
Spotting Distracted Drivers from a Dashboard Camera

Kyle Griswold
Stanford University

kggriswo@stanford.edu

Abstract

Distracted driving is a big problem in the United States,
killing 3179 and injuring 431000 people in 2014 alone [1].
To help mitigate this problem, State Farm set up a compe-
tition on Kaggle [2] for people to create machine learn-
ing systems that take an image of a person driving a car
and classify whether they are distracted or not. This pa-
per details our participation in this competition, where we
use state of the art techniques in Convolutional Neural Net-
works in an attempt to solve this problem

1. Introduction
The problem posed by State Farm is an image classifi-

cation problem to create an architecture that can read in a
single image of a driver (with no other metadata) and to
classify whether that driver is distracted, and if so, in what
way that driver is distracted (eg. talking on their cell phone,
messing with the radio, etc.) The 10 classes that we need to
classify each image into are as follows:

1. safe driving

2. texting - right

3. talking on phone - right

4. texting - left

5. talking on phone - left

6. operating the radio

7. drinking

8. reaching behind

9. hair and makeup

10. talking to passenger

Image classification is one of the classic problems in
computer vision, so much so that the premier competition

in computer vision, the ImageNet challenge [3], is primar-
ily an image classification challenge. This competition was
won by Google’s Inception Network in 2014 [4] and Mi-
crosoft’s Residual Network in 2015 [5], so we will be us-
ing some of Google’s techniques for our architectures in
this paper (we would use Microsoft’s as well, but our hard-
ware setup isn’t large enough to effectively incorporate Mi-
crosoft’s techniques).

As for what our architectures will be, we will be using
Convolutional Neural Networks (CNNs) as a means of clas-
sifying these images. Since CNNs have been used to great
success in many computer vision problems (including the
ImageNet challenge - both Google’s and Microsoft’s mod-
els are CNNs), these seem to be the best approach to create
a well performing machine learning model. We will be in-
corporating many state of the art techniques in an attempt
to better classify the images, including Dropout, Batch and
Spatial Normalization, Adam training, and several aspects
of Google’s Inception Network. We create several models
incorporating these features and detail the results in our pa-
per below.

2. Problem Statement
For the sake of clarity, we will explain the mathematics

behind the image classification problem in this section. Let
x be our input image, where xi,j,k is the value correspond-
ing to the k’th color channel (using the RGB standard) of
the pixel in the i’th row and j’th column. Our task is to
build a function f (we will be using CNNs to create f in this
paper) such that when we input x into f, we get p = f(x)
where pc represents the estimated probability that x belongs
to class c.

Now we need to have a way to evaluate how well our
function f performs. A standard metric of success is ac-
curacy, but the competition led by State Farm uses Cross
Entropy Loss as a metric, so we will be reporting on both
here.

Accuracy is exactly what you would expect from the
name - it is simply the fraction of images that we guessed
correctly. Mathematically, if we let N be the total number
of images and yi be the correct class for input image xi for

1



every i, then the mathematical formula for accuracy is

1

N

N∑
i=1

1[yi = argmaxc(f(xi)c)]

Which represents the fraction of images that f correctly
classified like we wanted.

Cross Entropy Loss is a bit more complecated than accu-
racy. Instead of only taking into account whether f was right
or not, cross entropy loss attempts to incorporate how con-
fident f is in its determination (since a model that is more
confident in its correct predictions is generally better than
a model that is never confident about the predictions it gets
right, or worse, one that is confident in the predictions it
gets wrong). To accomplish this, cross entropy loss uses the
following formula:

− 1

N

N∑
i=1

log(f(xi)yi
)

The properties of log and the fact that we are passing
a probability into it mean that each term in the summation
will be a negative number where the closer we are to 0, the
closer our original probability was to 1 (and since the prob-
ability we used as the input to the log is the probability of
the correct class, we want this probability as close to 1 as
we can get it), which means that we want our result to be
as close to 0 as possible. The negation then flips the result
so that every number is positive, but still leaves us wanting
results close to 0. This means that every cross entropy value
we get will be positive, and we want it as low as possible,
which will be important context to remember when we are
analyzing our results.

3. Technical Content
In this section, we will detail all of the elements that went

into our models. Note that I am assuming that the reader
already has an understanding of standard neural networks,
and will be relying on that knowledge in this section.

3.1. Convolutional Layers

The Convolutional Layer is the main part of a Convolu-
tional Neural Network. It is designed to extract the same
features from different locations in the image so that the
model can better understand each part of the image in rela-
tion to every other location on the image. Mathematically,
if we have an input x of size BxHxWxD1 where B is the
batch size, H is the height of the input, W is the width, and
D1 is the depth of the input (D1 will be 3 for a raw im-
age, but may be different for future layers), and we want
an output y of size BxHxWxD2 (where B, H, and W are
the same as before, but D2 may be a new depth), then we
will need a weight vector w of size D2xSHxSWxD1 and a

bias vector b of size D2 where SH and SW are the height
and width fields of view for this layer, which represent how
much of the image we look at for this layer. Putting these
together, the formula for the convolutional layer is:

yb,i,j,d2 = bd2+

D1∑
d1=1

SH−1

2∑
sh=−

SH−1

2

SW −1

2∑
sw=−SW −1

2

wd2,sh,sw,d1∗xb,i+sh,j+sw,d1

Intuitively, this formula runs the weight matrix w over
the length and width of the input and returns the weighted
sum of the values it sees. Note that in our implementation
we zero pad the edges of the input to allow us to maintain
the same height and width before and after the convolution,
and we use SH = SW = 3 for our normal convolutional
layers (with one exception we will explain later on). There
are many other ways to implement these layers, but since
these are the ones we use, we will leave the other imple-
mentations to other papers.

3.2. Non-Linearities

If all we did was concatenate one convolutional layer af-
ter another, then the result would be little different than just
a single layer with a larger field of view, since the model
would still be linear like a single layer. The classic so-
lution to this problem is to introduce a non-linearity after
each layer to prevent this issue from coming up. The non-
linearity we use is the Rectified Linear Unit (ReLU), which
simply takes every negative feature value and sets it to 0.
Mathematically, if we had an input x and output y as in sec-
tion 3.1 (withD1 = D2), then the formula for a ReLU layer
would be:

yb,i,j,d = max(0, xb,i,j,d)

This is a standard non-linearity to use, since it is fast
to run and it disrupts the linear nature of the convolutions
enough to prevent the stacked convolutions from essentially
being a single convolution, which is all we need it to do.
There are other non-linearities we could use for this pur-
pose (eg. sigmoid, tanh, leaky ReLU, etc.), but we only use
ReLU in this paper, so that is all we will detail.

3.3. Pooling

At some points within the model, we will want to re-
duce the height and width of the input activations to better
consolodate the information in our activation values. Since
none of the other layers change the height and width, we
need to create a new layer to do so. One standard layer that
does this is a pooling layer. This layer takes in a group of
pixels in the input (a 2x2 square in our case) and combines
them together into a single pixel in the output (by taking
the max of each color channel in our case). Mathematically,

2



using the input x from above and a y of size BxH
2 x

W
2 xD2

(with D1 = D2 again), then a pooling layer uses the for-
mula

yb,i,j,d = maxk,l∈{0,1}(xb,2∗i+k,2∗j+l,d)

While you can use different size groups and use a differ-
ent function to combine the inputs (eg. min, average, etc.),
we only used 2x2 max pooling, so that is all we will go over
in this section.

3.4. Dropout

One of the main problems in building computer vision
models is over-fitting, which is when the model learns too
much from the training examples, and while it works really
well for classifying the training examples, it doesn’t gener-
alize to outside examples. One way to counteract this is reg-
ularization, which is designed to distort the model enough
so that it doesn’t learn too much from the training data. We
used Dropout for our regularization, which takes each ac-
tivation value at a layer, and randomly decides to set each
one to 0 (with probability 1 − p) or leave it like it is (with
probability p). Mathematically, if we used the input x and
output y from above (again with D1 = D2), then dropout
would generate a mask m of uniformly random numbers in
[0,1] of the same size as x and y, and would then use this
formula to set y:

yb,i,j,d = 1[mb,i,j,d < p] ∗ xb,i,j,d
For our purposes, we place a Dropout layer after the

ReLU non-linearity in each layer, and we use a p of p = 0.5.
There are other ways one can implement this, and other reg-
ularization methods that one can use, but as before, since we
aren’t using them, we won’t detail them here.

3.5. Batch and Spatial Normalization

Like any values that are derived from random sources
(the images we are presented with come from the distribu-
tion of all possible images of the kind we are dealing with,
and so can be considered random), the feature activations in
each convolutional layer will come from a distribution with
its own mean and variance. Unfortunately, the next layer is
always a ReLU layer, and since the ReLU layer can’t learn
from the training examples (since it has no parameters), the
distribution that the convolutional layer outputs may not be
the best distribution to use when combined with the ReLU
layer. Batch and Spatial normalization [6] are designed to
solve this problem. The first step in Normalization is to
normalize each feature over the other examples in the batch
(this is Batch Normalization) as well as the other values of
the same feature from all the other locations in the input
(this is Spatial Normalization). We do this by subtracting
out the mean of each feature and dividing by the variance.

This means that each feature will now have mean 0 and vari-
ance 1, but that still might not be the right distribution. In
order to fix this, the second step is to use learnable parame-
ters as the new mean and variance. This gives each feature
the best distribution the model can learn when it heads into
the ReLU layer.

Mathematically, if we use the input x and output y as
above (again with D1 = D2 = D), then we will create
learnable parameters m and v of size D each, a small con-
stant ε to prevent divide-by zero errors, and use the follow-
ing formulas to get our output:

µd =
1

B ∗H ∗W
∗

B,H,W∑
b,i,j=1

xb,i,j,d

σ2
d =

1

B ∗H ∗W
∗

B,H,W∑
b,i,j=1

(xb,i,j,d − µd)
2

x̂b,i,j,d =
xb,i,j,d − µd√

σ2
d + ε

yb,i,j,d = vd ∗ x̂b,i,j,d +md

While this technique is relatively new (only developed
in 2015), it has still been shown to be useful in a variety of
situations, which is why we incorporate it into our models.

3.6. Full Pooling Layer

One technique we incorporate from Google’s Inception
Network [4] is the use of a Full Pooling Layer between the
convolutional and the fully connected parts of the architec-
ture. One issue in normal networks is that there are usu-
ally many elements in the last layer of convolutions, and by
connecting them all to a fully connected layer we are cre-
ating a lot of parameters that can cause us to over-fit our
training data (Note that depending on the architecture, this
single layer can be the source of most of the parameters in
the model). Google’s Inception Network attempts to solve
this by instead of using a fully connected layer to reduce the
dimensions of the activations, they pool the input across the
entire height and width of the input instead. There is one
main difference between full pooling and the 2x2 pooling
we mentioned above: 2x2 pooling only pools a small sec-
tion of the image and leaves it with height and width dimen-
sions, and full pooling completely removes the height and
with dimensions by pooling over every spacial coordinate.
As in 2x2 pooling above, we use max as our pooling func-
tion. Since a pooling layer doesn’t have any parameters,
this prevents the enormous amount of parameters from be-
ing generated in that layer, which should help prevent over-
fitting.

Mathematically, if we use the input x as above and and
output y of sizeBxD, then the formula for Full pooling will
be:

3



yb,d = maxi∈[0,H−1],j∈[0:W−1](xb,i,j,d)

As in normal pooling, we can use functions aside from
max (eg. min, average, etc.), but we use max in our archi-
tectures, so that is what we detail here.

3.7. Split Convolutional Layers

The other technique we incorporate from Google’s In-
ception Network [4] is splitting each convolutional layer
into two seperate layers. We do this by instead of having
a single convolutional layer with a 3x3 field of view (that
is, SH = SW = 3), we have one convolutional layer with a
3x1 field of view, and after that we attach one convolutional
layer with a 1x3 convolutional field of view. The reasoning
behind this is that each neuron in the second layer has the
same field of view as before (3x3), but we now have more
non-linearities (which is generally good because it allows
us to move away from a strictly linear model), and fewer
parameters (which helps with over-fitting). This means that
this technique should help create a more accurate model,
and since it worked for Google, I will be incorporating it
into my model as well.

3.8. Overall Models

I will need to set up a notation to describe the architec-
tures I built concisely. I will be detailing an archtecture by
writing a string like this: ”Conv8 - Poolx2 - SplitConv16 -
FullPool - FC32”. Here is how I am describing each layer
in my notation:

1. Conv<D> - This represents a sequence of 4 layers - a
single 3x3 convolutional layer of depth D, a batch nor-
malization layer, a ReLU layer, and finally a Dropout
layer.

2. SplitConv<D> - This represents a sequence of 8 lay-
ers - the first 4 are the same sequence of layers as in
a Conv layer, but the convolutional layer has a field of
view of 3x1 instead of 3x3. The last 4 are also the same
sequence of layers as in a Conv layer, but the convolu-
tional layer has a field of view of 1x3 instead of 3x3.

3. Pool - This represents a 2x2 pooling layer.

4. FullPool - This represents a full pooling layer.

5. FC<D> - This represents a fully-connected layer of
size D.

Additionally, if there is an x<C> after a layer, then that
means that I used C copies of that layer in a row. There is
also a single fully connected layer at the end of every model
that generates the class probabilities, but since that is the
same in every model I won’t be including it in my nota-
tion. This should allow you to understand the architectures
behind my models, so I will now detail my experiments.

4. Experimental Setup and Results
4.1. Dataset

State Farm provided the training and test data in their
competition listing on Kaggle [2], and that is where I got
all of my data. The test set contains 79726 images without
their corresponding class labels, and the training set con-
tains 22424 images with their class labels. It is important to
note that State Farm specifically seperated out the drivers in
the training and test sets so that no driver has an image in
both the training and test sets. Because of this, I decided to
experiment with how much of an effect training and validat-
ing on the same drivers effected the reported performance of
the model. To do this, I came up with two ways to seperate
the provided training set into training and validation sets.

The first method is the way to get accurate results from
the validation set - namely splitting drivers between the
training and validation sets. To do this, I randomly ordered
the drivers and included each driver in order in the training
set until I had at least 80% of the examples in the training
set, and then I put the rest of the drivers in the validation
set. Due to the fact that the number of images per driver
varied wildly, I wasn’t able to get an exact 80-20 split be-
tween training and validation, but I was able to get close,
with 18158 training images and 4266 validation images for
a 80.9757% training split.

The second method is the one that will supposedly give
you biased results - mixing the images from a single driver
between the training and validation sets (note that I am not
mixing a single image between the training and validation
sets - I am only allowing different images from the same
driver to be in different sets). This method is much easier
to split, because all I have to do is randomly order all of the
images and put the first 80% in the training set. Running
this split give me 17939 training examples and 4485 vali-
dation images for a 79.9991% training split (you can’t get
exactly 80% because 22424 isn’t divisible by 5).

Note that I did make sure to split the images the into the
same sets for each method and architecture, so no architec-
ture had an advantage over the others. I did this by setting
the random seed to a constant before doing the split (the
constant being 42 of course :)) and resetting the random
seed to the default after doing the split.

4.2. Architectures

The 6 architectures I used in my experiments are detailed
in Table 1. Note that Model 1 was used to calibrate the
training regimen (eg. batch size) for my hardware and was
not used in the experiments.

4.3. Hardware

All experiments were run on an MSI Dominator Pro lap-
top, with an NVIDIA GTX 980M graphics card, 32GB of

4



Model Number Architecture
2 Pool - Conv16 - Pool - Conv32 - Pool - FC64
3 Pool - Conv16 - Pool - Conv32 - Poolx3 - FC64
4 Pool - Conv16 - Pool - Conv32 - FullPool - FC32
5 Poolx2 - Conv8 - Pool - Conv16 - Poolx2 - FC32
6 Pool - SplitConv16 - Pool - SplitConv32 - Pool - FC64
7 Pool - SplitConv8x2 - Pool - SplitConv16x2 - Pool - FC32x2

Table 1. Architectures used in experiments

RAM, and an Intel i7-4980HQ CPU. I also implemented all
of my models using Google’s Tensorflow framework [7].

4.4. Training Regimen

In order to train the models, I used Cross Entropy Loss
for the loss, a batch size of 50 images, 2000 batches for
each model, and an Adam update rule [8] with learning rate
of 0.0001. Most of these are standard for neural network
classification challenges, but the Adam update is relatively
new. Adam was chosen because it is designed to allow for
minimal adjustment of the learning rate, which allows me to
focus on improving the model as opposed to adjusting the
learning rate parameter.

4.5. Results

The Training and Validation Accuracy and Cross En-
tropy Loss are detailed in Tables 2 and 3. Since Model
3 gives us the best validation accuracy when we split the
drivers between the training and validation sets properly,
that is the model we will evaluate on the test set by sub-
mitting its test set predictions (for both training methods) to
Kaggle. The results are included in Table 4.

The loss graphs for model 3 under these two training reg-
imens are also included as Figure 1. The loss graphs for the
other models look similar with few exceptions, so I didn’t
include them in order to save space in the paper.

These are the results that I was able to obtain from my
experiments, so I will now analyze them in the next section.

5. Conclusions
5.1. Analysis of Results

We first note that both loss graphs have almost exactly
the shape that we want - curving down sharply and then flat-
tening out, with a small enough variation in the loss for it to
not affect the performance of the model. This tells us that
both models were well trained (as were the other models,
since most of them were basically the same shape.), which
means that the results we have correspond to the actual per-
formance of the models, and aren’t artificially worsened by
poor training practices. This means that we can continue to
analyze the remaining results.

Looking at the model 3 validation and test accuracies
gives us some interesting results. The validation loss from
splitting the drivers into the train and validation sets gives
us a much more accurate loss value (by an order of mag-
nitude) than sharing the drivers between the train and val-
idation sets, but sharing the drivers between the train and
validation sets gives a better test loss than splitting them
up. The more accurate validation loss from splitting up the
drivers is to be expected - State Farm purposefully split the
drivers up between the original test and training sets, and
the only reason they would think to do that is because they
have seen results like these in their own work on the sub-
ject. Getting better test performance by sharing the drivers
is unexpected though - considering that splitting the drivers
gives a more accurate validation loss, and since splitting the
drivers even results in slightly more training examples (due
to the number of images per driver not dividing up evenly),
one would think that splitting the drivers would also give
a better test performance. In fact, the only advantage that
sharing the drivers gives the model (since the drivers aren’t
shared with the test set) is that the model has seen more
drivers in general. This is the key though - by simply see-
ing more examples of different drivers, the model that was
shown the Shared Drivers training data was able to increase
its performance by almost 10%. This means that the more
drivers we are able to show our model, the better it will per-
form. We will detail ways we can accomplish this in the
Future Work section.

When we compare the results of all the models between
the Splitting and Sharing Drivers datasets, they mostly tell
the same basic story as when we looked at just model 3.
The training performance is approximately the same, but
the validation performance when we are sharing drivers is
much greater (at training performance levels) than when we
are splitting the drivers. This difference in performance is
by more than an order of magnitude for some of the models.
This tells us that not only does sharing the drivers give us
inaccurate information, but the information is usually off by
extreme amounts, not by small differences. The difference
is also present between the training and validation perfor-
mance when we split the drivers - again varying by orders
of magnitude in some cases. This tells us that we are over-

5



Model Number Train Accuracy Train Loss Val Accuracy Val Loss
2 0.595991 1.710525 0.287623 3.460873
3 0.992510 0.075897 0.651899 1.075854
4 0.139057 2.278056 0.129864 2.306801
5 0.976870 0.278310 0.601969 1.288893
6 0.991684 0.094351 0.444679 1.867791
7 0.804494 0.945188 0.423347 1.896609

Table 2. Results of Training by Splitting Drivers

Model Number Train Accuracy Train Loss Val Accuracy Val Loss
2 0.999610 0.019854 0.997324 0.033223
3 0.990969 0.094291 0.985730 0.110870
4 0.127320 2.294936 0.122854 2.293173
5 0.960198 0.362087 0.956522 0.382223
6 0.994091 0.058322 0.989521 0.076038
7 0.706282 1.325765 0.705017 1.327055

Table 3. Results of Training by Sharing Drivers

fitting the training set by a large margin with our present
models, and we need to make adjustments to our models in
order to correct that issue (this was what I attempted to do
with the later models, but it didn’t help like I had hoped). I
will detail possible improvements in the Future Work sec-
tion.

Comparing the performance of the various models also
gives us interesting results. We see that adding techniques
from Google’s Inception Network doesn’t seem to have
helped improve the performance of the model, even though
the changes were intended to reduce over-fitting, which
seems to be the main problem with our current models. The
only model that was even close to the performance of model
3 was model 5, and the only differences between those mod-
els are that one of the final pool layers in 3 is moved to the
beginning in 5, and 5 has the number of channels in each
layer halved with respect to 3. The fact that this doesn’t
seem to improve the performance of the model, or even re-
duce the amount of over-fitting (since the training and val-
idation loss went up by approximatly the same amount) is
important, because reducing the number of parameters and
activation values in the model (which is what all the changes
from 3 to 5 are intended to do) is one of the primary ways
to reduce over-fitting, but it didn’t work in this case. The
inclusion of the FullPool layer in 4 was also intended to re-
duce over-fitting in this manner, but it ended up choking the
model so much that the performance ended up little better
than random. This tells us that while reducing the number of
parameters and activation values in the model may work in
other cases, it doesn’t seem to be working for this problem.
This indicates which directions not to go in for improving
the model, which we take into consideration in the Future

Work section.

5.2. Future Work

We mentioned above that we need to include more
drivers in our training set in order to improve the perfor-
mance of our model. The simplest way to do this would
be to simply collect more images for the training set from
new drivers, but this is generally expensive and time con-
suming, so we would like to find a better way. One way
to train on more drivers would be to proceed as normal by
using the split drivers dataset to train and validate our mod-
els, but when we have finally decided on the final model we
want to use, we take the final architecture that gives us the
best validation results and re-train it on the entire training
dataset, without using a validation set. This would mean
that our model is being trained on all of the drivers that we
have, which should allow it to achieve more accurate predic-
tions. Another, much more involved way to train on more
drivers would be to incorporate unsupervised learning on
the test set (eg. training an auto-encoder for use as a feature
extractor) and include that in our model. The competition
doesn’t allow for a human to go through the test data set,
but it doesn’t explicitly prohibit using unsupervised learn-
ing on it, so this technique should be legal for use in the
competition.

We also noticed above that our primary issue with getting
good performance from our models is over-fitting. My first
attempt at fixing this issue was to reduce the expressiveness
of my model by reducing the number of parameters and ac-
tivation values in the model, but this turned out not to work
very well. There are other methods to reduce over-fitting
though. The most straight forward method is to increase

6



Model Number Training Method Test Loss
3 Split Drivers 1.71393
3 Share Drivers 1.57714

Table 4. Results of Testing on Model 3

Figure 1. Left: Loss Graph of Model 3 with Split Drivers - Right: Loss Graph of Model 3 with Shared Drivers

the regularization on the model (since regularization is ex-
plicitly designed to combat over-fitting), which can either
mean increasing the dropout regularization (by lowering the
probability we keep an activation value), adding in another
type of regularization (eg. regularizing on the magnitude
of the weight matricies), or some of both. A more advanced
way to combat over-fitting would be to use transfer learning.
We could take a pre-trained network (eg. AlexNet, VG-
GNet, Google’s Inception Network, Microsoft’s Residual
Network, etc.), use some of the layers from that network as
a feature extractor, and train our network on top of that fea-
ture extractor to output the final probabilities. This would
help because we know that the feature extractor is already
good for most purposes (especially if we train on the Ima-
geNet challenge winners like Google’s Inception Network
and Microsoft’s Residual Network), and we can’t overfit it
to our dataset because we don’t change it during the train-
ing process. Additionally, since we just need to train a small
neural network on top of it, the reduced size of the network
should help prevent over-fitting as well (this might not help
as much as expected considering our earlier results, but it
should still help some).

This gives us several directions to go in order to improve
our models - from training an auto-encoder on the test set
for use as a feature extractor, to taking advantage of past
highly performing networks. This means that there is plenty
of room for improvement in our models, and our perfor-
mance can only improve as we keep trying new techniques.

6. Code
The following page should give

you access to my code on github -
https://github.com/kggriswold/CS231ProjectSubmission.git
If you have trouble downloading it, just send me an email.

7. References
[1] Distraction.gov, http://www.distraction.gov/stats-

research-laws/facts-and-statistics.html
[2] Kaggle State Farm Distracted Driver Detection Com-

petition. https://www.kaggle.com/c/state-farm-distracted-
driver-detection

[3] ImageNet Challenge. http://www.image-net.org/
[4] Google Inception Network v4.

https://static.googleusercontent.com/media/ re-
search.google.com/en//pubs/archive/45169.pdf

[5] Microsoft Residual Network.
http://arxiv.org/abs/1512.03385

[6] Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,
http://arxiv.org/pdf/1502.03167v3.pdf

[7] TensorFlow. https://www.tensorflow.org/
[8] Adam: A Method for Stochastic Optimization,

http://arxiv.org/pdf/1412.6980.pdf

7


