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Abstract

We proposed an approach for human pose estimation over
monocular depth images. We augment the data by sam-
pling from existing dataset and generate synthesized im-
ages. The generated dataset covers a more continuous pose
space than the existing one. We use the generated dataset
to train a multi-pathway neural network. We also intro-
duced an orientation and translation invariant embedding
for poses within the network.

1. Introduction

Pose estimation of human has been recognized as an
important vision task by artificial intelligence community.
As human poses provide direct indications of their actions,
correctly evaluating human pose from a single image
provides solid information for various vision and learning
tasks including detection, tracking, scene analysis and
social-interaction understanding, etc.

Pose estimation has been explored for several years.
Recent researches show special interests on neural-network
based approaches, which turns out to have supreme perfor-
mance on other vision tasks. For monocular image pose
estimation, most previous works refer to RGB data [14]
[10]. The community is also working towards large-scale
dataset incorporating with depth images. Especially for
pose datasets, Human 3.6M [12], CDC4CV[2] and CMU
MOCAP [4] become available recently.

We are strongly convinced that depth images provide
more abundant information than RGB images. In particular
for pose estimation, depth information helps us to better
address issues like 3D symmetry. To better understand
depth images, we propose to apply a neural-network based
algorithm which evaluates human poses with only depth
images.

2. Approach

2.1. Previous Works

Pose data with depth image and MOCAP labelings become
available in recent years. [2] builds a dataset which is
limited in scale (692 images). [4] and [12] has significantly
larger scale. They contain poses collected under various
scenes. However, human skeleton has a number of freedom
joints. The depth images of poses are also subject to
variances in scales, rotations, translations, and background
noises. It turns out that currently available pose datasets
with depth images are not abundant enough [7] to cover the
whole space of available poses. [7] uses synthesized depth
images to reinforce the training process. [9] discussed
a Bayesian-Network based approach that learns prior
distribution from real pose samples, which provides us the
potential to sample a large-scale data set that covers the
whole space of available poses.

Depth image/video based pose estimation is an attrac-
tive area where few previous work [7] is available.
Nevertheless, there are various work in related fields. For
pose estimation on monocular RGB images, [10] explores
a multi-pathway CNN approach for pose estimation; [14]
introduces a hourglass architecture. For depth related task,
[17] proposed a multi-pathway CNN for detection task over
RGB-D images; this work includes 3D convolution layer
for the pathway associated with depth images.

To enhance our network architecture, we are interested
in looking at the pose space. Existing works including
[10] and [14] trains the CNN that maps images to poses
directly. In other words, the final layer of CNN in [10]
are predicted 3D positions of all joints; and similarly, the
final layer of [14] is the heatmap of 2D positions of joints.
[16] and [11] discussed metric learning approaches which
trains a CNN that embeds images to a space specifically
designed for target labels (shape[11], class [16], etc.). [5]
applies a metric learning approach on monocular image
pose estimation task; it trained a CNN that clusters similar
poses using contrastive loss [13].
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2.2. Problem Statement and Methods

In our project, we would like to address the problem of
human pose estimation over monocular depth images. Our
proposed approach intend to combine the advantages of the
previous works. We would like to utilize the recognized
power of deep CNN to achieve this task. We will augment
the existing dataset using synthesized data and use the
large-scale data to train a multi-pathway deep CNN. We
also give a closer look to metric learning approaches. We
propose an embedding of 3D poses which allows us to train
the CNN in a translation and rotation invariant way.

3. Implementation Details

3.1. Overview

Our project include two parts. First, we propose to augment
the existing datasets using synthesized data so that poses in
the training set covers the pose space better. Specifically,
we will apply a Bayesian-Network based approach which
learns the skeleton structure and then use KDE to sample
from prior probability. Second, we propose to apply a
neural-network approach for pose-estimation over a single
depth image. Our neural-network will embed depth image
to a pose space invariant to translation and rotation. Given
that we have only about 6 weeks, the major focus of our
project will be the first part. As a part a larger project, a
portion of our tools refer to some recent works [6] on the
same topic.

3.2. Datasets

For this project, we refer to a human pose dataset, HUMAN
3.6M [12]. The dataset collects 3.6 million 3D human poses
and corresponding images from a total of 11 professional
actors, under 17 different scenarios.

Pose information is collected by videos. The record-
ing system contains four RGB cameras, one Time-of-flight
(ToF) cameras, and a 10-camera 3D motion capture system.
We will use ToF data and motion capture data for our
project.

ToF data provides depth images. As motion caputure
system record the accurate 3D position of each joint, the
data will be used as ground-truth labelings for poses.

3.3. Data Synthesizing

Our synthesized data is generated using parameters learned
from real dataset. Specifically, we would like to generate
new pairs of depth images and 3D joint labelings with
synthesized data.

Although real dataset might not cover combinations
of all available poses, it provides information on ”partial”
poses. For example, real dataset might not have combi-
nations of all pairs of arm positions AND leg positions;
nevertheless it might be sufficient to cover individually all
arm positions OR let positions. We propose an approach
that will retrieve relatively independent parameters from
real data, and generate synthesized data from combinations
of independent parameters.

It is worth mentioning that the motion of human body
can be viewed as a combination of motions of highly inde-
pendent joints. Intuitively, human poses can be generated
from a set of relatively independent random variables. We
can learn prior probability of those variables from real data.

Nevertheless, determining variables to be learned is a
crucial issue. One naive way is to assume that all joints are
constrained by a given skeleton structure. The advantage
of this assumption is that joints used in motion camera are
closely mapped to biological joints. However, the skeleton
is joint-specific. Which require us to provide different
skeletons for different sets of joints. As different dataset
ususally use different joints for motion capture, it makes
this approach poorly generalizable and strongly biased.

Therefore, we would like to learn the skeleton infor-
mation over the real dataset. We follow the method
proposed in [9]. The skeleton is computed as a maximum
spanning tree over the weighted completed graph of all
joints, where edge weights are given by pairwise mutual
information values between joints.

Specifically, we denote n the number of joints and N
the number of samples. For i ≤ N and j ≤ n, we denote
x
(i)
j the 3D position of the jth joint of the ith sample. We

define a graph G(V,E) with n vertices corresponding to
n joints. For any j and k, the edge weight is the mutual
information of vertices vj and vk, given by

MI(vj , vk) = H(vj) +H(vk)−H(vj , vk),

where H denotes the entropy of the distribution of posi-
tion of joints. [9] and [8] discussed estimating the en-
tropy using nearest-neighbour approach. For x(i)j , denote

d
(i)
j = min

x
(k)
j ,k 6=i

‖x(i)j − x
(k)
j ‖ the distance of the near-

est neighbour of x(i)j . The entropy of the jth joint, up to
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Figure 1. The 2-pathway CNN Architecture Proposed by [10]. The architecture contains 7 convolutional layers followed by two separate
pathways for detection and regression. Each pathway contains 3 FC layers.

constant scale and constant shift, is given by

H(vj) =
1

N

N∑
i=1

ln ‖d(i)j ‖.

The skeleton is obtained by computing the maximum
spanning tree over G.

After we obtain the skeleton, we orient G and sample
each joint from the root to leaves. Each joint’s relative
position to its parent is sampled independently using KDE
with gaussian kernel. Specifically, let y(i)j denotes the
relative position of joint j to its parent in the ith sample,
new samples are generated from a mixture of Gaussian

pj(y) =
1

N

N∑
i=1

N (y; y
(i)
j , b2jI),

where bj is the bandwidth given by bj ≈ 1.06σjN
−1/5

with σj being the standard deviation of yj’s[15].

This method is proven to be able to generate a more
continuous pose space as discussed in [3].

After generating poses, we use MakeHuman software
[1] to generate various 3D human models. We create depth
images by rendering those models with various camera
angles. We also introduce random noise and backgrounds
to rendered depth images so that the synthesized data
appears like real data.

3.4. Models

For the model, we refer to the architecture proposed by
[10]. The model shown in figure 1 includes a number of

convolutional layers followed by two pathways. The first
pathway is the detection path which outputs the bounding
box of the human for input images. The second pathway
is the pose estimation (regression) pathway which outputs
the 3D positions of each joint of the predicted pose for the
input 2D image.

Training the model includes two steps. First, we train
only with the detection pathway. We then fix all convolu-
tional layer and fine-tune the regression pathway using the
same training data.

[10] uses the 3D position of each joint (relative to the
root joint) as the output of the regression model. It uses
relative position between joints to define the loss function.
For each joint i, let Jw

i denote the absolute position of the
joint and Jp

i being the relative position to its parent; we
also denote Ĵ be corresponding value from ground-truth
labelings. [6] proposed a loss function which handles trans-
lation better and has experimentally better performance.
The loss is defined as

L = 0.027Ld + 0.833Ls + 0.139Lr,

where Ld is the sum of error in absolute joint positions:

Ld =
∑
i

‖Jw
i − Ĵw

i ‖2,

Ls is the sum of limb-length errors:

Ls =
∑
i

‖Jp
i − Ĵ

p
i ‖

2,

and Lr is sum of rotation error:

Lr =
∑
i

(
1− Jp

i · Ĵ
p
i

‖Jp
i ‖‖Ĵ

p
i ‖

)
.
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The loss function L is defined on the last layer of re-
gression path, which contains the predicted position of
all 3D joints. The disadvantage of this approach is that
although the loss function is invariant of translation, the
output of the CNN, as the direct position of each joint,
is variant to translation, rotation, etc. This requires our
model to adapt poses subjected to translations and rotations.

[11] considered embedding of 3D CAD models into a
space invariant to rotation. Intuitively, human pose as a 3D
description, should also be considered as invariant under
rigid transformations. Therefore, it is worthy considering
an rotation invariant embedding for poses. In other words,
we would like the last CNN layer output the same pose
for images taken at different camera angles of the pose.
Given that our time is limited, we propose a case-specific
embedding which align x-axis of the chest plane and orient
the head on the y-axis.

Specifically, we first put the “body” joint at the ori-
gin, and define the chesk plane as the plane defined by
“body”, “Left-Shoulder” and “Right-Shoulder”. Let the
chest plane have unit norm N1 = (n1, n2, n3)

T . To align
this norm to x-axis, we define

N2 =
(−n3, 0, n1)T√

n21 + n23

and N3 = N1×N2. Notice that R = (N1, N2, N3) defines
a orthonormal matrix which rotate x-axis to N1. We define
Rn = RT . After we apply Rn to the pose, we com-
pute the projection of “head” joint on y-z plane and apply
the rotation around x-axis to orient the project on the y-axis.

From two rotations discussed above, we are able to
embed poses into a space invariant to rotations and transla-
tions. We apply loss function L as previously discussed on
normalized poses.

Our naive embedding is very problem-specific. Gen-
eralized and more powerful embedding is possible, and it
serve as a part of a larger project which exceed the scope of
this report.

4. Experiments
4.1. Data Generation

Computing mutual information requires us to take nearest
neighbours of each sample at each joint. The process is
implemented in a naive way which takes O(N2) time
complexity for each joint. As we need to compute the
joint entropy H(vj , vk) for all joint pairs, overall it takes

Figure 2. The t-SNE embedding of real data. Straight lines at the
out bound implies possible continuous translation (e.g. walking)
in the pose space. The ring in the lower bottom indicates possible
rotation in the pose space. It is also obvious that there are many
small, scattered clusters.

Figure 3. Examples of Synthesized Depth Images. Each image
is obtained by rendering randomly chosen human model, with a
sampled pose and camera angles.

O(n2N2) time complexity to learn the whole skeleton
structure. It turns out that for a large dataset (large N ),
we must limit the number of joint used and the number
of samples to achieve considerably acceptable run time.
Instead of using all 32 joints provided by HUMAN 3.6M,
we only used a subset of 10 joints, including head, arms,
hands, body, legs, and feet. It turns out that limited number
of joints is able to generate sufficient variety of poses from
our sampling process. Figure 3 shows six examples of
synthesized depth images.

We sampled 100,000 poses from 18,072 existing ones. We
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Left-Hand Left-Elbow Body Head Right-Elbow Right-Hand Mean

(Syn,Real)/Syn 68.7254 70.1336 0 50.1225 63.2041 71.354 64.7079
(Syn,Real)/Real 154.257 163.4265 0 138.5861 158.3504 152.4464 153.4133

Embed+(Syn,Real)/Syn 55.5436 62.7590 0 48.1183 54.4399 54.1073 54.9936
Embed+(Syn,Real)/Real 132.8012 149.2931 0 141.0282 160.3875 147.2454 146.1511

Table 1. Prediction Error in mm of Joints. The last column is the mean of all joints. Also notice that since error are taken over normalized
poses, the error of body is zero, since we put the origin at the body. The mean value of joints are taken over all joints other than the body
joint.

visualized the data by t-SNE [18] embedding as shown
in figure 2. The raw real data is scattered into small
clusters. Our synthesized data filled in the gap between
those clusters and combines them into a large cluster.
Furthermore, the synthesized pose space appears to be
more symmetric. As the space for available human poses is
continuous (as we can move from one pose to another one)
and symmetric (as joints are symmetric), we conclude that
poses we generated are covers the space of available poses
better than the original dataset.

We use MakeHuman software [1] to obtain 12 human
models with various body shapes. We render those shapes
to generate synthesized depth images from previously
sampled poses. Figure 3 shows six example of rendered
depth images.

4.2. Pose Estimation

We first train the detection pathway and fine-tune the
regression pathway. We trained our model twice, once with
the embedding of the normalized pose, once without the
embedding. Both models are trained with a combination of
synthesized and real data.

We use the mean distance between absolute position
of corresponding joints as the evaluation metric of our ex-
periments. Since the output of experiments with embedding
are normalized poses, we normalized both ground truth and
predicted poses in all experiments before computing the
error. This makes our experiment results cross-comparable
to each other. Figure 4 and table 1 includes the error com-
puted at each joint. We are able to achieve satisfying results
on validation using also synthesized images. The accuracy
improves with our proposed embedding. However, the
accuracy drops on tests over real images, comparing to
validations on synthetic images.

One reason that our embedding provides better per-
formance is that it simplifies the variety of CNN output. As
a various number of poses map to one single normalized
pose in the embedding space, weights would converge
faster on the same amount of training data. We could notice

Figure 4. Mean Prediction Errors over Each Joint in Different Ex-
periments. Errors are measured in millimeters. The lower the er-
ror, the better the results.

that the errors of all joints, except head, drop significantly
in all four sets of experiments. One explanation is that the
position of head is more likely to be rotation invariant com-
paring to other joints. Therefore, applying the embedding
does not help improving the prediction of the position of
head much.

Figure 5 and figure 6 show visualizations of predicted
poses. Figure 5 are synthesized images and figure 6 are
real images. We can see that our predictions of joint
positions on synthesized images is closer to ground truth
than predictions on real images. The last row of figure ??
also shows that when testing over real images, our model
would take a part incorrectly as a joint (the right elbow and
left hand).

One major reason that we have significantly worse re-
sult on real data could be that our synthesized data appears
very differently to the real data. Although we add random
background and noise to the synthesized image, the
background in HUMAN3.6M dataset is relatively clean
and invariant. In other words, the test set itself is strongly
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Figure 5. Visualization of Results over Synthesized Images. The
left column contains predictions and the right column contains
ground truth labels. The first three row contains qualitatively good
results. The last row is a failed result.

Figure 6. Visualization of Results over Real Images. The left col-
umn contains predictions and the right column contains ground
truth labels. The first three row contains qualitatively good results.
The last row is a failed result.

biased in background. The model could be misled by
features introduced by the background. In addition, as the
performers in HUMAN3.6M wear MOCAP devices when

the video is taken, their appearance in ToF significantly
differ from the model we used to render depth images.
Since MOCAP sensors are placed at joints, they introduce
strong distortion to the depth data as our model is expecting
smoother joints.

5. Conclusions and Future Works

In this project, we explored human pose estimation on
monocular depth images. We contributed to this new area
by combining advantages of works in other related fields.
We augmented real-world dataset by synthesized images.
We use the synthesized images to train a deep network with
our newly proposed pose embedding layer. The embedding
is proven to be able to improve our models in experiments.

Our visualizations and quantitative results shows that
distortion in real data could introduce potential problems
into our models. It is worth exploring domain transforma-
tion and low-level feature fine-tuning to enforce our model
to adapt such distortions.

As we are referring to a neural network which works
well on RGB images, we will also explore other archi-
tectures designed specifically for depth or 3D inputs
[17][14].
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