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Abstract 

 

Reflections are very common in photographs, and 

depending on the application, they may be a nuisance you 

want to remove or an interesting signal to isolate and 

explore further. I demonstrate a method for separating the 

reflection and background components of images taken 

through reflective objects like windows. By taking a series 

of images at slightly different camera orientations, 

differences in the motion of the background vs. reflective 

layers can be exploited to separate the reflection from the 

background in a reference image chosen from the series. 

The two layers recovered this way are used as initial 

values in a nonlinear optimization problem which further 

refines the quality of the separated component images. 

This work builds on the work of others. I implemented the 

entire pipeline from start to finish and made different 

algorithm design decisions, used different optimization 

techniques, and imposed different constraints. I 

demonstrate the success of the algorithm on real data 

collected by myself and others in various situations, and 

discuss potential future improvements. 

 

1. INTRODUCTION 

Reflections are very common in everyday photographs, 

for instance when taking pictures through windows. 

Sometimes one may want to remove the reflection to have 

a clear, unobstructed view of the background scene. For 

example, if one is standing on the sidewalk taking a 

picture of something inside a store window, she may wish 

not to have reflections of cars or pedestrians walking 

behind her show up in the photograph. It often is not 

possible to simply change the camera orientation because 

other reflected objects may come into view, or the scene 

of interest in the window display may become occluded 

due to the geometry of the spatial layout. 

Alternatively, reflections may be viewed as an 

interesting additional layer of information you want to 

isolate and explore further. For instance, if someone is 

standing indoors and taking a picture of an outdoor scene 

through a window, it could be very interesting to see what 

is around him in the room. Or a photographer at an art 

museum could see what other works were in that gallery 

by extracting the reflection from a picture of a framed 

photograph on the wall. Finally, it’s easy to see how this 

could be useful for forensic or legal purposes to identify 

clues in the scene environment when someone takes a 

photograph. 

Therefore, this paper explains the theory and algorithm 

details of an automated end-to-end MATLAB pipeline that 

separates the reflection and background components of a 

reference image, where that image is one of a series of 

photographs of a scene taken through a reflective plane 

like a window. 

The outline of this paper is as follows: in Section 2, I 

describe prior work on this topic and the novelties used 

here. In Section 3, I provide a detailed explanation of the 

algorithm pipeline and design decisions. Section 4 shows 

experimental results on various data sets, and Section 5 

presents some final conclusions and discusses potential 

future improvements. 

 

2. PREVIOUS WORK & NOVEL CONTRIBUTIONS 

2.1. Review of Previous Work 

Previous work in the area of reflection removal can 

roughly be divided into three major categories. Work here 

is often closely associated with the removal of 

obstructions in general, not just reflecting elements. 

The most straightforward but also least flexible solution 

is to change the physical environment during image 

acquisition. It’s possible that by adjusting the camera 

orientation, the reflection can be lessened. However, this 

is not always possible, and restricts the picture taking 

process. Another physical solution is to take the exact 

same image twice but using lenses with different 

polarizations [3]. However, the requirements to take 

images with the same viewpoint and to have multiple 

specialized lenses is too limiting and is not suitable for 

everyday use with mobile phone cameras. 

A second class of solutions tries to separate the 

background and reflection from a single image. However, 

without any other knowledge, this is an ill-posed problem 

because a single image could be separated into two 
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different additive layers in arbitrarily many ways. To get 

around this, people have imposed various constraints, for 

instance by assuming that if the user focuses on the 

background, then the foreground reflection will be blurrier 

[4], or taking advantage of flash on cameras [1]. Other 

approaches include manually marking reflection and 

background regions, but this is not convenient since it is 

not automated. 

The third category is multiple-view recovery, where a 

series of images is acquired at slightly different camera 

orientations such that the background and reflection move 

differently and can be separated based on motion. Most 

prior research in this area has assumed some type of 

simplistic parametric motion between images, for instance 

assuming that both layers follow affine or projective 

transformations between images. The problem with these 

assumptions is that they cannot properly handle variation 

in scene depth. To circumvent this, optical flow has been 

used to find a dense motion field defined uniquely for each 

pixel. The main issue here is that optical flow typically 

assumes that layers are opaque, whereas in the reflection 

problem, each pixel has contributions from a background 

layer and a transparent reflection layer. This results in a 

poor initialization that contains visible oddities. For this 

reason, Xue et al. [7] proposes a method called “edge 

flow” to provide better initial estimates on the separated 

image layers and their motion fields. Using edge flow in 

combination with a constrained nonlinear optimization 

setup, they achieve respectable results. 

2.2. Novelties in this Work 

This paper mostly parallels Xue et al. [7]. It discusses 

my end-to-end MATLAB implementation of an automated 

pipeline to separate the reflection and background 

components of a reference image taken as part of a series 

of photographs of a scene through a reflecting element like 

a window. Along the way, I made different design 

decisions than those authors and thought of improvements 

that could be made to their work. Specifically, although I 

also use Normalized Cross-Correlation to estimate the 

initial motion field, my procedure for finding the most 

likely motion vectors is different, and I filter out spurious 

pairings in a more methodical way. I also propose a 

potentially better way of using RANSAC to get initial 

motion field estimates for the reflection and background 

layers. Finally, I solve a modified version of the 

optimization problem, use different optimization 

techniques for added stability, and propose additional 

constraints to improve the optimized result. 

3. TECHNICAL APPROACH 

 

3.1. Technical Summary 

The algorithm implemented here ingests a series of 

images taken from different viewpoints through a 

reflective element like a window. The output is a pair of 

images: one for the background layer of the reference 

input image and one for the reflection layer of the 

reference image. To achieve this decomposition into two 

separate layers, there are two major steps. The first is to 

get a good initial decomposition of the background and 

reflection layers (Section 3.3), and the second is to solve 

an optimization problem that refines those initial estimates 

(Section 3.4). 

More specifically, the first task of finding an initial 

estimate consists of the following steps: for each image 

relative to the reference image, determine a sparse motion 

field that transforms the reference image into the target 

image. This is done by calculating the normalized cross-

correlation (NCC) for edge pixels in image1 to image2 to 

define a motion vector. RANSAC is performed to fit a 

projective transformation to background and reflection 

edge pixels as a way of assigning pixels to either of the 

two layers. The sparse motion fields are then interpolated 

to get dense motion fields. The initial estimates of the 

background and reflection layers are calculated using 

pixel-wise operations as detailed in Section 3.3. 

The optimization step consists of minimizing the 

objective function defined in Section 3.4. The initial 

estimates for the background and reflection layers and 

their motion fields are used as the starting point of the 

nonlinear optimization problem. Constraints are imposed 

to ensure valid results and improve the quality of the final 

solution. 

3.2. Technical Background 

For planar reflective elements like windows, the 

geometry of reflections is as simple as that shown in 

Figure 1. The reflective plane is between the camera and 

the background, and some objects (represented by a chair 

in Figure 1) are on the same side of the reflective plane as 

the camera. Photons from those objects reflect of the 

window and enter the camera lens, appearing to originate 

from a virtual object on the other side of the reflecting 

plane. A fair assumption is that each pixel in the final 

image is an additive composition of a background image 

and a reflection image. Depending on lighting conditions, 

the background or the reflection component may be 

stronger (e.g. if you are indoors taking a picture facing 

outside with interior lighting, during the day the 

background will be stronger but at night the reflection will 

be stronger). The relative contributions of the background 

and reflection can be dealt with by introducing an opacity 

or alpha matte constant. 

In the case of multiple images with static background 

and reflection layers, one of the images can be chosen as a  
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          Figure 1. Reflection Geometry. 

 

reference image and the other images can be described as 

warped versions of that reference image. Equation 1 

expresses the index t image,   , as a sum of two parts:  

 

                     (   ) (  
 )     (  

 )                   ( ) 
 

There is   , where the subscript R denotes the reflection 

layer and absence of superscript denotes the reference 

image, and there is    where the subscript B means 

background layer. Each image is a flattened vector of 

length Npixels, and the variables   
  and   

  are the dense 

motion field vectors determined via NCC, and are defined 

at every pixel and have both an x and y component. They 

dictate where a pixel in one image moves to in a second 

image. W is an Npixels x Npixels warping matrix that 

transforms    into   
  and    into   

 . The W matrices are 

functions of the motion field between the reference image 

and the index t image, and are matrices of bilinear 

interpolation weights. Details of how I calculated the 

warping matrices are given in Section 3.4. The constants   

and (   ) are the alpha matte, such that a pure 

reflection would have     and a pure background would 

have    . Finally, note that there is a corresponding 

equation for each of the 3 color channels (or alternatively, 

each flattened image can be thought of as a length 

3*Npixels vector, and the warping matrix can be written 

as a 3*Npixels x 3*Npixels matrix). 

Therefore, the goal is to obtain the best possible 

estimates of    and    (which also requires finding   and 

the two sets of motion fields *  
 + and *  

 +). The cost 

function in Section 3.4 follows directly from this, and the 

problem now becomes one of finding good initial 

estimates, which is the topic of the next section. 

3.3. Initial Solution 

A good initial solution for the two separated layers and 

their motion fields is important because the final step is to 

solve a large nonlinear optimization problem which is 

liable to get stuck at local minima or saddle points. As 

discussed earlier, such techniques as optical flow may fail 

and result in weird artifacts in the images. Therefore, I 

chose to implement a modified version of “edge flow” 

proposed in Xue et al. [7]. 

Edge flow relies on the key observation that edge pixels 

usually belong to either a background edge or a reflection 

edge, but not both. For an edge pixel to belong to both the 

background and the reflection, those edges would have to 

overlap perfectly in the image, so in general, most edge 

pixels will not belong to both components since the 

alignment between layers won’t be perfect. Also, since the 

background and reflection are independent, those two 

layers move differently, so edge pixel motion-based 

separation is a robust way of distinguishing the 2 layers. 

The procedure goes as follows. First, extract the Canny 

edges of each of the images of the series. The absolute 

number of edge pixels will depend on the image 

dimensions, as well as the parameters used in Canny edge 

detection (e.g. the sigma sizes). For the datasets used here, 

with image dimensions on the order of several hundred to 

one or two thousand pixels on a side, there were usually 

too many edge pixels to use all of them in later 

computation. Therefore, in large images, I randomly 

sampled 20% of the edge pixels to keep for the next step. 

Once a (sub)set of image edge pixels is obtained, a 

sparse motion field is determined by calculating the 

Normalized Cross-Correlation (NCC) between image 

edges. Specifically, for a window centered on each of the 

edge pixels in the first image, the NCC between that 

window and all areas of the reference image is computed. 

Peaks are found in the NCC space, and the location of the 

maximum peak is recorded. To get subpixel estimates of 

the x and y components of the motion vector, the centroid 

of a very small window centered on the peak is calculated. 

The x and y coordinate offsets of the peak in NCC space 

give the x and y components of the motion vector for the 

edge pixel in the first image. This procedure is repeated 

for the whole (sub)set of edge pixels in each image. I 

ended up using the OpenCV version of NCC and mexing 

it, which provided at least an order of magnitude speed up 

over the built-in MATLAB NCC function. The output of 

this step is a set of motion vectors defined at each of the 

(sub)set of edge pixels, representing the flow of that edge 

pixel in the first image to a new location in the second 

image. This motion field is sparse in the sense that it is 

only defined at edge pixels (not every pixel of the image), 

and it is still a single motion field which has not yet been 

split into background or reflection components. 

Representative images are shown at center of Figure 2. 

Note that there are still some spurious motion vectors. 

The next step is to decompose the combined motion 

field into background and reflection motion components. 

In most common imaging scenarios, either the background 

or reflection will be stronger (the side of the reflective 

plane with stronger lighting will dominate when the two 

layers are additively combined). Therefore, either 

background or reflection edges will be dominant, and 

random selection of edge pixels will more likely choose 

pixels from that layer. Combining this observation with 

the fact that the two layers move differently gives an 

approach to separate the two motion layers. First,  
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RANSAC is used on the full set of edge pixels to fit a 

projective transformation. Depending on which layer 

dominates, this will fit a projective transformation to 

either the background or reflection. Then the remaining 

edge pixels (outliers of the RANSAC model) will mostly 

belong to the other layer or be noise. So RANSAC is used 

again to fit a projective transformation to the second layer. 

The output of this step is, for each image with respect to 

the reference image: a sparse motion field for the 

background and another sparse motion field for the 

reflection. Examples are seen at right of Figure 2. 

Some comments about the RANSAC procedure are 

useful here. First, the greedy RANSAC approach used by 

Xue et al. [7] (sequentially fitting a homography to one 

layer, then fitting a second homography to the outliers) 

works well in general, but I think it can be improved by 

fitting the two models in parallel. In this case, 4 points are 

randomly chosen to fit a homography, then another 4 

points are chosen to fit a second homography. Inliers are 

uniquely assigned to only one of the transformations, and 

a score is used to determine the goodness of the combined 

two transformation model, where the score is a function of 

the number of inliers of both transformations (e.g. the 

harmonic mean like the F-score used in binary 

classification). Finally, the joint model is valid only if the 

two individual transformations are at least as different as 

some threshold. That threshold is a function of the 

difference of the two components of the model, e.g. a 

distance metric, an information theoretic measure related 

to how independent the individual transformations are, or  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a measure of how far apart on average the transformations 

of the same point would be under the two transformations. 

This version of joint RANSAC should improve the initial 

decomposition even further, at the cost of being more 

computationally expensive because two transformations 

would need to be fit for each model. 

Another point to consider about the RANSAC 

procedure is that the actual projective transformations 

calculated for each layer are not important, they simply are 

a way of splitting the motion field vectors into a unique set 

of background and reflection pixels, but the transformation 

matrices are not used again in the algorithm pipeline.  

Finally, there are some minor steps that can be taken to 

improve the inlier to outlier ratio before employing 

RANSAC. In particular, since I ask the user to move their 

camera roughly horizontally to acquire images at different 

orientations, this means that motion vectors with large 

vertical components are probably due to spurious NCC 

matches, and are excluded. A possible minor improvement 

that would add very little burden to the user would be to 

tell the user to move their camera always from left to right, 

and exploit this by also excluding NCC matches with the 

opposite direction. These minor operations improve the 

success of RANSAC by increasing the proportion of 

inliers, which is especially important if only a subset of 

edge pixels are used in order to reduce computation time. 

The steps so far have resulted in sparse motion fields 

for the background and reflection layers of each of the 

images (the motion fields for the reference image are all 

0’s since it doesn’t move with respect to itself). Next, I  

Figure 2. Left column: Input images. Center column: Motion field vectors made from NCC on a random 

sample of edge pixels. Right column: Background (dark blue) and reflection (red) motion field components. 
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interpolated the sparse motion fields using bilinear 

interpolation to get dense motion fields. The set of motion 

fields for all index t background images, *  
 +, and the set 

of motion fields for the index t reflection layers, *  
 +, are 

saved for the final optimization step. 

The last ingredient we need is an initial decomposition 

of the reference image into a background image and a 

reflection image. This is achieved by recalling that we 

assumed the reference image is an additive combination of 

a background image and a reflection image. Szeliski et al.  

[6] estimate the background image by taking the stack-

wise minimum of the background aligned images. In other 

words, after warping each image into alignment with the 

reference image, for every pixel, take the minimum value 

over the aligned stack of images to create a new image 

which is the initial background estimate. In practice, I 

found that this worked fine, but occasionally the median 

over the image stack looked better even though there isn’t 

as good theoretical justification. In particular, using the 

median produces a visually better initial background 

estimate than the minimum when the reflection layer has 

dark regions. If the minimum is used, those dark reflection 

layers can be repeated multiple times across the estimated 

image. The initial estimate of the reflection image follows 

directly by subtracting the background estimate from the 

reference image. So, the relevant set of equations is: 

 

 ̂     ( 
 ) 

                                 ̂     ̂                                    (2) 

 

where the hat accents denote initial estimates, I is the 

reference input image., and the minimum is understood to 

be elementwise across the stack of images. We know have 

all of the required pieces to feed into the optimization 

problem discussed in the next section. An example of 

initial background and reflection estimates is shown in 

Figure 3. Because the reflection image is dark, the right 

side of Figure 3 also shows a contrast enhanced version. It 

is impressive that even from this initial estimate, you can 

clearly see details that were indiscernible in the original 

image, such as the coffee mugs at the lower left, or the 

large letters on the right side of the image. 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Optimization 

    Everything up to now has been to get a good initial 

solution because the next step is to solve a large, nonlinear 

optimization problem. The objective function follows 

directly from the decomposition equation (Eq. 1), and is: 

 

   
        *  

 + *  
 +
∑‖   (   ) (  

 )     (  
 )  ‖ 

 

 

 

Subject to: 

                                                                                 ( ) 
 

In other words, we need to minimize the sum of    errors 

between each index t image (  ) and the decomposition of 

the reference image into a background and reflection layer 

(   and   ). All terms here are the same as in Section 3.1. 

The reference background and reflection layers are each 

warped by warping matrices    to align with the index t 

background and reflection layers (details of the warping 

matrices will be discussed shortly). The reflection and 

background motion fields   
  and   

  are the same as 

described before: they are defined at every pixel and 

dictate how each pixel in the reference background and 

reflection layers transforms into the corresponding layer of 

the index t image. The constant   is the same alpha matte 

constant as before. The constraint is needed since   and 

the image vectors    and    all lie on [0,1]. 

    Each W matrix is a function of a motion field between 

the reference image and the index t image (  
  or   

 ), and 

is a matrix of bilinear interpolation weights. To derive the 

index t warping matrix for a given layer, I back-projected 

each pixel of the reference layer onto the index t image 

according to the dense flow field defined at that pixel 

location of the reference image. In general, the back-

projected location falls between pixels of the index t 

image, and not exactly on any pixel. Therefore, 

interpolation is required. Because I earlier interpolated the 

sparse motion fields to get dense motion fields (Section 

3.3) by using bilinear interpolation, the interpolation used 

here must be the same bilinear interpolation. A possible 

improvement would be to get a smoother motion field by 

Figure 3. Left: Initial background estimate. Note problems with blue monitor. Center: Initial reflection 

estimate. Right: since reflection is hard to see, the right is the same image but contrast adjusted. 
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using e.g. bicubic interpolation, but when tested, it 

significantly slowed the computation in Section 3.3, so 

was not used there, and therefore is not used here either. 

As an example, the     pixel of   
  is a weighted sum of the 

four pixels from    that surround the interpolated point (4 

because bilinear interpolation on a regular grid considers 

the 4 corners surrounding a given back-projected point). 

So, the      row of  (  
 ) has 4 nonzero elements, and 

element ij of W gives the contribution of pixel index j of 

the reference layer to pixel i of the index t layer. Only the 

4 corner pixels around the back-projected location have 

nonzero values in the W matrix, and those values are 

exactly the bilinear interpolation weights. One caveat is 

that if a back-projected location would be outside the 

target image, it is excluded and that row has all 0’s. Also, 

because each pixel has a single motion vector (not a 

motion vector for each individual color channel), I used 

the same warping matrix for all three color channels. 

    Since the ultimate purpose of the optimization is to get 

the best possible    and    estimates, we can temporarily 

ignore some of the other variables in the optimization 

problem of Eq. 3. Specifically, we can assume that the 

initial motion fields are approximately correct and treat 

them as constants by holding their values fixed. This 

significantly simplifies the optimization problem and 

allows us to move forward in solving it for    and   . If 

desired, the motion fields could be reconsidered after 

improving the estimates of    and    (see end of this 

section and also Section 5). 

    Even though all the terms are now understood, a 

complication with the above formulation (Eq. 3) is that 

there are products of the variables we are trying to solve 

for (the terms containing       and       are products and 

so are nonlinear). So, we can linearize the system of 

equations to simplify it. Filling in some gaps in the 

derivation of [8], I approximate the product      ̂  
 ̂   ̂ ̂,  where the hat terms are close in value to the true 

non-hat terms. Specifically, I use       ̂   ̂    ̂ ̂    

and same for the B subscript term (background). For this 

problem, the hat terms are just the values obtained from 

the previous iteration of the algorithm, so as long as the 

initial guess is not too bad, then the hat terms are close to 

the true values and the approximation is valid. In rewriting 

the objective function, there end up being a few terms that 

are constants (the gray highlighted terms below), so we 

can remove them since they won’t affect where the cost is 

minimized: 

 

  ∑ ‖     
 [(   ) ̂  (   ̂)   (   ̂) ̂ ]   

           
 [  ̂   ̂    ̂ ̂ ]‖  

 

     ∑ ‖   [  
  ̂  (  

  ̂ )  ((   ̂)  
 )  ]   

        [(  
  ̂ )  ( ̂  

 )  ]‖  

 

     ∑ ‖   (  
  ̂    

  ̂ )  ((   ̂)  
 )    

         ( ̂  
 )  ‖                                                                (4) 

 

where I’ve used the shorthand notation   
  to mean 

 (  
 ). Now define       and similarly,  ̂     ̂. 

Every term with a hat accent in Eq. 4 is just a constant 

obtained from the previous iteration, so the reformulated 

cost function can now be put in the form Ax-b as follows: 
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 ( ) 

where the superscripts denote the index of the image (1 to 

N, where N is the number of images in the series), and the 

coloring scheme emphasizes that there are 3 color 

channels and the warping matrix for each color channel is 

the same for a given image pair and reflection/background 

layer. Note that the vector x in Eq. 5 above contains the 

single constant   in addition to the two flattened image 

vectors    and   . This is because we don’t know its value 

a priori, although I do assume it’s constant across the 

whole image instead of being defined differently at each 

pixel since materials like glass and plastic reflect light 

approximately homogenously under most conditions [7]. I 

set it to .5 to start with, which I think is a reasonable 

approach. The vector b is the flattened vector of all 3 color 

channels of every index t image in the stack. Note that the 

A matrix is very big, but is extremely sparse, having at 

most 9 nonzero elements per row. 

    Now that the system of equations is in a convenient 

form, we need to decide what   -norm to minimize. 

Initially, I tried L2, enforcing the constraints of Eq. 3 by 

using MATLAB’s built-in “lsqlin” function. However, 

unsurprisingly, the L2 norm proved not to be robust and 

gave poor results. Next, I decided to minimize the L1 

norm as in Xue et al. [7] since it is more robust. I used 

Iteratively Reweighted Least Squares (IRLS), which can 

minimize cost functions of various   -norms, including 

p=1. It does this iteratively by solving the least squares 

problem and then updating the weights based on the 

residuals [5], and allows us to take advantage of the good 

initial estimates arduously obtained in Section 3.3. 

    To enforce the [0,1] upper and lower bounds on  ,   , 

and   , I followed the discussion in example 4.7.6 of Boyd 

and Vandenberghe [10] and added a penalty constraint on 

each as follows: 

 

                    ,    (   )
       (     ) -                    ( ) 
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where x represents the three quantities  ,   , and   . It is 

zero if the term is within [0,1], and large otherwise. For  , 

the penalty term is a scalar, whereas for    and    the 

penalty is a vector of length 3*Npixels since it applies to 

all 3 color channels of each pixel in the image. Initially, I 

decided to gradually ramp up the penalty rather than keep 

it fixed, as this has stability benefits according to [9]. So, 

   represents the penalty constant at iteration k, and I 

started it at 10e1 and multiplied it by 10 after each 

iteration. Ultimately, however, I decided not to spend time 

on hyperparameter tuning to figure out the best    ramp-

up schedule, so I implemented a very large fixed cost by 

setting   =100000 for every iteration k. 

    Finally, the optimization can be performed as follows. 

Using the linearized objective function from Eq. 5 with an 

L1-norm and the added constraints of Eq. 6, IRLS is 

performed for several iterations to get a refined estimate of 

the background and reflection layers of the reference 

image,    and   . 

    An interesting different approach used in Xue et al. is to 

use an alternating method where after getting updated   , 

  , and   estimates, those values are held fixed and the 

motion fields are refined. This alternating process could be 

repeated several times, refining all estimated terms to get 

an improved final solution. However, I didn’t implement 

this two tier approach due to time and complexity 

constraints, but the single round of IRLS on its own 

moderately improved the initial results. The results in 

Section 4 show a final reflection layer with significant 

detail that is practically invisible in the original input 

series. 

    Another potential improvement could come in the form 

of additional constraints. Xue et al. imposed such 

constraints as sparsity on image gradients, sparsity on 

motion field vectors, and an edge ownership prior 

(following the logic that an edge usually does not belong 

to both the background and reflection).  

    I also thought of other potentially useful constraints to 

impose but ultimately did not implement them. For 

instance, vector calculus properties of the motion fields 

are constrained by the physics of how images can 

transform when the background and reflection layers are 

assumed to be static. Some possible constraints that 

exploit this are mentioned in Section 5 when discussing 

future improvements. 

 

4. EXPERIMENTAL RESULTS 

The final results are encouraging and show the potential 

of this approach to recover a reflection layer from a series 

of input images to provide useful insights. 

The image series presented in this paper are a 

combination of my own images acquired in an office 

environment with other image series acquired by Xue et 

al. I used a Samsung Galaxy S4 for my photographs. 

The computing environment used was a moderately 

high end Windows 7 PC. Unfortunately, due to high 

computational loads and the prototype, non-optimized 

code written in MATLAB, a typical series of images took 

over 40 minutes to process and sometimes had memory 

management difficulties. This computing time could be 

drastically reduced by improving the code structure, using 

a lower level language, and using different hardware. 

The top row of Figure 4 shows a reference input image 

on the left (the 3
rd

 of a series of 5 images), and the final 

recovered reflection output by the algorithm on the right. 

The bottom row is the same but for a different input image 

series. The algorithm performs reasonably well on the top 

series of images. This is probably for a few reasons. First, 

the images are of decent quality (e.g. not blurry). Second, 

the motion between sequential images is almost purely 

translational (confirmed by the camera matrix that 

RANSAC estimated) which may make it easier to separate 

the motion fields of the background and reflection. Also, 

there didn’t seem to be any saturated regions or specular 

reflection (difficulties with these scenarios are discussed 

soon). The algorithm is more challenged by the series 

shown in the bottom row. There was some blur in some of 

the images of the series since I acquired this sequence 

indoors with less lighting, leading to inaccuracies in the 

edge flow motion fields, causing the alignment between 

sequential images to suffer, leading to reduced quality 

results. Also, changes in illumination from specular 

reflection on the potato chip bags confused NCC 

somewhat, causing difficulties for edge flow. Overall, 

though, the algorithm did help somewhat to extract the 

reflection layer. In particular, the gray and red striped 

shirt, the hand, and some tables become very clear. 

This implementation does not perform nearly as well as 

Xue et al. In the initial edge flow step, due to resource 

constraints, I had to randomly sample a small fraction of 

all edge pixels, leading to sparser motion fields that 

required more interpolation, causing alignment to degrade 

somewhat. Also significant is the fact that my 

optimization does not recursively alternate between 

solving for the decomposed layers and then the motion 

fields as in Xue et al. Instead, my optimization only 

refines the estimates for the decomposed layers. 

5. CONCLUSION 

I demonstrated a MATLAB pipeline for ingesting a 

series of images taken at slightly different viewpoints and 

outputting separated background and reflection images for 

a reference input image. The algorithm takes advantage of 

motion differences of the background and reflection layers 

to get good initial estimates of the decomposition, and 

then solves a nonlinear optimization problem to refine 

those estimates. 

There are several issues and assumptions that future  
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work could address. First, there are aspects of the image 

acquisition process that could be improved by being made 

more robust. In particular, if the background and reflection 

layers are not static but instead contain moving elements 

like cars or people or trees swaying noticeably in strong 

wind, then sequential images have motion fields that 

contain small scale local irregularities, e.g. due to a 

flexible tree branch being bent significantly differently 

across images. This worsens the alignment of the image 

stack and degrades the quality of the initial layer 

decomposition since it depends on pixel-wise operations 

and requires that pixels be reasonably well aligned. Also, 

specular reflection can sometimes be hard to deal with. 

Since specular reflection depends on the viewing 

orientation, when the camera is moved across the scene 

the pattern of specular reflection can sometimes change 

drastically.  This also leads to local irregularities in the 

warping motion fields. Finally, saturated image regions 

pose problems because if a pixel region is clipped at a 

maximum value, you cannot recover the additive 

combination of two layers that produced it. Therefore, 

very bright lights may pose problems, and saturation 

should be avoided. 

Second, in the initial decomposition of the image into a  

background and reflection layer, Xue et al. used a greedy 

RANSAC to sequentially fit a transformation to the 

background edge pixel inliers, and then a second 

transformation for the reflection layer. As discussed in  

 

 

 

 

 

Section 3, my idea of using RANSAC to fit the 

transformations in parallel should help the quality of the 

initial decomposition at the expense of increased 

computational complexity. 

Third, the choice of appropriate constraints is of 

significant importance in any optimization problem. In 

addition to those constraints used in Xue et al., I think a 

potentially helpful set of constraints would view the 

motion field in terms of a general vector field and 

incorporate characteristics of the divergence and curl. 

Because the user is told how to move their camera across 

the scene (roughly horizontally over a few centimeters – 

inches), the vector field should have certain properties. For 

instance, unless there is a large zoom between images 

(which there wouldn’t be if the user is following 

instructions) then there shouldn’t be any large radial 

divergence. In other words, there shouldn’t be source or 

sink points where the vectors diverge or converge radially. 

Similarly, even though there will likely be some degree of 

image-wide rotation due to the user tilting the camera, 

there shouldn’t be small regions with large curl. Certain 

properties as these could be incorporated to smooth out the 

motion field and make it more realistic, thus improving the 

final result. 

Also in the optimizations step, some possible 

improvements to IRLS stability are to figure out a good 

schedule for ramping up the penalty (lambda), and also 

using a similar adjustment on the value of p: you could 

Figure 4. Left: Example original reference input images. Right: The reflection layers recovered after running 

through the algorithm. Note that the lower right image has been contrast adjusted for visibility. Note the overall 

good performance on the top image, and difficulties with the bottom image. However, visibility of some objects 

(hand, tables, plant, windows) are improved. 
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also ramp down the value of p in the p-norm value. For 

example, if using the L1-norm, you could start at p=2, 

then gradually decrement it toward 1 in small steps. 

According to [9], this is often helpful. 

Finally, the likely biggest aid to performance would be 

to carry out the alternating optimization routine of Xue et 

al. where the motion fields and layer decompositions are 

alternately refined (instead of the approach here of just 

refining the layer decomposition a single time). 

One last aspect that could be addressed is to 

accommodate reflections from non-planar reflecting 

elements. In the results presented here, the reflective 

element was a planar surface like a window or layer of 

plastic. More complex surfaces, like the curved side 

window of a car, also reflect light, but as the reflection 

moves across the surface the reflection is deformed as the 

local contour changes the geometry of the reflected light. 

 

 

Code and sample data: 

https://github.com/wasd12345/FinalProject 
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