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Figure 1: Frameworks for 3D Parsing of Large-Scale Indoor Point Clouds into their Space-Semantics. Exploring two different
network architectures: (1) A fully 3D CNN receives as an input a 3D voxelized sliding cube with binary occupancy and performs a per
voxel multi-class classification into 5 semantic labels. (2) A fully 3D CNN receives as an input a voxelized enclosed space with binary
occupancy and performs a per voxel multi-class classification into 10 semantic labels. The result in both cases is a class prediction per
output voxel.

Abstract

Point clouds are comprehensive and detailed 3D repre-
sentations for indoor spaces, however they contain no high-
level information of the depicted area. In contrast to previ-
ous methods that have mostly focused on more traditional
pipelines, I propose a Fully 3D Convolutional Neural Net-
work for the semantic parsing of such data. In this pa-
per I explore different network architectures and perform
per voxel multi-class classification of the input into its se-
mantics. Two main inputs are explored: (a) a 3D sliding
cube on the large-scale point cloud and (b) a consistently
aligned and normalized enclosed space of the point cloud
(i.e. rooms, hallways, etc.). Both inputs are voxelized with
values equal to their binary occupancy. The network out-
puts a class prediction per voxel. I provide experiments and
results on the different architectures and used the Stanford
Large-Scale 3D Indoor Dataset for their evaluation.

1. Introduction

We spend 90% of our time indoors [3] and for systems to
operate in this environment (e.g. assist us in daily activities)

they need to have an understanding of it. 3D depth sensors
are quickly becoming standard practice and have enabled
the representation of our surroundings as whole scenes in
an ever increasing number of point clouds. Although such
data is becoming more and more available, it is not directly
useful since it does not contain high-level information of the
depicted elements, as e.g. space-semantics. Such an under-
standing would be beneficial to many applications related to
augmented reality, robotics, graphics, the construction in-
dustry, etc.

Previous work has focused on extracting this informa-
tion from point cloud data by following semantic parsing
approaches (e.g. segmentation or object detection). How-
ever the great majority of them resorts to more tradi-
tional pipelines [26], where hand-engineered features are
extracted and fed into an off-the-shelf classifier such as Sup-
port Vector Machines (SVMs). The past few years these
methods are gradually being abandoned in favor of Deep
Learning ones that produce superior results by learning fea-
tures and classifiers in a joint manner. Convolutional Neural
Networks (CNNs) in specific have made great progress and
are widely used especially in the case of 2D data. Neverthe-
less, the area of CNNs on 3D data, especially for the task
of parsing, is significantly less explored to its 2D counter-
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parts [18].
Most work in the context of 2.5D and 3D using

ConvNets is targeting other applications like depth from
RGB [7], camera registration [13], and human action recog-
nition [11]. This has limited the amount of produced knowl-
edge and available implementations, pretrained models and
training data for 3D related tasks. Alternative approaches to
the problem of detecting 3D space semantics in large-scale
indoor point clouds could be formed by posing the problem
as 2D or 2.5D. Although these could benefit from pretrained
models, existing architecture and other 2D or 2.5D datasets
for training (e.g. [27] and [22] respectively), they would
not take advantage of the rich spatial information provided
in 3D point clouds, which can help disambiguate problem-
atic cases. It has been shown that 3D parsing methods can
perform better than their 2.5D counterparts [5].

I propose instead a framework for the task of parsing 3D
point clouds of large scale indoor areas into their space-
semantics using an end-to end 3D CNN approach. In a
higher level, the network receives as an input a voxelized
3D portion of a large-scale point cloud 1 and through a se-
ries of fully 3D convolutional layers it performs multi-class
classification on the voxel level, and outputs the predicted
class for each voxel. The network classifies each input voxel
into 10 semantic labels2 related to structural and building
elements, clutter and empty space.v

2. Related Work
Traditional Approaches: Semantic RGB-D and 3D

segmentation have been the topic of a large number of pa-
pers and have lead to a considerable leap in this area dur-
ing the past few years. For instance [29, 24, 22] propose a
RGB-D segmentation method using a set of heuristics for
leveraging 3D geometric priors. [21] developed a search-
classify based method for segmentation and modeling of in-
door spaces. These are different from the proposed method
as they mostly address the problem in a small scale. A few
methods attempted using multiple depth views [28, 9], but
they remain limited to small scale. Unlike approaches such
as [26], [15], my method learns to extract features and clas-
sify voxels from the raw volumetric data. Vote3D [31] pro-
poses an effective voting scheme to the sliding window ap-
proach on 3D data to address their sparse nature.

2.5D Convolutional Neural Networks: A subsequent
extension to RGB-D data followed the success of 2D CNNs
([17], [30], [4], [10]). However, most work handles the
depth data as an additional channel and hence it does not
make full use of the geometric information inherent in the
3D data. [8] proposes an encoding that makes better use

1The scale of the point cloud can range from a whole building to a floor,
or any large portion of the former.

2Due to memory restrictions some of the presented experiments use
either 5 labels. For more details see 4.3.

of the 3D information in the depth, but remains 2D-centric.
The presented work differs from these in that I employ a
fully volumetric representation, resulting in a richer and
more discriminative representation of the environment.

3D Convolutional Neural Networks: 3D convolutions
have been successfully used in video analysis ([11], [12])
where time acts as the third dimension. Although on an al-
gorithmic level such work is similar to the proposed one, the
data is of very different nature. In the RGB-D domain, [16]
uses an unsupervised volumetric feature learning approach
as part of a pipeline to detect indoor objects. [32] proposes
a generative 3D convolutional model of shape and apply it
to RGB-D object recognition, among other tasks. VoxNet
[20] presents a 3D CNN architecture that can be applied
to create fast object class detectors for 3D point cloud and
RGB-D data. This work has similarities, however among
the differences: it uses a different input representation, it is
not performing voxel-to-voxel classification and since the
task is detection it uses fully connected layers.

3. Method
The proposed method receives as an input a voxelized

3D portion of the point cloud and through a series of 3D
convolutions results to a class label prediction for each
voxel. I gradually explored 3 different approaches:

• 3D Sliding Window: In this network, the input is a
voxelized 3D cube of constant size with binary oc-
cupancy that is sled over the large-scale point cloud.
When fed to the network, it passes through a series of
3D Fully Convolutional layers which result to a per-
voxel multi-class classification (see Figure 1-Left).

• Adding Context: The previous approach does not
provide any context about the content of the sliding
cube in relation to the rest of the point cloud. How-
ever, context can strongly influence inference. To this
end, I provide the global position of the sliding cube in
the point cloud as a second input to the network, fol-
lowing a similar approach to [6] (see Figure 1-Right).

• Enclosed Spaces: The use of a sliding cube with con-
stant size cannot account for the different sizes that el-
ements in the point cloud appear with. Although for el-
ements that belong to the category of things (e.g. chairs
or tables) one can learn a dictionary of shapes, for el-
ements that can be categorized as stuff (e.g. walls or
ceiling) it is harder to identify repetitive shape and size
patterns. To address this issue I explored an approach
similar to [5] to take advantage of the repetitive layout
configuration that indoor enclosed spaces present (e.g.
elements are placed in a consistent way inside a room
with respect to the entrance location). The semantics
in such spaces remain intact (e.g. the wall, ceiling and
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Figure 1. 3D Convolutional Neural Network Architecture. Left:
3D Sliding Window or Enclosed Space.Right: Adding Contextual
Information.

other elements appear in the data as a whole). These
spaces are voxelized, consistently aligned and normal-
ized in a unit cube before they are fed into a 3D Fully
Convolutional Neural network. The task is again that
of per voxel classification (see Figure 1-Right).

In the remainder of this section I will explain the main net-
work architecture and offer details about each of the above-
mentioned approaches.

3.1. Input

The input to the method is a voxelized cube that repre-
sents the underlying spatial data with binary occupancy.

3D Sliding Window: Here the input is a 3D sliding cube
of size 10x10x10 voxels. The stride of the cube on the point
cloud in all 3 dimensions is 10 voxels, which means that
there is no overlap between spatially consecutive cubes 3

The size of the input is heuristically defined and takes into
consideration the voxel resolution and space-structure. In
specific, I targeted to capture the representation of walls
and room borders in point clouds as an empty space in be-
tween two surfaces. To reflect that in the voxelized space
we chose a voxel resolution of 5x5x5cm, since the standard
minimum wall width is 7-10cm. As a result, a sliding cube
of 10x10x10 voxels corresponds to 50x50x50cm in space,
which can encompass both the minimum wall width and a
gap between rooms larger than the standard wall size (ei-
ther due to noise or occlusion of the wall surfaces by e.g. a
bookcase in highly cluttered scenes).

Adding Context: In this approach a second input to the
voxelized sliding cube is fed to the network, which is the
global location of the cube with respect to the whole point
cloud. This is represented by its x, y, z coordinates from a
defined starting point (one of the point cloud’s corners) and
forms a vector of size 3.

Enclosed Spaces: As mentioned above the input here
is an enclosed space. One can segment the point cloud
into such spaces with a variety of different approaches ([5],
[23]). Once these spaces are identified, they are projected to
a canonical reference coordinate system. In this reference
system all spaces are systematically aligned with respect
to their entrance location and subsequently normalized in
a unit cube. Before they are fed to the network, they are
voxelized with binary occupancy values. Due to memory
restrictions, the resolution of the voxelization was selected
as 0.2x0.2x0.2, thus forming an input of size 50x50x50
voxels.

3.2. Fully Convolution 3D Neural Network

The input is then fed into a 3D Fully Convolutional Neu-
ral Network. The choice of not including any Fully Con-
nected layer is based on the task in hand; since we are
performing a voxel to voxel operation, retaining the spa-
tial information throughout the network is considered es-
sential. The network comprises of the following repetitive
unit: a 3D Convolutional Layer (3D Conv) followed by a
Leaky Rectified Linear Unit (ReLU) [19] (apart from the
last layer). The choice of Leaky ReLU over e.g. ReLU is

3The size of the stride as well as other network details decisions have
been largely driven by memory limitations. An overlapping stride would
allow to infer the class label of each voxel not only based on its neighbors
in one cube location, but also by taking into account a larger area around
it.
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Table 1. Details of 3D Fully Convolutional Neural Network
Approach 3D Sliding Cube Enclosed Space

Input
Size: Nx10x10x10 Nx50x50x50

Number of Channels: 1 1
Stride: 10x10x10

-
3D Conv1

Number of Filters: 32
Filter Size: 5x5x5

Stride: 1x1x1
Padding: 2x2x2

Output Size: Nx32x10x10x10 Nx32x50x50x50
3D Conv2 and 3D Conv3

Number of Filters: 64
Filter Size: 5x5x5

Stride: 1x1x1
Padding: 2x2x2

Output Size: Nx64x10x10x10 Nx64x50x50x50
3D Conv4 and 3D Conv5

Number of Filters: 128
Filter Size: 5x5x5

Stride: 1x1x1
Padding: 2x2x2

Output Size: Nx128x10x10x10 Nx128x50x50x50
3D Conv6

Number of Filters: 5 10
Filter Size: 5x5x5

Stride: 1x1x1
Padding: 2x2x2

Output Size: Nx5x10x10x10 Nx10x50x50x50
Output

Size: Nx5x10x10x10 Nx10x50x50x50

made to avoid saturated neurons. Mathematically, we have
y = xi if xi≥0, else y =xi/ai, where ai is a fixed param-
eter in the range (1,∞). I followed the original paper’s
configuration and set ai to 100. For this experiment I used
6 layers 4, which details are tabulated in Table 1 1.

Adding Context: In this approach we use a double input
to the network and follow a similar architecture to the one
proposed in [6]. The voxelized cube passes first through
2 3D Convolutional layers to encode spatial information
and then gets concatenated with the global position. The
concatenated vector passes first through a Fully Connected
layer and subsequently through layers of deconvolution to
acquire again its spatial configuration. For more details see
Figure 1.

3.3. Multi-class Voxel Classification

At the end of the final 3D Convolutional Layer the net-
work performs multi-class Softmax classification and will
predict the scores of each class label per voxel: fj(z) =
ezj/

∑
k e

zk , where z is each voxel, j is the class evaluated
and k represents all classes.

4The number of layers and filters in the network was a direct result of
the memory limitations.

4. Experiments

4.1. Dataset

For the evaluation I used the Stanford Large-Scale 3D
Indoor Dataset [5] which comprises of six large indoor
parts in three buildings of mainly educational and office
use (see Figure 2). The entire point clouds are automati-
cally generated without any manual intervention as the out-
put of the Matterport camera ([1]). Each area covers ap-
proximately 965, 1100, 450, 870, 1700 and 935 square me-
ters (total of 6020 square meters). Conference rooms, per-
sonal offices, auditoriums, restrooms, open spaces, lobbies,
stairways and hallways are commonly found. The areas
show diverse properties in architectural style and appear-
ance. The dataset has been annotated for 12 semantic el-
ements which pertain in the categories of structural build-
ing elements (ceiling, floor, wall, beam, column, window
and door) and commonly found furniture (table, chair, sofa,
bookcase and board). A clutter class exists as well for all
other elements. The dataset was slpit into training, vali-
dation and testing as follows: 4 areas for training, one for
validation and one for testing. In this way I ensure that the
network sees areas from different buildings during training
and testing. The same data split was used in all approaches.

4.1.1 Preprocessing

3D Sliding Cube: The raw colored point clouds were vox-
elized in a grid of 5x5x5cm (for more details on the choice
of grid resolution see Section 3.1). After voxelization I as-
signed binary occupancy to all voxels as 0 if the voxel is
empty, 1 if occupied. The ground truth labels were gener-
ated by finding the mode of all point labels per voxel. Due
to memory restrictions, the number of classes was limited
to 5: walls, floor, ceiling, other and empty space.

Enclosed Spaces: Similarly, the aligned point clouds
that correspond to each enclosed space were normalized in
a 0.2x0.2x0.2 grid. The generated voxels was the populated
with binary occupancy values. The ground truth labels were
generated as in the previous case. Due to memory restric-
tions, the number of classes was limited to 10: walls, floor,
ceiling, door, beam, column, chair, table, other, and empty
space.

4.2. Implementation

I performed three different experiments, one for each in-
put approach. The implementation details are:

• I implemented the framework in Python3 using the
deep learning Python library Theano [2].

• All data preprocessing steps were implemented in
Python3 as well.
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Figure 2. Stanford Large-Scale 3D Indoor Dataset [5]: I split the dataset into training (4 areas), validation (1 area) and testing sets (1
area). The raw point clouds are shown in the first row and the voxelized ground truth ones in the second row.

• 3D Sliding Cube: After generating the input, I no-
ticed that the amount of sliding cubes that contained
only empty voxels was greatly larger than the sliding
cubes that contained at least one voxel of the rest of the
classes. To counterpoise the skewness of the distribu-
tion I removed part of the empty sliding cubes.

• I shuffled the data before training since without it
the learning process was getting compromised. The
network was receiving sequentially inputs of similar
classes in the first case due to the sliding nature of the
input and the semantic consistency of the configuration
of spaces and in the second due to spaces with similar
functions.

• I used the Adam [14] adaptive learning rate method,
with parameters: 0.9, 0.99, and 1e− 08.

• The size of the batch per iteration was limited to 500
sliding cubes for the first and second approaches (slid-
ing cube) and 4 for the third (enclosed space) due to
memory restrictions.

• I used as metric the mean accuracy of prediction per
voxel.

4.3. Results

3D Sliding Cube: The initial idea towards this problem
was to use a 3D sliding window approach. The main moti-
vation behind it was the fact that the input size to the net-
work and the size of the voxelization grid could remain con-
stant no matter the size of the point cloud (buildings have
different sizes). Previous experience with this framework in
traditional pipelines has been shown successful. However,

although substantial effort was put to tune the hyper param-
eters, the network did not learn. I identify four main factors
as the principal reasons: (a) memory limitations did not al-
low to explore a number of hyper parameters such as using
all available classes in the dataset, or different sliding cube
sizes. In both cases the resulting matrices were too large and
the GPU would fail to handle them; (b) limiting the number
of classes forced to place a great number of elements under
the other class, which as a result created a class with low
discriminative power due to the resulting amorphous shape
and geometry, but highly represented in the dataset due to
the number of voxels falling in this category; (c) using a
generic constant size of the cube did not permit to capture
the geometry of other elements; and (d) there was a lack
of context regarding the content of the voxelized input with
respect to the rest of the point cloud. An example of the
training loss can be seen in Figure 3.

Adding Context: Following the previous failed attempt
to learn space-semantics, my next step was to add global
context as a second input to the network. Following the ar-
chitecture described above, the network continued not to be
able to learn. Once again memory limitations restricted the
number of layers, number of filters, and other network pa-
rameters. The training loss of this network is marked with
green line in Figure 4. Although the results are not as ex-
pected (see Figure 5), it did perform better than the previ-
ous network, which demonstrates that the global informa-
tion was helpful, however not powerful enough to solve the
ill-posed problem the sliding window approach created. I
also experimented with the same architecture as that pro-
posed in [6], however the results did not differ.

Enclosed Spaces: For the enclosed spaces approach I
experimented with 5 and 10 semantic classes. In this case

5



Figure 3. Training Loss of 3D Sliding Cube Approach.

Figure 4. Training Loss.

Table 2. Mean testing accuracy of different apporaches
Approach Sliding Cube+Context Enclosed Space

Mean Acccuracy 0.05 0.60

the network was able to learn (see Figure 4), lines blue and
red). Due to the smaller amount of training data than in
the other experiments, I reduced the number of iterations to
avoid over-fitting. In both cases the network performance
shows similarities, although the behavior when using 10
classes appears slightly more stable (Figure 5).

The mean accuracy of the of the networks is also pre-
sented in Table 2.

5. Conclusion
During this project I faced a lot of challenges related to

the size of the data and the memory limitations. These fac-
tors hindered the process in a great degree. From the exper-

Figure 5. Testing Accuracy.

iments it became obvious that information about the context
enabled the network to learn, from adding the global loca-
tion of the sliding cube to providing whole space semantics.
The final results of the enclosed space approach did boost
the accuracy, however there are aspects of it that require im-
provement. First of all it assumes that one is able to identify
rooms and consistently align them in a canonical reference
coordinate system. Second, by normalizing spaces of dif-
ferent sizes into a unit cube, the objects in the scene un-
dergo distortion. Although this step allows to convert stuff
into things since now their dimensions are more consistent
among different spaces, it compromises objects with consis-
tent dimensions to arbitrary ones, which makes the learning
process more difficult. Third, the grid resolution of the vox-
elization that was used was quite coarse, especially in the
case of larger spaces.

A more sophisticated method needs to be used in or-
der to achieve an end-to-end 3D Fully Convolutional ap-
proach for the problem of understanding space semantics,
by e.g. combining segmentation, object proposal [25] and
object detection approaches. This would allow to address
both amorphous and not objects. Another interesting aspect
would be to incorporate RGB information and observe how
it affects the performance. However, this would essentially
mean adding 3 more channels to each input and thus going
back to the issue of memory limitations.
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