

1

Abstract

Reflections are very common in photographs, and

depending on the application, they may be a nuisance you

want to remove or an interesting signal to isolate and

explore further. I demonstrate a method for separating the

reflection and background components of images taken

through reflective objects like windows. By taking a series

of images at slightly different camera orientations,

differences in the motion of the background vs. reflective

layers can be exploited to separate the reflection from the

background in a reference image chosen from the series.

The two layers recovered this way are used as initial

values in a nonlinear optimization problem which further

refines the quality of the separated component images.

This work builds on the work of others. I implemented the

entire pipeline from start to finish and made different

algorithm design decisions, used different optimization

techniques, and imposed different constraints. I

demonstrate the success of the algorithm on real data

collected by myself and others in various situations, and

discuss potential future improvements.

1. INTRODUCTION

Reflections are very common in everyday photographs,

for instance when taking pictures through windows.

Sometimes one may want to remove the reflection to have

a clear, unobstructed view of the background scene. For

example, if one is standing on the sidewalk taking a

picture of something inside a store window, she may wish

not to have reflections of cars or pedestrians walking

behind her show up in the photograph. It often is not

possible to simply change the camera orientation because

other reflected objects may come into view, or the scene

of interest in the window display may become occluded

due to the geometry of the spatial layout.

Alternatively, reflections may be viewed as an

interesting additional layer of information you want to

isolate and explore further. For instance, if someone is

standing indoors and taking a picture of an outdoor scene

through a window, it could be very interesting to see what

is around him in the room. Or a photographer at an art

museum could see what other works were in that gallery

by extracting the reflection from a picture of a framed

photograph on the wall. Finally, it’s easy to see how this

could be useful for forensic or legal purposes to identify

clues in the scene environment when someone takes a

photograph.

Therefore, this paper explains the theory and algorithm

details of an automated end-to-end MATLAB pipeline that

separates the reflection and background components of a

reference image, where that image is one of a series of

photographs of a scene taken through a reflective plane

like a window.

The outline of this paper is as follows: in Section 2, I

describe prior work on this topic and the novelties used

here. In Section 3, I provide a detailed explanation of the

algorithm pipeline and design decisions. Section 4 shows

experimental results on various data sets, and Section 5

presents some final conclusions and discusses potential

future improvements.

2. PREVIOUS WORK & NOVEL CONTRIBUTIONS

2.1. Review of Previous Work

Previous work in the area of reflection removal can

roughly be divided into three major categories. Work here

is often closely associated with the removal of

obstructions in general, not just reflecting elements.

The most straightforward but also least flexible solution

is to change the physical environment during image

acquisition. It’s possible that by adjusting the camera

orientation, the reflection can be lessened. However, this

is not always possible, and restricts the picture taking

process. Another physical solution is to take the exact

same image twice but using lenses with different

polarizations [3]. However, the requirements to take

images with the same viewpoint and to have multiple

specialized lenses is too limiting and is not suitable for

everyday use with mobile phone cameras.

A second class of solutions tries to separate the

background and reflection from a single image. However,

without any other knowledge, this is an ill-posed problem

because a single image could be separated into two

Reflection Recovery and Removal via Image Edge Parallax

G. Kocher

Stanford University

Stanford, CA 94305
kocher@stanford.edu

2

different additive layers in arbitrarily many ways. To get

around this, people have imposed various constraints, for

instance by assuming that if the user focuses on the

background, then the foreground reflection will be blurrier

[4], or taking advantage of flash on cameras [1]. Other

approaches include manually marking reflection and

background regions, but this is not convenient since it is

not automated.

The third category is multiple-view recovery, where a

series of images is acquired at slightly different camera

orientations such that the background and reflection move

differently and can be separated based on motion. Most

prior research in this area has assumed some type of

simplistic parametric motion between images, for instance

assuming that both layers follow affine or projective

transformations between images. The problem with these

assumptions is that they cannot properly handle variation

in scene depth. To circumvent this, optical flow has been

used to find a dense motion field defined uniquely for each

pixel. The main issue here is that optical flow typically

assumes that layers are opaque, whereas in the reflection

problem, each pixel has contributions from a background

layer and a transparent reflection layer. This results in a

poor initialization that contains visible oddities. For this

reason, Xue et al. [7] proposes a method called “edge

flow” to provide better initial estimates on the separated

image layers and their motion fields. Using edge flow in

combination with a constrained nonlinear optimization

setup, they achieve respectable results.

2.2. Novelties in this Work

This paper mostly parallels Xue et al. [7]. It discusses

my end-to-end MATLAB implementation of an automated

pipeline to separate the reflection and background

components of a reference image taken as part of a series

of photographs of a scene through a reflecting element like

a window. Along the way, I made different design

decisions than those authors and thought of improvements

that could be made to their work. Specifically, although I

also use Normalized Cross-Correlation to estimate the

initial motion field, my procedure for finding the most

likely motion vectors is different, and I filter out spurious

pairings in a more methodical way. I also propose a

potentially better way of using RANSAC to get initial

motion field estimates for the reflection and background

layers. Finally, I solve a modified version of the

optimization problem, use different optimization

techniques for added stability, and propose additional

constraints to improve the optimized result.

3. TECHNICAL APPROACH

3.1. Technical Summary

The algorithm implemented here ingests a series of

images taken from different viewpoints through a

reflective element like a window. The output is a pair of

images: one for the background layer of the reference

input image and one for the reflection layer of the

reference image. To achieve this decomposition into two

separate layers, there are two major steps. The first is to

get a good initial decomposition of the background and

reflection layers (Section 3.3), and the second is to solve

an optimization problem that refines those initial estimates

(Section 3.4).

More specifically, the first task of finding an initial

estimate consists of the following steps: for each image

relative to the reference image, determine a sparse motion

field that transforms the reference image into the target

image. This is done by calculating the normalized cross-

correlation (NCC) for edge pixels in image1 to image2 to

define a motion vector. RANSAC is performed to fit a

projective transformation to background and reflection

edge pixels as a way of assigning pixels to either of the

two layers. The sparse motion fields are then interpolated

to get dense motion fields. The initial estimates of the

background and reflection layers are calculated using

pixel-wise operations as detailed in Section 3.3.

The optimization step consists of minimizing the

objective function defined in Section 3.4. The initial

estimates for the background and reflection layers and

their motion fields are used as the starting point of the

nonlinear optimization problem. Constraints are imposed

to ensure valid results and improve the quality of the final

solution.

3.2. Technical Background

For planar reflective elements like windows, the

geometry of reflections is as simple as that shown in

Figure 1. The reflective plane is between the camera and

the background, and some objects (represented by a chair

in Figure 1) are on the same side of the reflective plane as

the camera. Photons from those objects reflect of the

window and enter the camera lens, appearing to originate

from a virtual object on the other side of the reflecting

plane. A fair assumption is that each pixel in the final

image is an additive composition of a background image

and a reflection image. Depending on lighting conditions,

the background or the reflection component may be

stronger (e.g. if you are indoors taking a picture facing

outside with interior lighting, during the day the

background will be stronger but at night the reflection will

be stronger). The relative contributions of the background

and reflection can be dealt with by introducing an opacity

or alpha matte constant.

In the case of multiple images with static background

and reflection layers, one of the images can be chosen as a

3

 Figure 1. Reflection Geometry.

reference image and the other images can be described as

warped versions of that reference image. Equation 1

expresses the index t image, , as a sum of two parts:

 () (
) (

) ()

There is , where the subscript R denotes the reflection

layer and absence of superscript denotes the reference

image, and there is where the subscript B means

background layer. Each image is a flattened vector of

length Npixels, and the variables
 and

 are the dense

motion field vectors determined via NCC, and are defined

at every pixel and have both an x and y component. They

dictate where a pixel in one image moves to in a second

image. W is an Npixels x Npixels warping matrix that

transforms into
 and into

 . The W matrices are

functions of the motion field between the reference image

and the index t image, and are matrices of bilinear

interpolation weights. Details of how I calculated the

warping matrices are given in Section 3.4. The constants

and () are the alpha matte, such that a pure

reflection would have and a pure background would

have . Finally, note that there is a corresponding

equation for each of the 3 color channels (or alternatively,

each flattened image can be thought of as a length

3*Npixels vector, and the warping matrix can be written

as a 3*Npixels x 3*Npixels matrix).

Therefore, the goal is to obtain the best possible

estimates of and (which also requires finding and

the two sets of motion fields *
 + and *

 +). The cost

function in Section 3.4 follows directly from this, and the

problem now becomes one of finding good initial

estimates, which is the topic of the next section.

3.3. Initial Solution

A good initial solution for the two separated layers and

their motion fields is important because the final step is to

solve a large nonlinear optimization problem which is

liable to get stuck at local minima or saddle points. As

discussed earlier, such techniques as optical flow may fail

and result in weird artifacts in the images. Therefore, I

chose to implement a modified version of “edge flow”

proposed in Xue et al. [7].

Edge flow relies on the key observation that edge pixels

usually belong to either a background edge or a reflection

edge, but not both. For an edge pixel to belong to both the

background and the reflection, those edges would have to

overlap perfectly in the image, so in general, most edge

pixels will not belong to both components since the

alignment between layers won’t be perfect. Also, since the

background and reflection are independent, those two

layers move differently, so edge pixel motion-based

separation is a robust way of distinguishing the 2 layers.

The procedure goes as follows. First, extract the Canny

edges of each of the images of the series. The absolute

number of edge pixels will depend on the image

dimensions, as well as the parameters used in Canny edge

detection (e.g. the sigma sizes). For the datasets used here,

with image dimensions on the order of several hundred to

one or two thousand pixels on a side, there were usually

too many edge pixels to use all of them in later

computation. Therefore, in large images, I randomly

sampled 20% of the edge pixels to keep for the next step.

Once a (sub)set of image edge pixels is obtained, a

sparse motion field is determined by calculating the

Normalized Cross-Correlation (NCC) between image

edges. Specifically, for a window centered on each of the

edge pixels in the first image, the NCC between that

window and all areas of the reference image is computed.

Peaks are found in the NCC space, and the location of the

maximum peak is recorded. To get subpixel estimates of

the x and y components of the motion vector, the centroid

of a very small window centered on the peak is calculated.

The x and y coordinate offsets of the peak in NCC space

give the x and y components of the motion vector for the

edge pixel in the first image. This procedure is repeated

for the whole (sub)set of edge pixels in each image. I

ended up using the OpenCV version of NCC and mexing

it, which provided at least an order of magnitude speed up

over the built-in MATLAB NCC function. The output of

this step is a set of motion vectors defined at each of the

(sub)set of edge pixels, representing the flow of that edge

pixel in the first image to a new location in the second

image. This motion field is sparse in the sense that it is

only defined at edge pixels (not every pixel of the image),

and it is still a single motion field which has not yet been

split into background or reflection components.

Representative images are shown at center of Figure 2.

Note that there are still some spurious motion vectors.

The next step is to decompose the combined motion

field into background and reflection motion components.

In most common imaging scenarios, either the background

or reflection will be stronger (the side of the reflective

plane with stronger lighting will dominate when the two

layers are additively combined). Therefore, either

background or reflection edges will be dominant, and

random selection of edge pixels will more likely choose

pixels from that layer. Combining this observation with

the fact that the two layers move differently gives an

approach to separate the two motion layers. First,

4

RANSAC is used on the full set of edge pixels to fit a

projective transformation. Depending on which layer

dominates, this will fit a projective transformation to

either the background or reflection. Then the remaining

edge pixels (outliers of the RANSAC model) will mostly

belong to the other layer or be noise. So RANSAC is used

again to fit a projective transformation to the second layer.

The output of this step is, for each image with respect to

the reference image: a sparse motion field for the

background and another sparse motion field for the

reflection. Examples are seen at right of Figure 2.

Some comments about the RANSAC procedure are

useful here. First, the greedy RANSAC approach used by

Xue et al. [7] (sequentially fitting a homography to one

layer, then fitting a second homography to the outliers)

works well in general, but I think it can be improved by

fitting the two models in parallel. In this case, 4 points are

randomly chosen to fit a homography, then another 4

points are chosen to fit a second homography. Inliers are

uniquely assigned to only one of the transformations, and

a score is used to determine the goodness of the combined

two transformation model, where the score is a function of

the number of inliers of both transformations (e.g. the

harmonic mean like the F-score used in binary

classification). Finally, the joint model is valid only if the

two individual transformations are at least as different as

some threshold. That threshold is a function of the

difference of the two components of the model, e.g. a

distance metric, an information theoretic measure related

to how independent the individual transformations are, or

a measure of how far apart on average the transformations

of the same point would be under the two transformations.

This version of joint RANSAC should improve the initial

decomposition even further, at the cost of being more

computationally expensive because two transformations

would need to be fit for each model.

Another point to consider about the RANSAC

procedure is that the actual projective transformations

calculated for each layer are not important, they simply are

a way of splitting the motion field vectors into a unique set

of background and reflection pixels, but the transformation

matrices are not used again in the algorithm pipeline.

Finally, there are some minor steps that can be taken to

improve the inlier to outlier ratio before employing

RANSAC. In particular, since I ask the user to move their

camera roughly horizontally to acquire images at different

orientations, this means that motion vectors with large

vertical components are probably due to spurious NCC

matches, and are excluded. A possible minor improvement

that would add very little burden to the user would be to

tell the user to move their camera always from left to right,

and exploit this by also excluding NCC matches with the

opposite direction. These minor operations improve the

success of RANSAC by increasing the proportion of

inliers, which is especially important if only a subset of

edge pixels are used in order to reduce computation time.

The steps so far have resulted in sparse motion fields

for the background and reflection layers of each of the

images (the motion fields for the reference image are all

0’s since it doesn’t move with respect to itself). Next, I

Figure 2. Left column: Input images. Center column: Motion field vectors made from NCC on a random

sample of edge pixels. Right column: Background (dark blue) and reflection (red) motion field components.

5

interpolated the sparse motion fields using bilinear

interpolation to get dense motion fields. The set of motion

fields for all index t background images, *
 +, and the set

of motion fields for the index t reflection layers, *
 +, are

saved for the final optimization step.

The last ingredient we need is an initial decomposition

of the reference image into a background image and a

reflection image. This is achieved by recalling that we

assumed the reference image is an additive combination of

a background image and a reflection image. Szeliski et al.

[6] estimate the background image by taking the stack-

wise minimum of the background aligned images. In other

words, after warping each image into alignment with the

reference image, for every pixel, take the minimum value

over the aligned stack of images to create a new image

which is the initial background estimate. In practice, I

found that this worked fine, but occasionally the median

over the image stack looked better even though there isn’t

as good theoretical justification. In particular, using the

median produces a visually better initial background

estimate than the minimum when the reflection layer has

dark regions. If the minimum is used, those dark reflection

layers can be repeated multiple times across the estimated

image. The initial estimate of the reflection image follows

directly by subtracting the background estimate from the

reference image. So, the relevant set of equations is:

 ̂ (
)

 ̂ ̂ (2)

where the hat accents denote initial estimates, I is the

reference input image., and the minimum is understood to

be elementwise across the stack of images. We know have

all of the required pieces to feed into the optimization

problem discussed in the next section. An example of

initial background and reflection estimates is shown in

Figure 3. Because the reflection image is dark, the right

side of Figure 3 also shows a contrast enhanced version. It

is impressive that even from this initial estimate, you can

clearly see details that were indiscernible in the original

image, such as the coffee mugs at the lower left, or the

large letters on the right side of the image.

3.4. Optimization

 Everything up to now has been to get a good initial

solution because the next step is to solve a large, nonlinear

optimization problem. The objective function follows

directly from the decomposition equation (Eq. 1), and is:

 *

 + *
 +
∑‖ () (

) (
) ‖

Subject to:

 ()

In other words, we need to minimize the sum of errors

between each index t image () and the decomposition of

the reference image into a background and reflection layer

(and). All terms here are the same as in Section 3.1.

The reference background and reflection layers are each

warped by warping matrices to align with the index t

background and reflection layers (details of the warping

matrices will be discussed shortly). The reflection and

background motion fields
 and

 are the same as

described before: they are defined at every pixel and

dictate how each pixel in the reference background and

reflection layers transforms into the corresponding layer of

the index t image. The constant is the same alpha matte

constant as before. The constraint is needed since and

the image vectors and all lie on [0,1].

 Each W matrix is a function of a motion field between

the reference image and the index t image (
 or

), and

is a matrix of bilinear interpolation weights. To derive the

index t warping matrix for a given layer, I back-projected

each pixel of the reference layer onto the index t image

according to the dense flow field defined at that pixel

location of the reference image. In general, the back-

projected location falls between pixels of the index t

image, and not exactly on any pixel. Therefore,

interpolation is required. Because I earlier interpolated the

sparse motion fields to get dense motion fields (Section

3.3) by using bilinear interpolation, the interpolation used

here must be the same bilinear interpolation. A possible

improvement would be to get a smoother motion field by

Figure 3. Left: Initial background estimate. Note problems with blue monitor. Center: Initial reflection

estimate. Right: since reflection is hard to see, the right is the same image but contrast adjusted.

6

using e.g. bicubic interpolation, but when tested, it

significantly slowed the computation in Section 3.3, so

was not used there, and therefore is not used here either.

As an example, the pixel of
 is a weighted sum of the

four pixels from that surround the interpolated point (4

because bilinear interpolation on a regular grid considers

the 4 corners surrounding a given back-projected point).

So, the row of (
) has 4 nonzero elements, and

element ij of W gives the contribution of pixel index j of

the reference layer to pixel i of the index t layer. Only the

4 corner pixels around the back-projected location have

nonzero values in the W matrix, and those values are

exactly the bilinear interpolation weights. One caveat is

that if a back-projected location would be outside the

target image, it is excluded and that row has all 0’s. Also,

because each pixel has a single motion vector (not a

motion vector for each individual color channel), I used

the same warping matrix for all three color channels.

 Since the ultimate purpose of the optimization is to get

the best possible and estimates, we can temporarily

ignore some of the other variables in the optimization

problem of Eq. 3. Specifically, we can assume that the

initial motion fields are approximately correct and treat

them as constants by holding their values fixed. This

significantly simplifies the optimization problem and

allows us to move forward in solving it for and . If

desired, the motion fields could be reconsidered after

improving the estimates of and (see end of this

section and also Section 5).

 Even though all the terms are now understood, a

complication with the above formulation (Eq. 3) is that

there are products of the variables we are trying to solve

for (the terms containing and are products and

so are nonlinear). So, we can linearize the system of

equations to simplify it. Filling in some gaps in the

derivation of [8], I approximate the product ̂
 ̂ ̂ ̂, where the hat terms are close in value to the true

non-hat terms. Specifically, I use ̂ ̂ ̂ ̂

and same for the B subscript term (background). For this

problem, the hat terms are just the values obtained from

the previous iteration of the algorithm, so as long as the

initial guess is not too bad, then the hat terms are close to

the true values and the approximation is valid. In rewriting

the objective function, there end up being a few terms that

are constants (the gray highlighted terms below), so we

can remove them since they won’t affect where the cost is

minimized:

 ∑ ‖
 [() ̂ (̂) (̂) ̂]

 [̂ ̂ ̂ ̂]‖

 ∑ ‖ [
 ̂ (

 ̂) ((̂)
)]

 [(
 ̂) (̂

)]‖

 ∑ ‖ (
 ̂

 ̂) ((̂)
)

 (̂
) ‖ (4)

where I’ve used the shorthand notation
 to mean

 (
). Now define and similarly, ̂ ̂.

Every term with a hat accent in Eq. 4 is just a constant

obtained from the previous iteration, so the reformulated

cost function can now be put in the form Ax-b as follows:

[

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

(
 ̂

 ̂
)

(
 ̂

 ̂
)

(
 ̂

 ̂
)

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

(
 ̂

 ̂
)

(
 ̂

 ̂
)

(
 ̂

 ̂
)]

[

]

[

]

 ()

where the superscripts denote the index of the image (1 to

N, where N is the number of images in the series), and the

coloring scheme emphasizes that there are 3 color

channels and the warping matrix for each color channel is

the same for a given image pair and reflection/background

layer. Note that the vector x in Eq. 5 above contains the

single constant in addition to the two flattened image

vectors and . This is because we don’t know its value

a priori, although I do assume it’s constant across the

whole image instead of being defined differently at each

pixel since materials like glass and plastic reflect light

approximately homogenously under most conditions [7]. I

set it to .5 to start with, which I think is a reasonable

approach. The vector b is the flattened vector of all 3 color

channels of every index t image in the stack. Note that the

A matrix is very big, but is extremely sparse, having at

most 9 nonzero elements per row.

 Now that the system of equations is in a convenient

form, we need to decide what -norm to minimize.

Initially, I tried L2, enforcing the constraints of Eq. 3 by

using MATLAB’s built-in “lsqlin” function. However,

unsurprisingly, the L2 norm proved not to be robust and

gave poor results. Next, I decided to minimize the L1

norm as in Xue et al. [7] since it is more robust. I used

Iteratively Reweighted Least Squares (IRLS), which can

minimize cost functions of various -norms, including

p=1. It does this iteratively by solving the least squares

problem and then updating the weights based on the

residuals [5], and allows us to take advantage of the good

initial estimates arduously obtained in Section 3.3.

 To enforce the [0,1] upper and lower bounds on , ,

and , I followed the discussion in example 4.7.6 of Boyd

and Vandenberghe [10] and added a penalty constraint on

each as follows:

 , ()
 () - ()

7

where x represents the three quantities , , and . It is

zero if the term is within [0,1], and large otherwise. For ,

the penalty term is a scalar, whereas for and the

penalty is a vector of length 3*Npixels since it applies to

all 3 color channels of each pixel in the image. Initially, I

decided to gradually ramp up the penalty rather than keep

it fixed, as this has stability benefits according to [9]. So,

 represents the penalty constant at iteration k, and I

started it at 10e1 and multiplied it by 10 after each

iteration. Ultimately, however, I decided not to spend time

on hyperparameter tuning to figure out the best ramp-

up schedule, so I implemented a very large fixed cost by

setting =100000 for every iteration k.

 Finally, the optimization can be performed as follows.

Using the linearized objective function from Eq. 5 with an

L1-norm and the added constraints of Eq. 6, IRLS is

performed for several iterations to get a refined estimate of

the background and reflection layers of the reference

image, and .

 An interesting different approach used in Xue et al. is to

use an alternating method where after getting updated ,

 , and estimates, those values are held fixed and the

motion fields are refined. This alternating process could be

repeated several times, refining all estimated terms to get

an improved final solution. However, I didn’t implement

this two tier approach due to time and complexity

constraints, but the single round of IRLS on its own

moderately improved the initial results. The results in

Section 4 show a final reflection layer with significant

detail that is practically invisible in the original input

series.

 Another potential improvement could come in the form

of additional constraints. Xue et al. imposed such

constraints as sparsity on image gradients, sparsity on

motion field vectors, and an edge ownership prior

(following the logic that an edge usually does not belong

to both the background and reflection).

 I also thought of other potentially useful constraints to

impose but ultimately did not implement them. For

instance, vector calculus properties of the motion fields

are constrained by the physics of how images can

transform when the background and reflection layers are

assumed to be static. Some possible constraints that

exploit this are mentioned in Section 5 when discussing

future improvements.

4. EXPERIMENTAL RESULTS

The final results are encouraging and show the potential

of this approach to recover a reflection layer from a series

of input images to provide useful insights.

The image series presented in this paper are a

combination of my own images acquired in an office

environment with other image series acquired by Xue et

al. I used a Samsung Galaxy S4 for my photographs.

The computing environment used was a moderately

high end Windows 7 PC. Unfortunately, due to high

computational loads and the prototype, non-optimized

code written in MATLAB, a typical series of images took

over 40 minutes to process and sometimes had memory

management difficulties. This computing time could be

drastically reduced by improving the code structure, using

a lower level language, and using different hardware.

The top row of Figure 4 shows a reference input image

on the left (the 3
rd

 of a series of 5 images), and the final

recovered reflection output by the algorithm on the right.

The bottom row is the same but for a different input image

series. The algorithm performs reasonably well on the top

series of images. This is probably for a few reasons. First,

the images are of decent quality (e.g. not blurry). Second,

the motion between sequential images is almost purely

translational (confirmed by the camera matrix that

RANSAC estimated) which may make it easier to separate

the motion fields of the background and reflection. Also,

there didn’t seem to be any saturated regions or specular

reflection (difficulties with these scenarios are discussed

soon). The algorithm is more challenged by the series

shown in the bottom row. There was some blur in some of

the images of the series since I acquired this sequence

indoors with less lighting, leading to inaccuracies in the

edge flow motion fields, causing the alignment between

sequential images to suffer, leading to reduced quality

results. Also, changes in illumination from specular

reflection on the potato chip bags confused NCC

somewhat, causing difficulties for edge flow. Overall,

though, the algorithm did help somewhat to extract the

reflection layer. In particular, the gray and red striped

shirt, the hand, and some tables become very clear.

This implementation does not perform nearly as well as

Xue et al. In the initial edge flow step, due to resource

constraints, I had to randomly sample a small fraction of

all edge pixels, leading to sparser motion fields that

required more interpolation, causing alignment to degrade

somewhat. Also significant is the fact that my

optimization does not recursively alternate between

solving for the decomposed layers and then the motion

fields as in Xue et al. Instead, my optimization only

refines the estimates for the decomposed layers.

5. CONCLUSION

I demonstrated a MATLAB pipeline for ingesting a

series of images taken at slightly different viewpoints and

outputting separated background and reflection images for

a reference input image. The algorithm takes advantage of

motion differences of the background and reflection layers

to get good initial estimates of the decomposition, and

then solves a nonlinear optimization problem to refine

those estimates.

There are several issues and assumptions that future

8

work could address. First, there are aspects of the image

acquisition process that could be improved by being made

more robust. In particular, if the background and reflection

layers are not static but instead contain moving elements

like cars or people or trees swaying noticeably in strong

wind, then sequential images have motion fields that

contain small scale local irregularities, e.g. due to a

flexible tree branch being bent significantly differently

across images. This worsens the alignment of the image

stack and degrades the quality of the initial layer

decomposition since it depends on pixel-wise operations

and requires that pixels be reasonably well aligned. Also,

specular reflection can sometimes be hard to deal with.

Since specular reflection depends on the viewing

orientation, when the camera is moved across the scene

the pattern of specular reflection can sometimes change

drastically. This also leads to local irregularities in the

warping motion fields. Finally, saturated image regions

pose problems because if a pixel region is clipped at a

maximum value, you cannot recover the additive

combination of two layers that produced it. Therefore,

very bright lights may pose problems, and saturation

should be avoided.

Second, in the initial decomposition of the image into a

background and reflection layer, Xue et al. used a greedy

RANSAC to sequentially fit a transformation to the

background edge pixel inliers, and then a second

transformation for the reflection layer. As discussed in

Section 3, my idea of using RANSAC to fit the

transformations in parallel should help the quality of the

initial decomposition at the expense of increased

computational complexity.

Third, the choice of appropriate constraints is of

significant importance in any optimization problem. In

addition to those constraints used in Xue et al., I think a

potentially helpful set of constraints would view the

motion field in terms of a general vector field and

incorporate characteristics of the divergence and curl.

Because the user is told how to move their camera across

the scene (roughly horizontally over a few centimeters –

inches), the vector field should have certain properties. For

instance, unless there is a large zoom between images

(which there wouldn’t be if the user is following

instructions) then there shouldn’t be any large radial

divergence. In other words, there shouldn’t be source or

sink points where the vectors diverge or converge radially.

Similarly, even though there will likely be some degree of

image-wide rotation due to the user tilting the camera,

there shouldn’t be small regions with large curl. Certain

properties as these could be incorporated to smooth out the

motion field and make it more realistic, thus improving the

final result.

Also in the optimizations step, some possible

improvements to IRLS stability are to figure out a good

schedule for ramping up the penalty (lambda), and also

using a similar adjustment on the value of p: you could

Figure 4. Left: Example original reference input images. Right: The reflection layers recovered after running

through the algorithm. Note that the lower right image has been contrast adjusted for visibility. Note the overall

good performance on the top image, and difficulties with the bottom image. However, visibility of some objects

(hand, tables, plant, windows) are improved.

9

also ramp down the value of p in the p-norm value. For

example, if using the L1-norm, you could start at p=2,

then gradually decrement it toward 1 in small steps.

According to [9], this is often helpful.

Finally, the likely biggest aid to performance would be

to carry out the alternating optimization routine of Xue et

al. where the motion fields and layer decompositions are

alternately refined (instead of the approach here of just

refining the layer decomposition a single time).

One last aspect that could be addressed is to

accommodate reflections from non-planar reflecting

elements. In the results presented here, the reflective

element was a planar surface like a window or layer of

plastic. More complex surfaces, like the curved side

window of a car, also reflect light, but as the reflection

moves across the surface the reflection is deformed as the

local contour changes the geometry of the reflected light.

Code and sample data:

https://github.com/wasd12345/FinalProject

ACKNOWLEDGEMENTS:

Thanks to Tianfan Xue of MIT CSAIL for his willingness

to answer multiple questions via email.

6. REFERENCES

[1] A. K. Agrawal, R. Raskar, S. K. Nayar, and Y. Li.

Removing Photography Artifacts using Gradient Projection

and Flash Exposure Sampling. ToG, 24(3):828–835, 2005.

[2] M. Brown, Y. Li. Exploiting Reflection Change for

Automatic Reflection Removal, 2013.

[3] N. Kong et al. A Physically-Based Approach to Reflection

Separation: From Physical Modeling to Constrained

Optimization. IEEE Transactions on Software Engineering

36(2), 2013.

[4] Y. Schechner, N. Kiryati, and R. Basri. Separation of

Transparent Layers using Focus. IJCV, 39(1):25–39, 2000.

[5] Stanford Exploration Project. Iteratively Reweighted Least

Squares (IRLS), 2004. http://sepwww.stanford.edu/data/

media/public/docs/sep115/jun1/paper_html/node2.html

[6] R. Szelisky et al. Layer Extraction from Multiple Images

Containing Reflections and Transparency, 2000.

[7] T. Xue et al. A Computational Approach for Obstruction-

Free Photography, 2015.

[8] T. Xue. Technical Report for Obstruction-Free

Photography, 2015.

[9] C. Sidney Burrus. Iteratively Reweighted Least Squares.

OpenStax-CNX module: m45285.

[10] S. Boyd and L. Vandenberghe. Convex Optimization,

Seventh Printing with Corrections, 2009. Cambridge

University Press.

https://github.com/wasd12345/FinalProject

