmax layer which takes two inputs and computes
pseudo-probabilities for the input on each class according
to

e’

plx;) = e

Though neural networks have been responsible for many
recent state of the art results in computer vision, they
are among the most difficult models to manage on small
datasets. Because of this, L2 regularization is sometimes
added to the iterative minimization of the cross-entropy loss

Loss = — Zp(xi)log(q(xi)) + AR(Weights)

where g contains the outputs of the softmax layer, and p is
the one-hot label vector for the training sample x. Other
training tricks, such as dropout and projection of sparse
feature vectors into lower dimensions with PCA are also
attempted to increase robustness and decrease overfitting.
Batch gradient descent with momentum was used to train
networks for this project because it provided reliably con-
verging results, especially when changing the class distri-
bution (and size) of the training set.

Hidden
.'/_-'- -\--\‘.
{ \

Input

Figure 1. Example of classification neural network. A ReLU is
applied to the hidden layer, and a softmax normalization is applied
to the output.

3. Results

Though estimating restaurant cost-class from food im-
ages is a difficult problem, reasonably good results are tab-
ulated and discussed below.

3.1. Accuracy
] \K—NN\NB\SVM\NN\
Images 0.56 | 0.60 | 0.50
Color Histogram | 0.57 | 0.63 | 0.54 | 0.56
SIFT + BoW 0.59 | 0.62 | 0.60 | 0.60
Alexnet 0.62 | 0.65 | 0.66 | 0.68
Multifeature 0.55 | 0.65 | 0.68 | 0.70

Table 1. Multifeature methods (Alexnet fc8 and color historgrams)
with a neural network classifier perform the best on the test set.

3.2. Example Classifications

Though accuracy results are the goal, actual examples of
results provide a more intuitive look at classification. We
can see that desserts appeared frequently in the $$ class,
which is not surprising, considering that they are often con-
sidered to be a luxury item, and $ -classified foods are more
everyday items.

Figure 2. These three images of cheesecake, chocolate dessert, and
steak, are the images with the highest estimated probability of be-
ing expensive by the neural network.

Figure 3. These three images of pizza, a taco, and a sandwich, are
the images with the lowest estimated probability of being expen-
sive by the neural network.

3.2.1 Details of Best Model

The best performing model, *multifeature,” which achieved
an accuracy of 70% on the test dataset was a multifeature
model with Alexnet features, color histogram features, and
a neural network classifier.

For this model, 1000-dimensional Alexnet features were
extracted from the 8th fully connected layer of the network
(the layer closest to the original softmax layer) and com-
pressed to 100 dimensions and whitened with PCA. Then,
whitened color histogram features were concatenated with
the Alexnet features, leaving feature vectors of length 130
for the classifier.

The classifier in this model was a fully connected neu-
ral network with a hidden layer of size 50 (see Figure 1).
This model was trained for 10,000 iterations of batches of
200 images, reporting validation error every 500 iterations.
After full training, the model from the iteration with the
highest validation accuracy was used for testing.

3.2.2 Unsuccessful Models

In addition to the previously presented models, many other
less successful attempts were made to solve this task. Some
simply performed poorly, were not unique, or were compu-
tationally unfeasible.

e Convolutional neural networks were implemented, but
failed to train or generalize well. It is thought that with
the large image size required (greater than 128x128) to
resolve objects in detail in these images, the training

dataset was not large enough to train the large filters
also required. At small image sizes (64x63-128x128)
with smaller filters, models did not generalize, likely
due to the lack of recognition at such a pixelized scale.

e Other faster feature extractors were also tested for the
bag of words method, such as SURF and BRIEF, but
since SIFT features were the best performing, only
they were presented.

e Linear Discriminant Analysis was used for classifica-
tion as well, but performed similarly to the SVM, so
the decision was made to focus on fewer, more unique,
classifiers.

e Many attempts were made to train models on imbal-
anced datasets in order to have more training data,
however, with the imbalanced nature of the data (with
75% of the images in the $ class), many models simply
learned to predict $ consistently, since this would lead
to a higher accuracy than varied predictions.

e To combat the problem above, various loss functions
and update methods were tried, such as weighting each
misclassification by (1 - the prior probability), and
only performing updates for misclassified images. Ul-
timately, training on an even dataset was the most suc-
cessful.

4. Conclusion

High performance in abstract computer vision tasks like
this one is very difficult to achieve, which was a lesson
learned during this project. Though accuracy of 70%, sig-
nificantly above random (50%) was achieved, higher per-
formance would certainly be necessary before using a pre-
diction system like this for an unsupervised application.

4.1. Challenges

The greatest challenge in achieving good performance in
this task seemed to be working with unbalanced or small
datasets. Though near 15,000 food images were available,
the rarity of expensive restaurants made training difficult,
and discarding images to even the datasets led to a signifi-
cantly smaller volume for training, though results improved.

Beyond data problems, there may also be issues with the
labeling of the dataset. Yelp uses their own neural network
to tag images, so some images which were tagged as food
(such as salt and pepper shakers, and a hotel key), were not
food. Though the frequency of this was small, it may have
had an effect on performance. Additionally, the $ rating
system is not perfect for this task. A Yelp $$$ restaurant in
an expensive location could serve similar dishes to a Yelp
$$ restaurant elsewhere, so there is certainly some blurring
of the data across the class boundary, unlike most standard
classification tasks.

4.2. Future Work

Moving forward, it is possible that discarding one of the
middle classes $$ or $$$ from the Yelp dataset would create
a set which is better divided between classes. If a dataset of
photos and menu prices were available, it would be inter-
esting to combine this cost category recognition with dish
recognition to allow for prediction of actual dish prices.

70 % accuracy is satisfactory given the time and data
constraints of the project, and every effort was made to
raise this accuracy as high as possible. With more time and
data, it would be interesting to train end-to-end convolu-
tional neural network models, or focus more on fine-tuning
state of the art models such as Alexnet or Google’s Incep-
tion. As the state of the art in computer vision progresses,
it is likely that tools more suited for this problem will arise,
but for now, the best results of 70% have been achieved with
two neural networks in combination with hand-written fea-
tures.

4.3. Replicating Results

Code for this project can be found at the author’s Github
(github.com/DashBodington/cs231aProject), and the Yelp
Dataset is available from Yelp. Code is written in Python
2.7, and requires Tensorflow, OpenCV with the feature ex-
tractors in opencv_contrib, NumPy/SciPy, and scikit-learn.
The GPU implementation of Tensorflow is strongly recom-
mended, and some CPU feature extraction methods may
take several hours on the full dataset.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, [. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 2

[2] G. Bradski. Dr. Dobb’s Journal of Software Tools. 2

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097-1105. Curran Associates, Inc., 2012. 3

[4] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. [International Journal of Computer Vi-
sion, 60(2):91-110, 2004. 2

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

"https://github.com/DashBodington/cs231aProject"
https://www.yelp.com/dataset_challenge

(6]

(7]

chine learning in Python. Journal of Machine Learning Re-
search, 12:2825-2830, 2011. 2

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
115(3):211-252,2015. 1

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 1

