
Augmenting Videos with 3D Objects

Andrei Bajenov
abajenov@stanford.edu

Darshan Kapashi
darshank@stanford.edu

Sagar Chordia
sagarc14@stanford.edu

Abstract

We propose a way to automatically augment a video of a
static scene with a 3D object. We use SFM algorithms to es-
timate the position of the camera. In order to properly sup-
port occlusions, we use a novel approach to generate dense
depth maps for each frame of the video. We use a combi-
nation of semi-global block matching, image segmentation
using the watershed algorithm, and planar interpolation to
remove noise and sharpen edges. The final result is a video
augmented with a 3D object that is properly occluded by
objects in front of it.

1. Introduction
The idea of augmenting videos has been around for a

while, and we see it everywhere today. One prominent
example is CGI in movies, which augments reality with
computer generated objects and makes the viewer believe
that these objects are part of the environment.

The process to do this is generally difficult and requires
a lot of specialized software and equipment. In this paper,
we describe a system that, given an object mesh and a
video, allows anyone to place this object seamlessly into
the video without any other external inputs.

There are a number of interesting applications to this.
For example, it could be used for seeing how a piece of
furniture would look in a room or how a new house would
look in a particular location. If integrated with a smart-
phone’s camera, it could also be used when interacting with
an environment. For example it could provide navigational
pointers, highlight parts of an environment, or even project
another person into an environment.

There are a growing number of technologies that are
being built to support this. Project Tango [1], by Google, is
building a phone that has a built-in depth sensor to make
3D reconstruction and camera tracking easier. Wikitude [2]
is an example of a piece of software that is designed for
the purpose of augmenting smartphone videos. It allows

for camera tracking and 3D reconstruction. There is also
quite a bit of research in 3D reconstruction from a set of
2D images.

We have not been able to find a product that specifically
takes a video and augments it while supporting occlusions
(although a number of technologies like Wikitude support
projecting objects based on camera positions). This was our
main motivation for building this system.

2. Problem Statement
We propose a system that puts a 3D object in a video of

a static scene while supporting occlusions. We break up the
problem into two components:

1. Estimate camera matrices for each frame of the video,
so that we can project an object back into the scene.

2. Obtain sharp and accurate depth maps for each frame,
to deal with occlusions.

Below is an example of a scene that we used for testing
our system.

Figure 1: An example of a static scene

3. Previous Work
3.1. Estimating Camera Positions

There has been a lot of research done in the area of Struc-
ture from Motion (SFM), and there are a number of existing
libraries that implement SFM algorithms, including:

1

• Theia SFM [3]

• Bundler [11]

• Visual SFM [10]

• OpenCV SFM [9]

We were looking for a few things from the libraries:

• Camera position estimation

• Camera parameter estimation

• Reliable and accurate sparse 3D reconstruction

For this project, it was not our goal to try to improve or
optimize any of these libraries. We tried a few of them and
picked the one that was easiest to use. In our case it was the
Theia SFM library.

3.2. Estimating Depth Map

A critical part to solving our problem was obtaining ac-
curate and dense depth maps for each frame of the video.
There were a number of techniques that we considered:

• Reconstructing 3D objects using volumetric stereo and
using these reconstructions to obtain depth maps [12]

• Using a combination of the original images and the
sparse 3D points obtained from SFM to approximate
the 3D surface positions (using segmentation and pla-
nar reconstruction).

• Using a combination of SFM and stereo matching al-
gorithms to obtain a dense 3D reconstruction of the
scene. [16]

While researching volumetric stereo, we found that
it was genereally used to get a 3D reconstruction of a
single object within a scene. For our purposes, we needed
information about the full scene. To extend this algorithm
to work on a full scene, we would have needed very reliable
image segmentation algorithms that were determenistic
between frames. We were not able to find anything that
looked promising in this space, so we abandoned this idea.

We also considered using the sparse 3D points obtained
from SFM to approximate a dense 3D reconstruction. We
though about partitioning the original image into uniform
segments. We would then approximate each segment as a
plane in 3D and use the sparse 3D points to estimate these
planes. Unfortunately what we found was that we did not
have enough points in each image segment to do a planar
reconstruction, so we could not use this approach by itself.

Lastly we found a lot of research about using stereo-
matching algorithms to aid in dense 3D reconstruction [17].

Specifically, the Middlebury website [13] contains a lot
of submissions and evaluations of many stereo-matching
algorithms. We ended up pursuing this approach the most
because the research here showed the most promising
results.

To solve our problem, however, we do not need a full 3D
reconstruction of the scene. We just need an approximate
depth map that has good accuracy around the object bound-
aries. What we found while using just stereo-matching al-
gorithms was that they were prone to noise. To overcome
this problem and achieve the desired results, we propose a
novel approach that uses a combination of image segmenta-
tion techniques, stereo-matching, and planar interpolation.

4. Technical Details
Below we describe our solution. We talk about how we

calibrate our camera and run SFM. We then describe our
method for getting accurate depth maps. Lastly, we describe
how we project 3D objects back into the scene.

4.1. Sparse 3D Reconstruction and Camera Matrix
Estimation

As per standard practice in the camera model used in
computer vision, there are 2 parameters:

• Intrinsic matrix K: A 3x3 matrix which incorporates
the focal length and camera center coordinates.

• Extrinsic matrix [R T]: A 3x4 matrix which maps
world coordinates to camera coordinates. R denotes
rotation and T denotes translation.

The camera transformation is given by a matrix,

M = K[R T]

It transforms a point in homogeneous world coordinates
to homogeneous image coordinates.

The point correspondence problem is defined as follows:
Given n images, find points in the images which correspond
to the same 3D point. There are several well known
algorithms which work reasonably well in practice, for
example, SIFT, SURF and DAISY.

The Structure from motion (SFM) problem is defined
as follows: Given m images and n point correspondences,
find m camera matrices (M) and n 3D points. Solving the
SFM problem for a set of images will give us a sparse 3D
reconstruction of the scene.

To get the intrinsic parameters for our camera we tried a
few different approaches:

2

• Computing K using single view metrology with 3 van-
ishing points derived from 3 pairs of mutually orthog-
onal lines in 3D.

• Using a checkerboard image to calibrate using
OpenCV routines.

• Allowing Structure From Motion (SFM) algorithms to
self-calibrate (which is possible given enough view-
points of a static scene)

Each of these approaches gave us a similar K, so we
decided to go with the self-calibration method since it is
automatic and we have plenty of views.

We tried a couple different SFM libraries. The SFM
library bundled with OpenCV didn’t give good results. The
Theia [3] library was easier to work with and was able to
give us fairly accurate sparse reconstructions of a 3D scene,
figures 2, 3.

Figure 2: Theia’s camera positions and a sparse 3D recon-
struction

Figure 3: Side view of the 3D reconstruction

At this point, we have the camera intrinsic and extrinsic
matrices as well as a small set of 3D points which can be
used to get a sparse reconstruction of the scene.

4.2. Depth Map Estimation

A sparse reconstruction is not enough to get a full depth
map for each frame.

Below we propose a novel approach of using a combi-
nation of stereo-matching, image segmentation (using the
watershed algorithm), and planar interpolation to get dense
3D depth maps for each frame.

4.2.1 Terminology

Figure 4: Stereo setup

1. Disparity map. Disparity refers to the difference in im-
age location of an object seen by the left and right cam-
eras, resulting from different positions of two cameras
as seen in figure 4. A disparity map is a mapping for
each pixel in the image to the disparity value for that
pixel. The value represents the distance between the
locations of a point in the left and right rectified stereo
images. It indicates the relative distance to the camera.
A higher value means it is closer to the camera.

2. Depth map. A mapping for each pixel in the image to
the depth value for that pixel. It indicates how far a
point is from the camera. A higher value means it is
further from the camera.

Figure 5: Image rectification

3

3. Image rectification. A transformation to project two
images onto a single image plane as seen in figure 5.
After rectification, all epipolar lines are parallel in the
horizontal axis. All corresponding points have identi-
cal vertical coordinates.

4.2.2 Semi-global block matching

After obtaining camera matrices for every frame of the
image, we use that information to perform stereo matching
between pairs of frames. We picked pairs of frames with a
good baseline distance between them (in our case around
2.0), and performed stereo matching on rectified versions
of these frames.

We tried different stereo-matching algorithms and
picked Semi-global block matching (SGBM) since it was
readily available in OpenCV and had good performance on
the Middlebury dataset.

SGBM aims to minimize a global energy function E
for the disparity image D, based on the idea of pixel-wise
matching of mutual information and approximating a
global 2D smoothness constraint by combining many 1D
constraints.

It takes as input 2 rectified images, taken from the cam-
era on the left and from the camera on the right. It also takes
the camera matrix K. It produces disparity maps for the left
and right images. Figure 6 shows an example disparity map.

Figure 6: SGBM Disparity Map

After obtaining a disparity map, we do a first pass to
remove noise. We found a technique called Weighted Least
Squares filter [9]. The result is in figure 7.

Figure 7: Weighted Least Squares filtering on an SGBM
disparity map

4.2.3 From disparity maps to 3D points

Disparity maps alone don’t help, since they don’t tell us the
exact depth of objects in each frame. To convert between
disparity maps and depth maps, we first need to reproject
the disparity values to 3D.

p = (x, y) is a point in the disparity map. The matrix
Q incorporates the transform between the left and right
cameras which is obtained during image rectification.
We can get the homogeneous coordinate in 3D using this
equation.

[X Y Z W]T = Q ∗ [x y disparity(x, y) 1]T

And finally get a mapping from 2D to 3D.

3d image(x, y) = (X/W,Y/W,Z/W)

Figure 8 is the dense 3D reconstruction obtained from
the above equation.

Figure 8: 3D reconstruction from a disparity map

4

4.2.4 From 3D points to a depth map

So far, we are able to obtain 3D points from a disparity
map. These points are not in world coordinates though,
so we need to transform them to world coordinates before
generating depth maps.

Let x be the point in world coordinates. Let p be the
point in the original image. We rectify the image for stereo
matching. Rectification is a homographic transform. Let H
be the inverse of this transform. K, R and T are camera
parameters.

The point x maps to p using the camera transform.

p = KRx+KT

The point pr is the point in the rectified image, which
corresponds to the point p in the original image. xr is the
3D point in rectified coordinates.

pr = KrRrxr +KrTr

We get p by applying the rectification transformH on pr,

p = Hpr

Using these equations, we can derive the equation for
point x in original world coordinates.

x = R−1K−1HKrRrxr +R−1K−1HKrTr −R−1T

We reproject these points back into the original frame
and compute the depth for each pixel. Figure 9 is a depth
map for the frame from which we generated the disparity
map.

Figure 9: Example depth map obtained from a disparity
map

4.2.5 Missing depth maps

We don’t have a disparity map for every frame. Frames
where the camera is moving forward, for example, don’t
have a good corresponding stereo frame. Rectification
between such views introduces too much distortion.

As such, we need to be able to reconstruct a depth map
for any frame, using a depth map generated from some other
frame. Fig 10 is an example of a depth map viewed from a
different camera:

Figure 10: Depth map from another camera location - more
occlusions

There are far more missing depths, which are mostly
there due to occlusions. To help fill in the rest of this depth
map, we use a novel technique which combines image
segmentation and planar reconstruction, as described in
subsections below.

4.2.6 Image segmentation

We use the marker controlled watershed algorithm for
image segmentation. The watershed algorithm is based
on the concept of flooding the image from its minima
and preventing the merging of water coming from dif-
ferent sources. This partitions the image into 2 parts:
the catchment basins and the watershed lines. This
approach results in over-segmentation, so we use a vari-
ant which is based on starting to flood from a set of markers.

To find the set of markers, we apply the following set of
transformations to the image. In the process of thresholding
an image, we set the value for each pixel to either 0 or 1
based on a threshold. We use adaptive thresholding to the
image. It considers local variations in intensity and makes
pixels white and black. This is significantly better than
using a global threshold because the lighting in the scene is
not uniform. Then, the transformed image has several small
holes. We use morphological opening to fill in these holes
and have a much smaller set of bigger segments. Next,
we apply a distance transform, followed by a thresholding

5

transform which gives us a candidate set of markers. Using
this, we can apply the watershed algorithm to segment the
images.

This method has several parameters that can be tuned to
get a segmentation of desired quality. This includes

• Window size of adaptive threshold

• Kernel for the morphological opening

• Threshold for the distance transform

Figure 11 is an example of a segmented image.

Figure 11: Image segmented using the watershed algorithm

Note that when tuning parameters, our goal is to make
sure that segments don’t spill between objects. We achieve
this by tuning the parameters to generate small segments.

4.2.7 Planar interpolation

We have now divided the image into several segments. We
assume that each segment is part of a plane. We have the
depth map for each 2D image point, which means we have
a 3D point corresponding to each 2D point. The camera
matrix K has the following structure:

 fx 0 cx
0 fy cy
0 0 1


For each 2D point, we can compute the corresponding

3D point. z is the depth of this point from the depth map.

p = (z ∗ (py − cy)/fy, z ∗ (px − cx)/fx, z)

For each image segment, we collect all the 2D points
for which we know a depth (z is not equal to 0). We get
corresponding 3D points. For n points in a segment, we
construct a nx3 matrix A where each row is a 3D point
p = (x, y, z). The matrix t is a nx1 matrix of −1. We can

use this set of points to estimate a plane using SVD decom-
position for the linear systemAx = t. This gives us a plane.

ax+ by + cz + d = 0

This plane gives us the depth for every point on it,
irrespective of whether we had a depth for it previously
from the stereo matching algorithms. This is how we fill
up holes in the depth map. We can now trace a ray which
starts from the camera and hits the approximate plane. We
can compute the length of this line segment and this is the
depth of this image point.

For a point p = (x, y) in the image plane, we can
compute the point of intersection between the plane and the
ray and compute the depth as

depth = −d/(a ∗ (py − cy)/fy + b ∗ (px − cx)/fx + c)

For certain segments, because of measurement noise,
poor segmentation, or non-flat surfaces, it is possible to end
up with a bad estimate of the plane. We found a simple
heuristic to prune these bad planes, ||Ax−t|| > threshold.
This helps to reduce noise in this approach for reconstruc-
tion.

With the above, we get an depth map that looks some-
thing like:

Figure 12: Planar interpolation of image segments

For areas where the planes couldn’t be reconstructed, we
fill those with the original depths, to get:

6

Figure 13: Filling in missing segments with original depths

4.2.8 Combining depth maps from multiple views

So far we’ve dealt with depth maps obtained from a single
pair of rectified images. We observed that using a single
pair of images doesn’t give a full depth map when viewed
from different camera angles. Fortunately, in a video
sequence, we have many pairs of such images that can help
improve results and fill in missing depths.

To find a depth map for the current frame, we take
a number of nearby frames for which we have obtained
high-quality depth maps. We deem a depth map to be high
quality if it was obtained from a disparity map with a good
baseline distance which is not too small and not too large.
We then re-project the depth map from those frames into
the current view. What we end up with is multiple depths
per pixel.

To pick the desired depth, we sort the depths and pick the
first value for which the value between it and the next value
is no higher than 15 percent. This is a rudimentary way to
pick the smallest z-value cluster. We pick the smallest z-
value cluster to eliminate noise and ignore occluded objects.

With the above approach we obtain a depth map as seen
in Fig 14. Notice that there is less noise than in previous
depth maps, and more pixels have a depth value.

Figure 14: Depth map generated by merging depth maps
from multiple viewpoints

4.3. Augmenting Video with 3D Objects

The last step of our system is augmenting the video
with a 3D object. At this point we have estimated camera
matrices and depth maps. The location of the object
within the scene is determined manually, i.e. we take 3D
coordinates in the object and translate them such that it
is placed behind one of the boxes in the scene. In a real
application, you can imagine a user interface which lets
you drag and drop the object in the scene. We do not solve
this problem here and focus on the mathematical aspects.
The object (a bird) is a 3D object. It looks like a 2D blob
because we did not add shading to it.

The 3D object is given as a mesh of triangles. An easy
way to augment the frames of the video with this object is
to apply the camera transform on each of the vertices and
fill in triangles with the object texture. It gets slightly more
complex when we want to handle occlusions.

Since we want to be as accurate as possible, we make
sure that the triangles which make up the object are small
enough. If they aren’t, we can split each triangle into
3 smaller triangles using the centroid and the current
vertices. A triangle is visible if all 3 vertices of the triangle
are visible. With small enough triangles, this is a good
approximation.

For each vertex v = [x y z], which is a point in 3d world
coordinates, we transform it into camera coordinates point
p = (x, y, z) using the camera transform.

(x, y, z) = [R T] v

The depth of the point is the z coordinate in camera co-
ordinates (zp) and the depth in the frame of the video is
as computed using stereo correspondence and planar recon-
struction (zi). If the 3d object point is at a greater depth,
zi < zp, it is hidden in the image, otherwise zi > zp, it is
visible.

Figure 15: Bird is completely visible in this view

7

Figure 16: Bird is half hidden behind the box in this view

5. Evaluation

As discussed in section 4.1, we use existing algorithms
and libraries to estimate camera parameters in each image
of the video. Our main contribution lies in effectively
connecting various computer vision algorithms to augment
a video. The novelty in this paper is about refining depth
maps using image segmentation and approximating a
reconstruction using planes. Hence, we will skip evaluation
for camera calibration and focus on our method of refining
depth maps using planar reconstruction.

For easy evaluation of individual components of stereo
matching algorithms, the computer vision group from
Middlebury have designed a stand-alone flexible C++
implementation. [13] They also provide a collection of
datasets and benchmark it against various state-of-art
algorithms. The evaluation framework is flexible and
supports easy additions of new algorithms. We integrate
our methodology and compare the results with other
stereo matching algorithms already implemented in the
framework.

We describe the quality metrics we use for evaluating the
performance of various stereo correspondence algorithms
and the techniques we used for acquiring our image data
sets and ground truth estimates. [18]

1. RMS (root-mean-squared) error, measured in disparity
units, between the computed disparity map dC(x, y)
and the ground truth map dT (x, y), i.e.,

R =

(
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y)|2)
) 1

2

where N is the total number of pixels.

2. Percentage of bad matching pixels,

B =
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δd)

where δd is the disparity error tolerance.

There are various parameters which can be tweaked
while evaluating stereo matching in the Middlebury
framework. We use default values for most parameters
except one parameter. eval bad thresh which controls
thresholding to decide whether a pixel is a bad match or
not was increased from 1.0 to 5.0. We found 1.0f was too
strict and > 90% pixels were marked as bad pixels in most
images. But a value of 5.0 gives good results for most
images.

Figure 17a shows an image in the Middlebury evaluation
dataset. Figure 17b shows the ground-truth disparity map of
figure 17a. Disparity map of figure 17a is computed using
Semi-Global Block Matching (SGBM) algorithm and is
shown in figure 17c. Figure 17d shows image-segmentation
on the original image figure 17a. Figure 17e shows refined
disparity maps obtained by combining figure 17c and plane
fitting on figure 17d. Computed disparity maps figure 17c
and figure 17e are compared to the ground truth disparity
map figure 17b and the above two metrics are computed.
We also compare other algorithms from the Middlebury
evaluation framework to our methodology.

We can control the strictness of plane fitting to refine
disparity maps by norm thresh. When the error of fitting
a plane to points of a given image segment is greater than
norm thresh then we don’t refine the disparity map and
use the original disparity map. In figure 17e we can see
how disparity maps are affected as norm thresh value
is increased. Figure 17e is bad compared to figure 17d in
terms of both metrics and hence it is critical to tune this
parameter correctly.

Sometimes refined disparity maps may not be better than
the original disparity map because of bad image segmen-
tation. Figure 18b is a better approximation to figure 18a
compared to figure 18c. In figure 18c, plane fitting on bad
image segmentation results in a weird disparity map. So
it’s important to control the quality of image segmentation
to ensure refined disparity maps are better.

We compute disparity maps for 5 test images in the Mid-
dlebury evaluation dataset using our method as well as pre-
defined algorithms in Middlebury. In the following table
we report mean values of RMS error and percentage bad
pixels. normal-SGBM refers to our SGBM implementa-
tion of disparity map. planar-SGBM refers to the filtered
disparity map generated by fitting planes using image seg-
mentation. [18] describes the other algorithms used for en-
coding. As seen in the table, planar-SGBM performs better
than normal-SGBM in both metrics we defined earlier.

8

(a) Image to be evaluated from Middlebury dataset (b) Ground truth disparity map

(c) Disparity map with Semi-Global Block Matching
(SGBM)

(d) Image segmentation using watershed transform

(e) Filtered disparity map combining SGBM and plane
fitting on image segmentation

(f) Filtered disparity map combining SGBM and ag-
gressive plane fitting on image segmentation

Figure 17: StereoMatch Evaluation using middlebury dataset

(a) True disparity map of sawtooth (b) Disparity map by SGBM
(c) Refined disparity map using image
segmentation

Figure 18: Another test image from Middlebury evaluation dataset

9

Algorithm Mean RMS error Mean Bad pixel ratio

SSD09bt05 1.559039 0.024049

SSD09t20 1.714662 0.030914

SADmf09bt05 1.733064 0.031358

SADmf09t02 2.4118 0.051564

SAD09t02 2.565821 0.058292

SADmf09t01 3.019650 0.084793

planar-SGBM 3.177850 0.071215

normal-SGBM 3.200869 0.072295

SAD09t01 3.717277 0.135821

6. Future Work
There are still a few things that we would have liked to

try to improve our results.

• Implement state-of-the-art algorithms for stereo-
matching and see how they perform with and without
planar interpolation. We only had time to add planar
interpolation on top of SGBM, but there are better al-
gorithms out there.

• Look into using the DAISY descriptor instead of
stereo-matching for dense 3D reconstruction. See: ”A
Fast Local Descriptor for Dense Matching” by Tola et.
al. [5]

• Try different image segmentation approaches to re-
move spilling out of objects. We started looking into
using the canny edge detector to seed the watershed
algorithm. [14]

• Exploit the fact that we have a video instead of a set of
photos to run SFM in real-time.

• Exploit the fact that we need a depth map of only a
small region where the 3D object is projected into the
scene (to make our algorithm real-time).

• Use a better rectification algorithm, as described in ”A
simple and efficient rectification method for general
motion” [19]

• [17] describes how to add better depth map merging
techniques - ”Metric 3D Surface Reconstruction from
Uncalibrated Image Sequences”.

• Project more interesting geometry into the scene. Ei-
ther by integrating with a ray-tracing library or using
OpenGL and taking advantage of its built-in shaders.

7. Conclusion
In this paper, we proposed a system that takes a 3D

object mesh and a video, and augments that video with the
object. The system is able to estimate camera positions and
generate depth maps for each frame (to support occlusions).

We used the Theia SFM library to estimate camera
positions, and proposed a novel method to estimate depths
in each frame. To estimate depths, we used a combination
of image segmentation techniques (watershed algorithm),
stereo matching (SGBM), and planar interpolation. When
compared to stereo matching alone, the combination of
these technique allowed us to improve depth map accuracy
while at the same time significantly reducing noise and
improving sharpness around object boundaries.

We were able to successfully project a 3D object back
into a video. Our algorithm was fully autonomous, and
did not require anything other than specifying the object
position.

You can find our code by going to:
https://bitbucket.org/bajenov1/cs231a/

You can find our final augmented video here:
https://www.youtube.com/watch?v=X37SP4Dihhg

10

References
[1] Lee, J. C., and R. Dugan. ”Google project tango.”

[2] Perry, Simon. ”Wikitude: Android app with
augmented reality: Mind blowing.” digital-lifestyles.
info 23.10 (2008).

[3] Sweeney, Christopher, Tobias Hollerer, and Matthew
Turk. ”Theia: A Fast and Scalable
Structure-from-Motion Library.” Proceedings of the
23rd Annual ACM Conference on Multimedia
Conference. ACM, 2015.

[4] Ravimal Bandara, Image Segmentation using
Unsupervised Watershed Algorithm with an
Over-segmentation Reduction Technique.

[5] Tola, Engin, Vincent Lepetit, and Pascal Fua. ”A fast
local descriptor for dense matching.” Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on. IEEE, 2008.

[6] Mur-Artal, Raul, J. M. M. Montiel, and Juan D.
Tardos. ”ORB-SLAM: a versatile and accurate
monocular SLAM system.” Robotics, IEEE
Transactions on 31.5 (2015): 1147-1163.

[7] Furukawa, Yasutaka, and Jean Ponce. ”Accurate,
dense, and robust multiview stereopsis.” Pattern
Analysis and Machine Intelligence, IEEE Transactions
on 32.8 (2010): 1362-1376.

[8] Kundu, Abhijit, et al. ”Joint semantic segmentation
and 3d reconstruction from monocular video.”
Computer VisionECCV 2014. Springer International
Publishing, 2014. 703-718.

[9] Bradski, Gary, and Adrian Kaehler. Learning OpenCV:
Computer vision with the OpenCV library. ” O’Reilly
Media, Inc.”, 2008.

[10] Wu, Changchang. ”VisualSFM: A visual structure
from motion system.” (2011).

[11] Snavely, Noah. ”Bundler: Structure from motion
(SFM) for unordered image collections.” Available
online: phototour. cs. washington.
edu/bundler/(accessed on 12 July 2013) (2010).

[12] Eisert, Peter. ”Reconstruction of Volumetric 3D
Models.” 3D Videocommunication: Algorithms,
Concepts and Real-Time Systems in Human Centred
Communication (2005): 133-150.

[13] Scharstein, Damiel, and R. Szeliski. ”Middlebury
stereo datasets.” 2014-04-06]. http://vision,
middlebury, edu/stereo/data (2006).

[14] Canny, John. ”A computational approach to edge
detection.” Pattern Analysis and Machine Intelligence,
IEEE Transactions on 6 (1986): 679-698.

[15] Haris, Kostas, et al. ”Hybrid image segmentation
using watersheds and fast region merging.” Image
Processing, IEEE Transactions on 7.12 (1998):
1684-1699.

[16] Pollefeys, Marc, Reinhard Koch, and Luc Van Gool.
”A simple and efficient rectification method for
general motion.” Computer Vision, 1999. The
Proceedings of the Seventh IEEE International
Conference on. Vol. 1. IEEE, 1999.

[17] Pollefeys, Marc, et al. ”Metric 3D surface
reconstruction from uncalibrated image sequences.”
3D Structure from Multiple Images of Large-Scale
Environments. Springer Berlin Heidelberg, 1998.
139-154.

[18] Scharstein, Daniel, and Richard Szeliski. ”A
taxonomy and evaluation of dense two-frame stereo
correspondence algorithms.” International journal of
computer vision 47.1-3 (2002): 7-42.

[19] Pollefeys, Marc, Reinhard Koch, and Luc Van Gool.
”A simple and efficient rectification method for
general motion.” Computer Vision, 1999. The
Proceedings of the Seventh IEEE International
Conference on. Vol. 1. IEEE, 1999.

11

