
AUGMENTED REALITY IN LIVE VIDEO STREAMS USING POST-ITS

FINAL REPORT

JUNE 6TH, 2016

BOJIONG NI, JORIS VAN MENS

bojiong@stanford.edu, jorisvm@stanford.edu

Abstract

In this paper, we set the goal to use generic Post-it
notes as fiducial markers for real-time augmented re-
ality applications. We compare detection using SIFT,
Template Matching and a custom designed “Color-
Shape” method, and find that the latter approach de-
livers high quality results, allowing for robust and ac-
curate projective pose estimation at low processing
time.

1. Introduction

Augmented reality is an exciting experience where
the virtual world meets the real. In a typical setup,
virtual imagery is projected into live, real world video
streams. Popular implementations of augmented re-
ality often use fiducial markers that are specifically
designed to be easily detected in video streams. In
our paper, we aim to create a robust augmented real-
ity experience that works with a colored Post-it note
as fiducial marker, and which can run sufficiently fast
on a single thread on a general processor.

With this approach, we hope to bring the aug-
mented reality experience to larger audiences. A spe-
cific example would be the classroom, where teachers
presenting to their students on a generic laptop could
enrich their teaching with virtual experiences using
only a Post-it note and our software application.

2. Review of previous work

On the specific problem of locating Post-it notes
in real time, we were not able to find any literature
(nor on Post-it note detection in general). There has
however been extensive research focused on designing
and finding fiducial markers that are easy to detect
in video frames, using a variety of methods[9, 16].

Template matching is one of such commonly used
methods for detecting markers in augmented reality.
In Template Matching approaches, the marker (or
template) tends to be carefully designed to enhance
recognition and camera estimation[12].

Another frequently used method for object de-
tection and tracking is SIFT. Previous work shows
that it delivers strong results for a wide range of de-
tection goals, yet it is a computationally expensive
approach[2].

Literature on color detection has often focused on
the problem of skin color detection[13]. Detection in
Red Green Blue (RGB) space is common, as is de-
tection in Hue Saturation Value (HSV) space. It is
noted that a potential downside of the latter space is
that it can cause hue discontinuities. In addition, the
value (brightness) dimension does not relate well to
human perception of brightness. An alternative Tint
Saturation Lightness space is similar in nature. A
YCrCb space, where Y relates to brightness and Cr
and Cb relate to the color hue, is also found to ex-
hibit favorable color detection properties for various
purposes[3].

A typical, fast approach to filtering color is done by
defining an explicit cuboid bounding box in the cho-
sen three dimensional color space[5]. This method
can be augmented by normalizing the image for
brightness[6]. The boundaries can be found empir-
ically by taking samples of the object in different
scenes. Elliptical boundaries have also been tested[7],
as have various probability-based models[17].

For edge detection, Canny edge detection is often
regarded as one of the most accurate methods, with
decent performance, although various other edge de-
tection algorithms, such as Laplacian of Gaussian,
may be less computationally expensive[1, 10].

For line detection, typical methods are the Radon
and Hough transform. The two methods are similar
in nature, where the Hough transform can be consid-
ered a discretized version of the more general Radon
transform[19]. Various speed optimized Hough trans-
form have also been proposed[18, 14, 4].

2.1. Contribution of our work. We provide a
comparison of several methods to solve the problem

1

mailto:bojiong@stanford.edu
mailto:jorisvm@stanford.edu

Augmented Reality in Live Video Streams using Post-its

of robust, accurate and fast Post-it detection for aug-
mented reality, which had not yet been done in pre-
vious literature.

In addition, we show that it is indeed possible
to use generic Post-it notes as fiducial markers for
augmented reality, robustly obtaining full pose es-
timation at high accuracy and high speed. We do
so using a combinatory approach of various low-level
algorithms (color filtering, noise reduction, edge de-
tection, line detection and several logical elements)
specifically tailored to the use case, providing results
superior to general methods such as SIFT and Tem-
plate Matching.

3. Technical approach

Using Post-its for augmented reality imposes two
important constraints. First, the Post-it is an ob-
ject with very few distinguishing features, implying
some general feature detection methods might not
work well. Second, the speed requirement implies
a further restriction on the methods being available
to use, and creates a focus on minimizing execution
speed. We aim to consistently render 30 frames per
second, which implies the full algorithm must take
less than 33 milliseconds to execute on our hardware.

We will test a manual ”Color-Shape” approach, a
SIFT approach and a Template Matching approach
and compare their applicability to solving our prob-
lem.1

3.1. Experimental setup. The hardware we use for
recording and processing is a MacBook Pro 2013.
The sticky notes we use are the original Post-it brand,
in various color variants. For testing accuracy and
speed we wave a Post-it in circular motion at 2 feet
distance from the webcam and capture 100 pose es-
timations. We test our methods in rooms well lit by
either daylight or artificial light.

3.2. Color-Shape Approach. In the color-shape
approach, we make use of a number of properties of
the colored Post-it under projective transformation.
These assumptions are as follows:

(1) It has 4 exact edges and vertices
(2) In the absence of radial distortion, the edges

are straight
(3) Due to its square shape and small size com-

pared to the camera distance for expected
scenes, the opposing edges will be of similar
size (near-affine transformation)

(4) It is a solid, non-porous object

(5) For bright colored variants, the saturation
level is high compared to most surrounding
scenes

(6) For various color variants (e.g. pink), the hue
is uncommon in most scenes

The Color-Shape method aims to make use of all
of these properties to achieve an optimal solution.

While creating this method and choosing param-
eters, we aim to optimize several factors. First, we
aim for a high detection rate, which we define as the
percentage of frames that return valid vertices (as op-
posed to frames that return no vertices). Second, we
aim for high accuracy, defined as the percentage of
detected vertices that are accurate. Third, we aim
for speed, as measured in milliseconds of execution,
while also keeping the standard deviation in mind.
High standard deviation can result in video stutter
even when mean speed is low, as a single frame with
high processing time will halt the video until process-
ing is completed.

We use a combination of color masking, binary
noise reduction, edge detection, line detection and
various logic steps to estimate the Post-it’s location
and calculate the transformation matrix. We rely on
Python Opencv3.0.0 implementations of mentioned
algorithms, and NumPy for other image-wide calcu-
lations, given both run optimized machine code to
provide optimal performance. Figure 1 shows the
main elements of the Color-Shape pipeline.

Figure 1. Color-Shape pipeline

1Code can be found at github.com/Bojiong/cs231a
2 of 10

Augmented Reality in Live Video Streams using Post-its

3.2.1. HSV filter. We create a mask on the image by
filtering for specific hue, saturation and value ranges
as such:

HSVmask =


[hmin < H < hmax]

1 ∀ [smin < S < smax]

[vmin < V < vmax]

0 otherwise

To find relevant hmin, hmax, smin, smax, vmin and vmax

values, we sampled Post-it camera captures under
various lighting conditions (figure 2), and captured
their mean HSV values (figure 3).

Figure 2. Post-it color samples un-
der various lighting conditions

Figure 3. Mean hue-saturation
(left) and hue-value (right) distri-
bution of samples. Green markers
correspond to pale yellow Post-its,
blue to bright yellow and pink to
pink.

We take minimum and maximum values for every
dimension as below (example for hue H), and apply
the mask.

hmin = min(Hsamples)− stdev(Hsamples)

hmax = max(Hsamples) + stdev(Hsamples)

3.2.2. Erode-Dilate. We use erosion and subse-
quently dilation to remove small patches (noise and
false positives) from our mask while keeping larger
patches intact. For erosion, we move a pixel kernel K
(10x10 matrix of ones) over the mask M (which holds
all non-zero pixels). We then keep only those pixels p
for which all surrounding pixels covered by the kernel
at that pixel (Kp) are also part of the mask:

M 	K = {p|Kp ⊆M}
This returns pixels surrounded by patches of ones,
while removing any smaller patches for which at least
one pixel covered by the kernel was zero. For dilation
the process is similar, but reverse: any mask pixel for
which at least one of the surrounding pixels within
the kernel is one, we return one. This effectively
”grows” single pixels into patches of 10x10, undoing
the ”shrinking” caused by the erosion. The final ef-
fect can be seen in figure 4.

Figure 4. Effect of erosion and
subsequent dilation (right) on noisy
mask (left)

3.2.3. Canny edge detector. We apply the Canny
edge detection algorithm to find edges in the mask.
The edge detector first applies a Gaussian filter to
the mask:

Mij =
1

2πσ2
e(− (i− (k + 1))2 + (j − (k + 1))2

2σ2
)

The size of the filter is given by (2k + 1) in both x
and y direction. Subsequently, it finds the gradients
throughout the image as such:

S =

√
Sx

2 + Sy
2

Θ = atan2
(
Sy,Sx

)
Where S represents the size of the gradient and

theta the angle. As a next step, non-maximum sup-
pression is applied to remove multiple signals for the

3 of 10

Augmented Reality in Live Video Streams using Post-its

same line (”thin the edges”). After this, a threshold-
ing mechanism is applied to find the most likely true
edges and remove ones more likely caused by noise.

Given the relatively simple mask provided by the
previous steps, the edge detector provides good re-
sults as expected. Experimentation with the thresh-
old values within reasonable bounds caused no signif-
icant difference in the results.

3.2.4. Iterative Hough transform & line erase. On
the edge detected output, we will apply a Hough
transform to find lines. The Hough transform trans-
lates Euclidean x-y coordinates into curves in the
polar space, representing lines with different dis-
tances from the origin (r) and angles (θ). Cells in
Hough space with votes above a certain threshold
will be accepted as lines and converted back into
x-y coordinate space, where points at extreme x-y
coordinate values on the specified line will be used as
endpoint estimates. Figure 5 shows the initial output.

Figure 5. All Hough lines found

Figure 6. Initial edge image (left)
and edge image after 2 Hough and
Erase Line iterations (right)

One problem with the Hough transform is that it
will fit multiple lines on a single Post-it edge. As a
robust method for finding the most promising lines
corresponding to the unique Post-it edges, while re-
moving duplicate Hough matches for a single edge,
we use only the highest-voted line from the Hough

transform. We subsequently erase all pixels on the
edge image corresponding to this line with a 3-pixel
boundary radius. On the new edge image, we re-
apply the Hough transform. We iterate through this
method 4 times. The result on the edge image after
2 iterations can be seen in figure 6. As an alternative
to the iterative approach, we have also tested an ap-
proach that aims to filter out multiple line detection
per Post-it edge by filtering lines with similar rho and
theta values. While this gave decent results (see ex-
periments section), we found this to be less robust
than our iterative erase-line approach.

3.2.5. Intersection finder. To find intersections, we
use the lines’ polar coordinates and solve the follow-
ing equation:[

cos(θ1) sin(θ1)
cos(θ2) sin(θ2)

] [
x
y

]
=

[
ρ1
ρ2

]
3.3. Nearest group filter. Given the detected in-
tersections, we find all intersections that lie within
(or just outside of) the image. Of those, we filter for
the 4 intersections in the closest group by using only
the 4 intersections with minimum distance to the full
group’s geometric center (filtering out intersections
at largest distance from the rest).

3.3.1. Validity decision. Given the resulting inter-
sections, we perform several validations to verify
whether or not the intersections correspond to a valid
Post-it transformation. Specifically:

(1) There must be exactly 4 vertices
(2) There cannot be 3 vertices on a single line
(3) Opposing edges must be of similar length

(near-affine transformation)

For the third rule, we apply a minimum to maximum
line length range as such:

µ = l1 + l2/2

lmin = µ ∗ (1− δ)
lmax = µ ∗ (1 + δ)

3.3.2. Find perspective. Subsequently, we will find
the projection matrix M that allows us to project
pixels of the overlay image into the position of the
Post-it: Ptrans = M ∗ Poverlay. Projective matrix M
has 8 degrees of freedom, and every matching pair of
points gives us 2 equations, so we can find the matrix
using 4 matching points. For the Poverlay coordinates
(x & y), we use the 4 vertices of the square image we
want to overlay. For the Ptrans coordinates (x & y),
we use the 4 vertices of the Post-it in the video frame.
We can now solve the linear system (using Direct Lin-
ear Transformation):

4 of 10

Augmented Reality in Live Video Streams using Post-its

t1x′1 t2x
′
2 t3x

′
3 t4x

′
4

t1y
′
1 t2y

′
2 t3y

′
3 t4y

′
4

t1 t2 t3 t4

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x1 x2 x3 x4
y1 y2 y3 y4
1 1 1 1

 (1)

Where M is only defined up to scale, allowing to
normalize to h33 = 1.

3.3.3. Output. Typical frames are shown in figure 7.
The top frame shows a noisy environment (with a
similar-colored object in background) and the bot-
tom frame shows occlusion of one corner. The left
images show all Hough lines (thin) with the 4 chosen
Hough lines plotted thick. The quadrilateral corners
are identified by white circles, and a projected ani-
mation (globe) is shown on the original input on the
right.2

Figure 7. Debug images with ap-
plied mask, Hough lines and de-
tected vertices (left) and origi-
nal captures with projected overlay
(right)

3.4. SIFT approach. Scale-invariant feature trans-
form (or SIFT)[8] uses techniques of Difference of
Gaussians, scale-space pyramid and orientation as-
signments to ensure the features are scale and ro-
tation invariant. It also resamples the local image
orientation planes in order to achieve full affine in-
variance.

3.4.1. Find matching key points. As SIFT is fre-
quently used for object detection, it is worth trying
to see how SIFT applies to our use case. In order to
use SIFT, we first need a reference image and extract
local features from it. Then we extract the SIFT fea-
tures from each video frame. SIFT features are scale,
rotation and affine invariant[8], thus we do not need
to explicitly account for the transformation between
reference camera frame and video camera frame.

Once we have the features in both reference image
and the video frame, we match the features in the
two images using a K-Nearest Neighbors approach.
Here we will find the closest two matching points for
each feature in reference. Each of the two matching
points will have a distance value indicating how close
it is to the corresponding feature in the reference im-
age. To eliminate false positives, we will only accept
a match if the closest distance is 70% or less than that
of the second closest point. The rationale behind this
is that for a true match, the second closest matching
point’s distance will be much larger than the closest
(true) one’s. When there is a false positive, various
closely matching points may have similar distances.

We used the Python Opencv3.0.0 2D feature li-
brary to extract features from images and find the
closest neighbors. We have experimented with both
colored images and gray scale images for detection.
For the reference picture, we tested with plain Post-
its, Post-its with patterns drawn on them, and a rec-
tangle directly drawn from an array. We will compare
the results in the experiments section.

3.4.2. Find transformation matrix. After the key
points are matched, we estimated the transformation
of the Post-it in video from the original feature lo-
cation and the matched feature location. Since we
know that SIFT is affine invariant, we can assume
the matched points are the source and destination of
an affine transformation. This transformation matrix
will later be used for transforming the animation to
be overlay on the Post-it. Let (x, y) be the key point
in the original template, (x′, y′) be the matching key
point in the video frame. We have the following rela-
tion: tx′ty′

t

 =

h11 h12 h13
h21 h22 h23
0 0 1

xy
1


The transformation matrix has 6 unknowns (de-

fined up to scale) and each matched key points will
give one two equation, we need at least 3 matching
points pairs to solve the problem. In case the system
is over ranked (more than 3 pairs of independent key

2A video example can be found at

youtu.be/f16gHGPc3wE
5 of 10

Augmented Reality in Live Video Streams using Post-its

points are found) or rank deficient, we can use least
square fitting to find the estimate.

3.5. Template Matching approach. In Template
Matching, a small image is used as a template to see
if a matching version can be detected in the larger
image. This approach takes the template as the con-
volution mask and perform a convolution with the
search image, sliding a window of the same size of
the template over the search image. Then we com-
pare the pixel intensity difference between the search
image in the window and the corresponding pixel in
template. We sum the difference over the window.
The window with lowest difference sum gives the best
match.

3.5.1. Find the best matching window. Let us give a
formal definition[15]. Suppose coordinates (xs, ys)
at the search image has intensity Is(xs, ys) and
the coordinates (xt, yt) at the template has in-
tensity It(xt, yt). Define the absolute difference
in the pixel intensities as Diff(xs, ys, xt, yt) =
|Is(xs, ys)It(xt, yt)|.

Define Sum of absolute differences measure as

SAD(x, y) =

Trow∑
i=0

Tcol∑
j=0

Diff(x+ i, y + j, i, j)

We loop over the entire search image and calculate
the corresponding SAD(x, y). The pixel with lowest
SAD is the best match.

Note that Template Matching is not scale invari-
ant. I.e. we do not know how big the object (Post-it)
is in the search image (video frame). We will resize
and rotate the original template to create a series of
templates with different sizes and rotations. Then we
perform a search of all those templates in the search
frame and return the best match.

Figure 8. Edge image for Tem-
plate Matching

In order to reduce noise and improve speed, we
transform the image from RGB to gray scale and

performed Canny edge detection to only work on the
edges of the image (see figure 8).

We use the Opencv Python library for Template
Matching. In the Opencv library, the sum of differ-
ences can be calculated in different ways, and we will
compare results.

3.5.2. Find the rotation and scaling matrix. In this
case, we can only find the rotation and scaling of
the matched window instead of the full perspective
transformation. As we iterate through different scale
s and rotation angle θ, the corresponding transfor-
mation matrix is:

P ′ = sR(θ)P + p

where p is the location of the left upper corner of
matched window box.

3.6. Overlay. Once we have the applicable homog-
raphy from either of above methods, we apply it to
consecutive frames of an animation to overlay the an-
imation into the video (as described in the Color-
Shape section). We remove pixels with zero alpha
values to allow for basic transparency (allowing us to
overlay e.g. a spherical globe instead of only rectan-
gular pictures).

4. Experiments and Results

4.1. Experiments using Color-Shape.

4.1.1. Hough transform parameters. To find the best
rho, theta and threshold values for the Hough trans-
form, we have done various experiments as shown in
table 1.

Threshold 15 30 15
Rho 1 1 2

Theta π/45 π/45 π/45
Speed (µ, ms) 4 1.8 3.6
Speed (σ, ms) 3.2 1.2 2.4

Accuracy High High Mid
Detection rate High Low High

Threshold 15 15 15
Rho 5 1 1

Theta π/45 π/90 π/22.5
Speed (µ, ms) 3.6 6.1 3.7
Speed (σ, ms) 2.8 5.3 2.5

Accuracy Mid High Mid
Detection rate Mid High High

Table 1. Hough transform param-
eter results

Per these results, we have chosen 1, π/45 and 15
as our respective optimal parameters.

6 of 10

Augmented Reality in Live Video Streams using Post-its

4.1.2. Speed of Color-Shape. An analysis of execu-
tion time for the various elements of the Color-Shape
method can be seen in figure 9. Total execution time
is well within our target range (below 33 ms) at 12
ms mean.

We find that the iterative Hough transform takes
most computation time. This triggered us to also de-
sign a non-iterative method for finding the four most
promising lines using only one Hough transform. This
alternative method filters lines with similar sigma and
rho (as described in the Hough transform section of
the technical approach). While the method saved 3
ms of mean execution time, we found it to be less
robust than the iterative approach (0.91 accuracy vs.
0.98 baseline). Given total execution time is already
low, we decide to trade execution time for higher ro-
bustness.

Figure 9. Color-Shape element-
wise execution time

4.2. Experiments using SIFT.

4.2.1. Colored reference with colored video frame. In
this approach, we take a picture of the Post-it, de-
tect the features using SIFT and try to match the
key points in video frame.

(a) False positive (b) Key points match

Figure 10. Colored image with col-
ored reference

We can see from figure 10 that the colored Post-it
picture contains too many features and key points,
making the matching process slow and noisy. The
Post-it is detected inaccurately.

4.2.2. Gray scale reference and colored video frame.
In this experiment, we use a gray scale plain Post-it
as reference. Different from the above, the key points
in the reference image are greatly reduced and the
matching is more accurate. However, the detection
is always at the corner of the Post-it and the results
still occasionally contain false positives. The result
can be seen in Figure 11.

(a) Match at corner (b) False positive

(c) Key point match-
ing

Figure 11. Colored image with
gray Post-it

4.2.3. Binary rectangle and colored video frame. In
this experiment, we use a rectangle drawn from an ar-
ray as reference image, and use colored video frames
for detection.

(a) match at center (b) match at corner

(c) false positive (d) key point matching

Figure 12. colored image with rectangle

The value within the rectangle is 255 and 0 outside.
This time, the features and key points from the refer-
ence image are far fewer. From the results in Figure

7 of 10

Augmented Reality in Live Video Streams using Post-its

12, we can see that it can successfully find matches
between the reference rectangle and the video frame.
However, we still see some false positives.

4.2.4. Post-it with pattern. In this approach, instead
of using a plain Post-it, we use a Post-it with pattern
drawn. For simplicity, we will use gray scale for both
reference and video frames. Figure 13 shows a re-
sult. Here the matching key points are within in the
Post-it instead of at the corners as in previous cases.
The lack of features for plain Post-its gives little in-
teresting matching key points within the center of the
Post-it. A patterned Post-it, however, has richer con-
tent and gradient variation within the area of Post-it,
making it easier to match local feature inside.

(a) False positive (b) Key point match

Figure 13. Post-it with pattern

(a) No distance ratio (b) No distance ratio

(c) With distance ratio (d) With distance ratio

Figure 14. Distance Ratio Effect

4.2.5. KNN distance ratio effect. We experiment
with two different schemes for KNN matching. The
first is to find the nearest neighbor for key points
and directly take it as a matching. The second is

the method described above where we only accept a
match if the closest distance is within 70% of the sec-
ond closest distance. We can see from figure 14 that
when the reference is simple, e.g. a binary rectan-
gle, the approach without distance ratio gives more
matches within the Post-it. We can see from the im-
age that there are two key points within the Post-it
(and the binary rectangle). Those two key points
do not have much difference in terms of color inten-
sity or texture. The gradients around those two key
points are very similar. Thus they might have similar
distance to the same key point within the reference.
This is an example where distance ratio can eliminate
false negatives.

However, when the reference image has richer fea-
tures, i.e. with the patterned Post-it, the first ap-
proach generates many more false positive than the
second approach.

4.2.6. Speed of SIFT. Our experiments show that our
SIFT method takes on average 59 ms per frame to de-
tect the location of the Post-It, which is much higher
than our target maximum of 33 ms. This result is
expected as SIFT is a computational heavy feature
detector.

4.2.7. Accuracy of SIFT. From the above analysis,
we found that SIFT works best for patterned Post-its.
Both the Plain Post-it and digital rectangle template
have too few interesting feature key points, making
the perspective transformation between key points
rank deficient. For SIFT approach, a patterned Post-
It gives best results for our use case. We manually
reviewed 100 video frames to measure how accurate
the algorithm is in finding matches. The result shows
that 94 out of the 100 frames had the Post-it cor-
rectly detected. For the other 6, it either identified
no match or identified a point outside of the Post-it
area (false positive).

4.3. Experiments using Template Matching.
For the Template Matching method, we rotate and
resize the template and do a matching process for
each resized and rotated template. This causes la-
tency to increase as we try finer granularity of size
and angle rotation. Table 2 shows how processing
time varies depending on the parameters. For pro-
cessing times greater than 70 ms (i.e. surpassing our
maximum goal of 33 ms), we experience significant
delay in video rendering.

8 of 10

Augmented Reality in Live Video Streams using Post-its

#rotation #sizes processing time (ms)
1 1 6
2 2 18
2 3 23
3 5 70
5 10 195

Table 2. Template Matching Speeds

Similar to the SIFT case, we tested with both plain
Post-Its and Post-Its with patterns on it. In order
to maintain low latency, we restricted the number of
sizes to 2 and number of rotations to 3. It turns out
Template Matching works well on both the patterned
and plain Post-its with such rotation and scale iter-
ation. Here, if the box includes > 50% of the region
of the Post-it, we categorize it as a correct match.

In both figure 15 and figure 16, the three images in
the first row (from left to right) are the original tem-
plate, the template after Canny edge detection and
the actual resized/rotated template giving the best
match.

The three images in the second row (from left to
right) are the video frame with best matched region
(the rectangle enclosed region), the Canny edge de-
tection of the video frame and the visualization of the
convolution between template and the best matched
region.

One drawback of the Template Matching approach
is that we cannot estimate the full perspective trans-
formation. We can only estimate similarity: we get
scaling and rotation by iterating through different
scales and rotations of the template, and translation
from the box center location of the best matched re-
gion.

4.3.1. Plain Post-It. Figure 15 shows one frame
where we use Template Matching for plain Post-it
detection.

Figure 15. Plain Post-it

We reviewed 100 video frames and found 92 to have
the correct bounding box for the best matching re-
gion. For the rest, the boxes also includes a part
(< 50%) of the Post-it, but the majority of the Post-
it fell outside of the box.

4.3.2. Post-It with Pattern. We reviewed 100 video
frames and found 94 to have the correct bounding
box for the best matching region. Some of the false
matches still have part (< 50%) of the Post-it region
in the box, while some completely missed the Post-it.

Figure 16 shows one frame where we use Template
Matching with a patterned Post-it.

Figure 16. Post-it with pattern

4.4. Comparison of methods. Comparing the
most important metrics for the 3 approaches, we find
the manual Color-Shape approach performs much
better than both SIFT and Template Matching. Ta-
ble 3 shows the high-level comparative overview.

SIFT
Template
Matching

Color-Shape

Time (ms) 59 23 12

Accuracy 0.94

0.94
(pattern)

0.92
(plain)

0.98

Notes Pattern
2 scale

3 rotation
Bright color

Table 3. Comparison of Methods

In addition to processing time and detection accu-
racy, the Color-Shape method provides a more accu-
rate perspective transformation matrix that we use
to transform the animation to overlay on the Post-
it. For SIFT, the affine transformation can be rank

9 of 10

Augmented Reality in Live Video Streams using Post-its

deficient when insufficient key points are matched.
For Template Matching, we can estimate a similar-
ity matrix but cannot estimate the full perspective
transformation.

SIFT and Template Matching are designed for gen-
eral, rich pattern detection, while the Color-Shape
method we use is designed specifically for our Post-it
use case. SIFT and Template Matching can be used
for a much broader range of use cases, whereas the
Color-Shape method is limited in scope to Post-it de-
tection (and highly similar use cases).

5. Conclusions

We find that typical methods such as SIFT and
Template Matching do not sufficiently meet our goals,
as they do not provide accurate pose finding for the
plain-faced Post-it, and require too much computa-
tion time to operate.

We find the manually designed Color-Shape ap-
proach, exploiting the saturated color and square
shape properties of the Post-it, to work well and meet
our goals. The full Color-Shape method takes an av-
erage of 12 milliseconds to execute (with 4.5 millisec-
onds standard deviation) on a 3-year old MacBook
Pro laptop, indicating the maximum 33 milliseconds
goal should be achievable on a wide range of laptops.
We achieve high accuracy projective pose estimation
with a reasonable robustness to noise and lighting
variation.

6. Future Work

A number of improvements could be considered for
future work:

• Interest region: the Color-Shape approach
could be made significantly faster by search-
ing only in an interest region derived from
the previous location of the Post-it

• Multiple Post-its: the Color-Shape approach
could be generalized to find multiple Post-its
in one image

• Dynamic color filter: the HSV color filter
could be made more accurate by dynamically
adapting parameters to the scene

• Wearables support: the source code could be
ported to relevant augmented reality hard-
ware such as smartglasses

References

[1] Canny, J. A Computational Approach to Edge Detection
IEEE Trans. on Pattern Analysis and Machine Intelligence,

8(6), pp. 679-698, 1986.

[2] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni,
Tom Drummond, Dieter Schmalstieg Real-time detection

and tracking for augmented reality on mobile phones IEEE

Transactions on Visualization and Computer Graphics
(Volume:16 , Issue: 3), 2009

[3] Charles A. Poynton Frequently Asked

Questions about Colour Available at
https://engineering.purdue.edu/ bouman/info/Color-

FAQ.pdf

[4] Fernandes, Leandro AF, and Manuel M. Oliveira. Real-
time line detection through an improved Hough transform

voting scheme Pattern Recognition 41.1, 2008

[5] Fleck, Margaret M., David A. Forsyth, and Chris Bregler.
Finding naked people Computer VisionECCV’96. Springer

Berlin Heidelberg, 1996
[6] Fleyeh, Hasan. Color detection and segmentation for road

and traffic signs Cybernetics and Intelligent Systems, 2004

IEEE Conference on. Vol. 2. IEEE, 2004
[7] Lee, Jae Y., and Suk I. Yoo An elliptical boundary model

for skin color detection Proc. of the 2002 International Con-

ference on Imaging Science, Systems, and Technology, 2002
[8] Lowe, David G. Object recognition from local scale-

invariant features Proceedings of the International

Conference on Computer Vision. pp. 11501157.
doi:10.1109/ICCV.1999.790410, 1999

[9] M. Fiala Designing Highly Reliable Fiducial Markers IEEE

Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 7

[10] Maini, R. et al. Study and Comparison of Various Image
Edge Detection Techniques International Journal of Image

Processing (IJIP), Volume (3) : Issue (1), 2009

[11] Matas, J. et al. Robust Detection of Lines Using the Pro-
gressive Probabilistic Hough Transform CVIU 78 1, pp 119-

137, 2000

[12] Nipat Thiengtham and Yingyos Sriboonruang Improve
Template Matching Method in Mobile Augmented Reality

for Thai Alphabet Learning International Journal of Smart

Home Vol. 6, No. 3, July, 2012
[13] P. Kakumanu, S. Makrogiannis, and N. Bourbakis A sur-

vey of skin-color modeling and detection methods Pattern

Recogn. 40, 3, March 2007
[14] Palmer, Phil L., Josef Kittler, and Maria Petrou An opti-

mizing line finder using a Hough transform algorithm Com-

puter Vision and Image Understanding 67.1, 1997
[15] Roberto, B. Template Matching techniques in computer

vision: theory and practice 2009
[16] S. Garrido-Jurado, R. Muoz-Salinas, F.J. Madrid-Cuevas,

M.J. Marn-Jimnez Automatic generation and detection of
highly reliable fiducial markers under occlusion Pattern
Recognition, Volume 47, Issue 6, June 2014

[17] Schumeyer, Richard P., and Kenneth E. Barner Color-

based classifier for region identification in video Photonics
West’98 Electronic Imaging. International Society for Op-

tics and Photonics, 1998
[18] Singh, Chandan, and Nitin Bhatia A Fast Decision Tech-

nique for Hierarchical Hough Transform for Line Detection

arXiv preprint arXiv:1007.0547, 2010

[19] Van Ginkel, Michael, CL Luengo Hendriks, and Lucas J.
van Vliet. A short introduction to the Radon and Hough

transforms and how they relate to each other Delft Univer-
sity of Technology, 2004

10 of 10

	1. Introduction
	2. Review of previous work
	2.1. Contribution of our work

	3. Technical approach
	3.1. Experimental setup
	3.2. Color-Shape Approach
	3.3. Nearest group filter
	3.4. SIFT approach
	3.5. Template Matching approach
	3.6. Overlay

	4. Experiments and Results
	4.1. Experiments using Color-Shape
	4.2. Experiments using SIFT
	4.3. Experiments using Template Matching
	4.4. Comparison of methods

	5. Conclusions
	6. Future Work
	References

